Merge git://git.infradead.org/battery-2.6
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26
27 #include <asm/mach/arch.h>
28 #include <asm/mach/map.h>
29
30 #include "mm.h"
31
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33
34 /*
35  * empty_zero_page is a special page that is used for
36  * zero-initialized data and COW.
37  */
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
40
41 /*
42  * The pmd table for the upper-most set of pages.
43  */
44 pmd_t *top_pmd;
45
46 #define CPOLICY_UNCACHED        0
47 #define CPOLICY_BUFFERED        1
48 #define CPOLICY_WRITETHROUGH    2
49 #define CPOLICY_WRITEBACK       3
50 #define CPOLICY_WRITEALLOC      4
51
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
56
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
59
60 struct cachepolicy {
61         const char      policy[16];
62         unsigned int    cr_mask;
63         unsigned int    pmd;
64         unsigned int    pte;
65 };
66
67 static struct cachepolicy cache_policies[] __initdata = {
68         {
69                 .policy         = "uncached",
70                 .cr_mask        = CR_W|CR_C,
71                 .pmd            = PMD_SECT_UNCACHED,
72                 .pte            = L_PTE_MT_UNCACHED,
73         }, {
74                 .policy         = "buffered",
75                 .cr_mask        = CR_C,
76                 .pmd            = PMD_SECT_BUFFERED,
77                 .pte            = L_PTE_MT_BUFFERABLE,
78         }, {
79                 .policy         = "writethrough",
80                 .cr_mask        = 0,
81                 .pmd            = PMD_SECT_WT,
82                 .pte            = L_PTE_MT_WRITETHROUGH,
83         }, {
84                 .policy         = "writeback",
85                 .cr_mask        = 0,
86                 .pmd            = PMD_SECT_WB,
87                 .pte            = L_PTE_MT_WRITEBACK,
88         }, {
89                 .policy         = "writealloc",
90                 .cr_mask        = 0,
91                 .pmd            = PMD_SECT_WBWA,
92                 .pte            = L_PTE_MT_WRITEALLOC,
93         }
94 };
95
96 /*
97  * These are useful for identifying cache coherency
98  * problems by allowing the cache or the cache and
99  * writebuffer to be turned off.  (Note: the write
100  * buffer should not be on and the cache off).
101  */
102 static void __init early_cachepolicy(char **p)
103 {
104         int i;
105
106         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107                 int len = strlen(cache_policies[i].policy);
108
109                 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
110                         cachepolicy = i;
111                         cr_alignment &= ~cache_policies[i].cr_mask;
112                         cr_no_alignment &= ~cache_policies[i].cr_mask;
113                         *p += len;
114                         break;
115                 }
116         }
117         if (i == ARRAY_SIZE(cache_policies))
118                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
120                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
121                 cachepolicy = CPOLICY_WRITEBACK;
122         }
123         flush_cache_all();
124         set_cr(cr_alignment);
125 }
126 __early_param("cachepolicy=", early_cachepolicy);
127
128 static void __init early_nocache(char **__unused)
129 {
130         char *p = "buffered";
131         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
132         early_cachepolicy(&p);
133 }
134 __early_param("nocache", early_nocache);
135
136 static void __init early_nowrite(char **__unused)
137 {
138         char *p = "uncached";
139         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(&p);
141 }
142 __early_param("nowb", early_nowrite);
143
144 static void __init early_ecc(char **p)
145 {
146         if (memcmp(*p, "on", 2) == 0) {
147                 ecc_mask = PMD_PROTECTION;
148                 *p += 2;
149         } else if (memcmp(*p, "off", 3) == 0) {
150                 ecc_mask = 0;
151                 *p += 3;
152         }
153 }
154 __early_param("ecc=", early_ecc);
155
156 static int __init noalign_setup(char *__unused)
157 {
158         cr_alignment &= ~CR_A;
159         cr_no_alignment &= ~CR_A;
160         set_cr(cr_alignment);
161         return 1;
162 }
163 __setup("noalign", noalign_setup);
164
165 #ifndef CONFIG_SMP
166 void adjust_cr(unsigned long mask, unsigned long set)
167 {
168         unsigned long flags;
169
170         mask &= ~CR_A;
171
172         set &= mask;
173
174         local_irq_save(flags);
175
176         cr_no_alignment = (cr_no_alignment & ~mask) | set;
177         cr_alignment = (cr_alignment & ~mask) | set;
178
179         set_cr((get_cr() & ~mask) | set);
180
181         local_irq_restore(flags);
182 }
183 #endif
184
185 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
186 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
187
188 static struct mem_type mem_types[] = {
189         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
190                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
191                                   L_PTE_SHARED,
192                 .prot_l1        = PMD_TYPE_TABLE,
193                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
194                 .domain         = DOMAIN_IO,
195         },
196         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
197                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
198                 .prot_l1        = PMD_TYPE_TABLE,
199                 .prot_sect      = PROT_SECT_DEVICE,
200                 .domain         = DOMAIN_IO,
201         },
202         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
203                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
204                 .prot_l1        = PMD_TYPE_TABLE,
205                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
206                 .domain         = DOMAIN_IO,
207         },      
208         [MT_DEVICE_WC] = {      /* ioremap_wc */
209                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
210                 .prot_l1        = PMD_TYPE_TABLE,
211                 .prot_sect      = PROT_SECT_DEVICE,
212                 .domain         = DOMAIN_IO,
213         },
214         [MT_UNCACHED] = {
215                 .prot_pte       = PROT_PTE_DEVICE,
216                 .prot_l1        = PMD_TYPE_TABLE,
217                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
218                 .domain         = DOMAIN_IO,
219         },
220         [MT_CACHECLEAN] = {
221                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
222                 .domain    = DOMAIN_KERNEL,
223         },
224         [MT_MINICLEAN] = {
225                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
226                 .domain    = DOMAIN_KERNEL,
227         },
228         [MT_LOW_VECTORS] = {
229                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
230                                 L_PTE_EXEC,
231                 .prot_l1   = PMD_TYPE_TABLE,
232                 .domain    = DOMAIN_USER,
233         },
234         [MT_HIGH_VECTORS] = {
235                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
236                                 L_PTE_USER | L_PTE_EXEC,
237                 .prot_l1   = PMD_TYPE_TABLE,
238                 .domain    = DOMAIN_USER,
239         },
240         [MT_MEMORY] = {
241                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
242                 .domain    = DOMAIN_KERNEL,
243         },
244         [MT_ROM] = {
245                 .prot_sect = PMD_TYPE_SECT,
246                 .domain    = DOMAIN_KERNEL,
247         },
248         [MT_MEMORY_NONCACHED] = {
249                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250                 .domain    = DOMAIN_KERNEL,
251         },
252 };
253
254 const struct mem_type *get_mem_type(unsigned int type)
255 {
256         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
257 }
258 EXPORT_SYMBOL(get_mem_type);
259
260 /*
261  * Adjust the PMD section entries according to the CPU in use.
262  */
263 static void __init build_mem_type_table(void)
264 {
265         struct cachepolicy *cp;
266         unsigned int cr = get_cr();
267         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
268         int cpu_arch = cpu_architecture();
269         int i;
270
271         if (cpu_arch < CPU_ARCH_ARMv6) {
272 #if defined(CONFIG_CPU_DCACHE_DISABLE)
273                 if (cachepolicy > CPOLICY_BUFFERED)
274                         cachepolicy = CPOLICY_BUFFERED;
275 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
276                 if (cachepolicy > CPOLICY_WRITETHROUGH)
277                         cachepolicy = