Merge git://git.infradead.org/iommu-2.6
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30
31 #include "mm.h"
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         unsigned int    pmd;
65         unsigned int    pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         break;
115                 }
116         }
117         if (i == ARRAY_SIZE(cache_policies))
118                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119         /*
120          * This restriction is partly to do with the way we boot; it is
121          * unpredictable to have memory mapped using two different sets of
122          * memory attributes (shared, type, and cache attribs).  We can not
123          * change these attributes once the initial assembly has setup the
124          * page tables.
125          */
126         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128                 cachepolicy = CPOLICY_WRITEBACK;
129         }
130         flush_cache_all();
131         set_cr(cr_alignment);
132         return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135
136 static int __init early_nocache(char *__unused)
137 {
138         char *p = "buffered";
139         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(p);
141         return 0;
142 }
143 early_param("nocache", early_nocache);
144
145 static int __init early_nowrite(char *__unused)
146 {
147         char *p = "uncached";
148         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149         early_cachepolicy(p);
150         return 0;
151 }
152 early_param("nowb", early_nowrite);
153
154 static int __init early_ecc(char *p)
155 {
156         if (memcmp(p, "on", 2) == 0)
157                 ecc_mask = PMD_PROTECTION;
158         else if (memcmp(p, "off", 3) == 0)
159                 ecc_mask = 0;
160         return 0;
161 }
162 early_param("ecc", early_ecc);
163
164 static int __init noalign_setup(char *__unused)
165 {
166         cr_alignment &= ~CR_A;
167         cr_no_alignment &= ~CR_A;
168         set_cr(cr_alignment);
169         return 1;
170 }
171 __setup("noalign", noalign_setup);
172
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176         unsigned long flags;
177
178         mask &= ~CR_A;
179
180         set &= mask;
181
182         local_irq_save(flags);
183
184         cr_no_alignment = (cr_no_alignment & ~mask) | set;
185         cr_alignment = (cr_alignment & ~mask) | set;
186
187         set_cr((get_cr() & ~mask) | set);
188
189         local_irq_restore(flags);
190 }
191 #endif
192
193 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195
196 static struct mem_type mem_types[] = {
197         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
198                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199                                   L_PTE_SHARED,
200                 .prot_l1        = PMD_TYPE_TABLE,
201                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
202                 .domain         = DOMAIN_IO,
203         },
204         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206                 .prot_l1        = PMD_TYPE_TABLE,
207                 .prot_sect      = PROT_SECT_DEVICE,
208                 .domain         = DOMAIN_IO,
209         },
210         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
211                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212                 .prot_l1        = PMD_TYPE_TABLE,
213                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
214                 .domain         = DOMAIN_IO,
215         },      
216         [MT_DEVICE_WC] = {      /* ioremap_wc */
217                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218                 .prot_l1        = PMD_TYPE_TABLE,
219                 .prot_sect      = PROT_SECT_DEVICE,
220                 .domain         = DOMAIN_IO,
221         },
222         [MT_UNCACHED] = {
223                 .prot_pte       = PROT_PTE_DEVICE,
224                 .prot_l1        = PMD_TYPE_TABLE,
225                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
226                 .domain         = DOMAIN_IO,
227         },
228         [MT_CACHECLEAN] = {
229                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain    = DOMAIN_KERNEL,
231         },
232         [MT_MINICLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234                 .domain    = DOMAIN_KERNEL,
235         },
236         [MT_LOW_VECTORS] = {
237                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238                                 L_PTE_EXEC,
239                 .prot_l1   = PMD_TYPE_TABLE,
240                 .domain    = DOMAIN_USER,
241         },
242         [MT_HIGH_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_USER | L_PTE_EXEC,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_MEMORY] = {
249                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250                 .domain    = DOMAIN_KERNEL,
251         },
252         [MT_ROM] = {
253                 .prot_sect = PMD_TYPE_SECT,
254                 .domain    = DOMAIN_KERNEL,
255         },
256         [MT_MEMORY_NONCACHED] = {
257                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258                 .domain    = DOMAIN_KERNEL,
259         },
260         [MT_MEMORY_DTCM] = {
261                 .prot_pte       = L_PTE_PRESENT | L_PTE_YOUNG |
262                                   L_PTE_DIRTY | L_PTE_WRITE,
263                 .prot_l1        = PMD_TYPE_TABLE,
264                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
265                 .domain         = DOMAIN_KERNEL,
266         },
267         [MT_MEMORY_ITCM] = {
268                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
269                                 L_PTE_USER | L_PTE_EXEC,
270                 .prot_l1   = PMD_TYPE_TABLE,
271                 .domain    = DOMAIN_IO,
272         },
273 };
274
275 const struct mem_type *get_mem_type(unsigned int type)
276 {
277         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
278 }
279 EXPORT_SYMBOL(get_mem_type);
280
281 /*
282  * Adjust the PMD section entries according to the CPU in use.
283  */
284 static void __init build_mem_type_table(void)
285 {
286         struct cachepolicy *cp;
287         unsigned int cr = get_cr();
288         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
289         int cpu_arch = cpu_architecture();
290         int i;
291
292         if (cpu_arch < CPU_ARCH_ARMv6) {
293 #if defined(CONFIG_CPU_DCACHE_DISABLE)
294                 if (cachepolicy > CPOLICY_BUFFERED)
295                         cachepolicy = CPOLICY_BUFFERED;
296 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
297                 if (cachepolicy > CPOLICY_WRITETHROUGH)
298                         cachepolicy = CPOLICY_WRITETHROUGH;
299 #endif
300         }
301         if (cpu_arch < CPU_ARCH_ARMv5) {
302                 if (cachepolicy >= CPOLICY_WRITEALLOC)
303                         cachepolicy = CPOLICY_WRITEBACK;
304                 ecc_mask = 0;
305         }
306 #ifdef CONFIG_SMP
307         cachepolicy = CPOLICY_WRITEALLOC;
308 #endif
309
310         /*
311          * Strip out features not present on earlier architectures.
312          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
313          * without extended page tables don't have the 'Shared' bit.
314          */
315         if (cpu_arch < CPU_ARCH_ARMv5)
316                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
317                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
318         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
319                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
320                         mem_types[i].prot_sect &= ~PMD_SECT_S;
321
322         /*
323          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
324          * "update-able on write" bit on ARM610).  However, Xscale and
325          * Xscale3 require this bit to be cleared.
326          */
327         if (cpu_is_xscale() || cpu_is_xsc3()) {
328                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
329                         mem_types[i].prot_sect &= ~PMD_BIT4;
330                         mem_types[i].prot_l1 &= ~PMD_BIT4;
331                 }
332         } else if (cpu_arch < CPU_ARCH_ARMv6) {
333                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
334                         if (mem_types[i].prot_l1)
335                                 mem_types[i].prot_l1 |= PMD_BIT4;
336                         if (mem_types[i].prot_sect)
337                                 mem_types[i].prot_sect |= PMD_BIT4;
338                 }
339         }
340
341         /*
342          * Mark the device areas according to the CPU/architecture.
343          */
344         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
345                 if (!cpu_is_xsc3()) {
346                         /*
347                          * Mark device regions on ARMv6+ as execute-never
348                          * to prevent speculative instruction fetches.
349                          */
350                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
351                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
352                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
353                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
354                 }
355                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
356                         /*
357                          * For ARMv7 with TEX remapping,
358                          * - shared device is SXCB=1100
359                          * - nonshared device is SXCB=0100
360                          * - write combine device mem is SXCB=0001
361                          * (Uncached Normal memory)
362                          */
363                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
364                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
365                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
366                 } else if (cpu_is_xsc3()) {
367                         /*
368                          * For Xscale3,
369                          * - shared device is TEXCB=00101
370                          * - nonshared device is TEXCB=01000
371                          * - write combine device mem is TEXCB=00100
372                          * (Inner/Outer Uncacheable in xsc3 parlance)
373                          */
374                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
375                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
376                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
377                 } else {
378                         /*
379                          * For ARMv6 and ARMv7 without TEX remapping,
380                          * - shared device is TEXCB=00001
381                          * - nonshared device is TEXCB=01000
382                          * - write combine device mem is TEXCB=00100
383                          * (Uncached Normal in ARMv6 parlance).
384                          */
385                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
386                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
387                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
388                 }
389         } else {
390                 /*
391                  * On others, write combining is "Uncached/Buffered"
392                  */
393                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
394         }
395
396         /*
397          * Now deal with the memory-type mappings
398          */
399         cp = &cache_policies[cachepolicy];
400         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
401
402 #ifndef CONFIG_SMP
403         /*
404          * Only use write-through for non-SMP systems
405          */
406         if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
407                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
408 #endif
409
410         /*
411          * Enable CPU-specific coherency if supported.
412          * (Only available on XSC3 at the moment.)
413          */
414         if (arch_is_coherent() && cpu_is_xsc3())
415                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416
417         /*
418          * ARMv6 and above have extended page tables.
419          */
420         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
421                 /*
422                  * Mark cache clean areas and XIP ROM read only
423                  * from SVC mode and no access from userspace.
424                  */
425                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
426                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
427                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
428
429 #ifdef CONFIG_SMP
430                 /*
431                  * Mark memory with the "shared" attribute for SMP systems
432                  */
433                 user_pgprot |= L_PTE_SHARED;
434                 kern_pgprot |= L_PTE_SHARED;
435                 vecs_pgprot |= L_PTE_SHARED;
436                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
437                 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
438                 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
439                 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
440                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
441                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
442 #endif
443         }
444
445         /*
446          * Non-cacheable Normal - intended for memory areas that must
447          * not cause dirty cache line writebacks when used
448          */
449         if (cpu_arch >= CPU_ARCH_ARMv6) {
450                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
451                         /* Non-cacheable Normal is XCB = 001 */
452                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
453                                 PMD_SECT_BUFFERED;
454                 } else {
455                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
456                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
457                                 PMD_SECT_TEX(1);
458                 }
459         } else {
460                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
461         }
462
463         for (i = 0; i < 16; i++) {
464                 unsigned long v = pgprot_val(protection_map[i]);
465                 protection_map[i] = __pgprot(v | user_pgprot);
466         }
467
468         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
469         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
470
471         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
472         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
473                                  L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
474
475         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
476         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
477         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
478         mem_types[MT_ROM].prot_sect |= cp->pmd;
479
480         switch (cp->pmd) {
481         case PMD_SECT_WT:
482                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
483                 break;
484         case PMD_SECT_WB:
485         case PMD_SECT_WBWA:
486                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
487                 break;
488         }
489         printk("Memory policy: ECC %sabled, Data cache %s\n",
490                 ecc_mask ? "en" : "dis", cp->policy);
491
492         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
493                 struct mem_type *t = &mem_types[i];
494                 if (t->prot_l1)
495                         t->prot_l1 |= PMD_DOMAIN(t->domain);
496                 if (t->prot_sect)
497                         t->prot_sect |= PMD_DOMAIN(t->domain);
498         }
499 }
500
501 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
502
503 static void __init *early_alloc(unsigned long sz)
504 {
505         void *ptr = __va(memblock_alloc(sz, sz));
506         memset(ptr, 0, sz);
507         return ptr;
508 }
509
510 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
511 {
512         if (pmd_none(*pmd)) {
513                 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
514                 __pmd_populate(pmd, __pa(pte) | prot);
515         }
516         BUG_ON(pmd_bad(*pmd));
517         return pte_offset_kernel(pmd, addr);
518 }
519
520 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
521                                   unsigned long end, unsigned long pfn,
522                                   const struct mem_type *type)
523 {
524         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
525         do {
526                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
527                 pfn++;
528         } while (pte++, addr += PAGE_SIZE, addr != end);
529 }
530
531 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
532                                       unsigned long end, unsigned long phys,
533                                       const struct mem_type *type)
534 {
535         pmd_t *pmd = pmd_offset(pgd, addr);
536
537         /*
538          * Try a section mapping - end, addr and phys must all be aligned
539          * to a section boundary.  Note that PMDs refer to the individual
540          * L1 entries, whereas PGDs refer to a group of L1 entries making
541          * up one logical pointer to an L2 table.
542          */
543         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
544                 pmd_t *p = pmd;
545
546                 if (addr & SECTION_SIZE)
547                         pmd++;
548
549                 do {
550                         *pmd = __pmd(phys | type->prot_sect);
551                         phys += SECTION_SIZE;
552                 } while (pmd++, addr += SECTION_SIZE, addr != end);
553
554                 flush_pmd_entry(p);
555         } else {
556                 /*
557                  * No need to loop; pte's aren't interested in the
558                  * individual L1 entries.
559                  */
560                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
561         }
562 }
563
564 static void __init create_36bit_mapping(struct map_desc *md,
565                                         const struct mem_type *type)
566 {
567         unsigned long phys, addr, length, end;
568         pgd_t *pgd;
569
570         addr = md->virtual;
571         phys = (unsigned long)__pfn_to_phys(md->pfn);
572         length = PAGE_ALIGN(md->length);
573
574         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
575                 printk(KERN_ERR "MM: CPU does not support supersection "
576                        "mapping for 0x%08llx at 0x%08lx\n",
577                        __pfn_to_phys((u64)md->pfn), addr);
578                 return;
579         }
580
581         /* N.B. ARMv6 supersections are only defined to work with domain 0.
582          *      Since domain assignments can in fact be arbitrary, the
583          *      'domain == 0' check below is required to insure that ARMv6
584          *      supersections are only allocated for domain 0 regardless
585          *      of the actual domain assignments in use.
586          */
587         if (type->domain) {
588                 printk(KERN_ERR "MM: invalid domain in supersection "
589                        "mapping for 0x%08llx at 0x%08lx\n",
590                        __pfn_to_phys((u64)md->pfn), addr);
591                 return;
592         }
593
594         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
595                 printk(KERN_ERR "MM: cannot create mapping for "
596                        "0x%08llx at 0x%08lx invalid alignment\n",
597                        __pfn_to_phys((u64)md->pfn), addr);
598                 return;
599         }
600
601         /*
602          * Shift bits [35:32] of address into bits [23:20] of PMD
603          * (See ARMv6 spec).
604          */
605         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
606
607         pgd = pgd_offset_k(addr);
608         end = addr + length;
609         do {
610                 pmd_t *pmd = pmd_offset(pgd, addr);
611                 int i;
612
613                 for (i = 0; i < 16; i++)
614                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
615
616                 addr += SUPERSECTION_SIZE;
617                 phys += SUPERSECTION_SIZE;
618                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
619         } while (addr != end);
620 }
621
622 /*
623  * Create the page directory entries and any necessary
624  * page tables for the mapping specified by `md'.  We
625  * are able to cope here with varying sizes and address
626  * offsets, and we take full advantage of sections and
627  * supersections.
628  */
629 static void __init create_mapping(struct map_desc *md)
630 {
631         unsigned long phys, addr, length, end;
632         const struct mem_type *type;
633         pgd_t *pgd;
634
635         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
636                 printk(KERN_WARNING "BUG: not creating mapping for "
637                        "0x%08llx at 0x%08lx in user region\n",
638                        __pfn_to_phys((u64)md->pfn), md->virtual);
639                 return;
640         }
641
642         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
643             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
644                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
645                        "overlaps vmalloc space\n",
646                        __pfn_to_phys((u64)md->pfn), md->virtual);
647         }
648
649         type = &mem_types[md->type];
650
651         /*
652          * Catch 36-bit addresses
653          */
654         if (md->pfn >= 0x100000) {
655                 create_36bit_mapping(md, type);
656                 return;
657         }
658
659         addr = md->virtual & PAGE_MASK;
660         phys = (unsigned long)__pfn_to_phys(md->pfn);
661         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
662
663         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
664                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
665                        "be mapped using pages, ignoring.\n",
666                        __pfn_to_phys(md->pfn), addr);
667                 return;
668         }
669
670         pgd = pgd_offset_k(addr);
671         end = addr + length;
672         do {
673                 unsigned long next = pgd_addr_end(addr, end);
674
675                 alloc_init_section(pgd, addr, next, phys, type);
676
677                 phys += next - addr;
678                 addr = next;
679         } while (pgd++, addr != end);
680 }
681
682 /*
683  * Create the architecture specific mappings
684  */
685 void __init iotable_init(struct map_desc *io_desc, int nr)
686 {
687         int i;
688
689         for (i = 0; i < nr; i++)
690                 create_mapping(io_desc + i);
691 }
692
693 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
694
695 /*
696  * vmalloc=size forces the vmalloc area to be exactly 'size'
697  * bytes. This can be used to increase (or decrease) the vmalloc
698  * area - the default is 128m.
699  */
700 static int __init early_vmalloc(char *arg)
701 {
702         unsigned long vmalloc_reserve = memparse(arg, NULL);
703
704         if (vmalloc_reserve < SZ_16M) {
705                 vmalloc_reserve = SZ_16M;
706                 printk(KERN_WARNING
707                         "vmalloc area too small, limiting to %luMB\n",
708                         vmalloc_reserve >> 20);
709         }
710
711         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
712                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
713                 printk(KERN_WARNING
714                         "vmalloc area is too big, limiting to %luMB\n",
715                         vmalloc_reserve >> 20);
716         }
717
718         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
719         return 0;
720 }
721 early_param("vmalloc", early_vmalloc);
722
723 phys_addr_t lowmem_end_addr;
724
725 static void __init sanity_check_meminfo(void)
726 {
727         int i, j, highmem = 0;
728
729         lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
730
731         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
732                 struct membank *bank = &meminfo.bank[j];
733                 *bank = meminfo.bank[i];
734
735 #ifdef CONFIG_HIGHMEM
736                 if (__va(bank->start) > vmalloc_min ||
737                     __va(bank->start) < (void *)PAGE_OFFSET)
738                         highmem = 1;
739
740                 bank->highmem = highmem;
741
742                 /*
743                  * Split those memory banks which are partially overlapping
744                  * the vmalloc area greatly simplifying things later.
745                  */
746                 if (__va(bank->start) < vmalloc_min &&
747                     bank->size > vmalloc_min - __va(bank->start)) {
748                         if (meminfo.nr_banks >= NR_BANKS) {
749                                 printk(KERN_CRIT "NR_BANKS too low, "
750                                                  "ignoring high memory\n");
751                         } else {
752                                 memmove(bank + 1, bank,
753                                         (meminfo.nr_banks - i) * sizeof(*bank));
754                                 meminfo.nr_banks++;
755                                 i++;
756                                 bank[1].size -= vmalloc_min - __va(bank->start);
757                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
758                                 bank[1].highmem = highmem = 1;
759                                 j++;
760                         }
761                         bank->size = vmalloc_min - __va(bank->start);
762                 }
763 #else
764                 bank->highmem = highmem;
765
766                 /*
767                  * Check whether this memory bank would entirely overlap
768                  * the vmalloc area.
769                  */
770                 if (__va(bank->start) >= vmalloc_min ||
771                     __va(bank->start) < (void *)PAGE_OFFSET) {
772                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
773                                "(vmalloc region overlap).\n",
774                                bank->start, bank->start + bank->size - 1);
775                         continue;
776                 }
777
778                 /*
779                  * Check whether this memory bank would partially overlap
780                  * the vmalloc area.
781                  */
782                 if (__va(bank->start + bank->size) > vmalloc_min ||
783                     __va(bank->start + bank->size) < __va(bank->start)) {
784                         unsigned long newsize = vmalloc_min - __va(bank->start);
785                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
786                                "to -%.8lx (vmalloc region overlap).\n",
787                                bank->start, bank->start + bank->size - 1,
788                                bank->start + newsize - 1);
789                         bank->size = newsize;
790                 }
791 #endif
792                 j++;
793         }
794 #ifdef CONFIG_HIGHMEM
795         if (highmem) {
796                 const char *reason = NULL;
797
798                 if (cache_is_vipt_aliasing()) {
799                         /*
800                          * Interactions between kmap and other mappings
801                          * make highmem support with aliasing VIPT caches
802                          * rather difficult.
803                          */
804                         reason = "with VIPT aliasing cache";
805 #ifdef CONFIG_SMP
806                 } else if (tlb_ops_need_broadcast()) {
807                         /*
808                          * kmap_high needs to occasionally flush TLB entries,
809                          * however, if the TLB entries need to be broadcast
810                          * we may deadlock:
811                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
812                          *  flush_tlb_kernel_range->smp_call_function_many
813                          *   (must not be called with irqs off)
814                          */
815                         reason = "without hardware TLB ops broadcasting";
816 #endif
817                 }
818                 if (reason) {
819                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
820                                 reason);
821                         while (j > 0 && meminfo.bank[j - 1].highmem)
822                                 j--;
823                 }
824         }
825 #endif
826         meminfo.nr_banks = j;
827 }
828
829 static inline void prepare_page_table(void)
830 {
831         unsigned long addr;
832
833         /*
834          * Clear out all the mappings below the kernel image.
835          */
836         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
837                 pmd_clear(pmd_off_k(addr));
838
839 #ifdef CONFIG_XIP_KERNEL
840         /* The XIP kernel is mapped in the module area -- skip over it */
841         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
842 #endif
843         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
844                 pmd_clear(pmd_off_k(addr));
845
846         /*
847          * Clear out all the kernel space mappings, except for the first
848          * memory bank, up to the end of the vmalloc region.
849          */
850         for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
851              addr < VMALLOC_END; addr += PGDIR_SIZE)
852                 pmd_clear(pmd_off_k(addr));
853 }
854
855 /*
856  * Reserve the special regions of memory
857  */
858 void __init arm_mm_memblock_reserve(void)
859 {
860         /*
861          * Reserve the page tables.  These are already in use,
862          * and can only be in node 0.
863          */
864         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
865
866 #ifdef CONFIG_SA1111
867         /*
868          * Because of the SA1111 DMA bug, we want to preserve our
869          * precious DMA-able memory...
870          */
871         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
872 #endif
873 }
874
875 /*
876  * Set up device the mappings.  Since we clear out the page tables for all
877  * mappings above VMALLOC_END, we will remove any debug device mappings.
878  * This means you have to be careful how you debug this function, or any
879  * called function.  This means you can't use any function or debugging
880  * method which may touch any device, otherwise the kernel _will_ crash.
881  */
882 static void __init devicemaps_init(struct machine_desc *mdesc)
883 {
884         struct map_desc map;
885         unsigned long addr;
886         void *vectors;
887
888         /*
889          * Allocate the vector page early.
890          */
891         vectors = early_alloc(PAGE_SIZE);
892
893         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
894                 pmd_clear(pmd_off_k(addr));
895
896         /*
897          * Map the kernel if it is XIP.
898          * It is always first in the modulearea.
899          */
900 #ifdef CONFIG_XIP_KERNEL
901         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
902         map.virtual = MODULES_VADDR;
903         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
904         map.type = MT_ROM;
905         create_mapping(&map);
906 #endif
907
908         /*
909          * Map the cache flushing regions.
910          */
911 #ifdef FLUSH_BASE
912         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
913         map.virtual = FLUSH_BASE;
914         map.length = SZ_1M;
915         map.type = MT_CACHECLEAN;
916         create_mapping(&map);
917 #endif
918 #ifdef FLUSH_BASE_MINICACHE
919         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
920         map.virtual = FLUSH_BASE_MINICACHE;
921         map.length = SZ_1M;
922         map.type = MT_MINICLEAN;
923         create_mapping(&map);
924 #endif
925
926         /*
927          * Create a mapping for the machine vectors at the high-vectors
928          * location (0xffff0000).  If we aren't using high-vectors, also
929          * create a mapping at the low-vectors virtual address.
930          */
931         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
932         map.virtual = 0xffff0000;
933         map.length = PAGE_SIZE;
934         map.type = MT_HIGH_VECTORS;
935         create_mapping(&map);
936
937         if (!vectors_high()) {
938                 map.virtual = 0;
939                 map.type = MT_LOW_VECTORS;
940                 create_mapping(&map);
941         }
942
943         /*
944          * Ask the machine support to map in the statically mapped devices.
945          */
946         if (mdesc->map_io)
947                 mdesc->map_io();
948
949         /*
950          * Finally flush the caches and tlb to ensure that we're in a
951          * consistent state wrt the writebuffer.  This also ensures that
952          * any write-allocated cache lines in the vector page are written
953          * back.  After this point, we can start to touch devices again.
954          */
955         local_flush_tlb_all();
956         flush_cache_all();
957 }
958
959 static void __init kmap_init(void)
960 {
961 #ifdef CONFIG_HIGHMEM
962         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
963                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
964 #endif
965 }
966
967 static inline void map_memory_bank(struct membank *bank)
968 {
969         struct map_desc map;
970
971         map.pfn = bank_pfn_start(bank);
972         map.virtual = __phys_to_virt(bank_phys_start(bank));
973         map.length = bank_phys_size(bank);
974         map.type = MT_MEMORY;
975
976         create_mapping(&map);
977 }
978
979 static void __init map_lowmem(void)
980 {
981         struct meminfo *mi = &meminfo;
982         int i;
983
984         /* Map all the lowmem memory banks. */
985         for (i = 0; i < mi->nr_banks; i++) {
986                 struct membank *bank = &mi->bank[i];
987
988                 if (!bank->highmem)
989                         map_memory_bank(bank);
990         }
991 }
992
993 static int __init meminfo_cmp(const void *_a, const void *_b)
994 {
995         const struct membank *a = _a, *b = _b;
996         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
997         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
998 }
999
1000 /*
1001  * paging_init() sets up the page tables, initialises the zone memory
1002  * maps, and sets up the zero page, bad page and bad page tables.
1003  */
1004 void __init paging_init(struct machine_desc *mdesc)
1005 {
1006         void *zero_page;
1007
1008         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1009
1010         build_mem_type_table();
1011         sanity_check_meminfo();
1012         prepare_page_table();
1013         map_lowmem();
1014         devicemaps_init(mdesc);
1015         kmap_init();
1016
1017         top_pmd = pmd_off_k(0xffff0000);
1018
1019         /* allocate the zero page. */
1020         zero_page = early_alloc(PAGE_SIZE);
1021
1022         bootmem_init();
1023
1024         empty_zero_page = virt_to_page(zero_page);
1025         __flush_dcache_page(NULL, empty_zero_page);
1026 }
1027
1028 /*
1029  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1030  * the user-mode pages.  This will then ensure that we have predictable
1031  * results when turning the mmu off
1032  */
1033 void setup_mm_for_reboot(char mode)
1034 {
1035         unsigned long base_pmdval;
1036         pgd_t *pgd;
1037         int i;
1038
1039         /*
1040          * We need to access to user-mode page tables here. For kernel threads
1041          * we don't have any user-mode mappings so we use the context that we
1042          * "borrowed".
1043          */
1044         pgd = current->active_mm->pgd;
1045
1046         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1047         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1048                 base_pmdval |= PMD_BIT4;
1049
1050         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1051                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1052                 pmd_t *pmd;
1053
1054                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1055                 pmd[0] = __pmd(pmdval);
1056                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1057                 flush_pmd_entry(pmd);
1058         }
1059
1060         local_flush_tlb_all();
1061 }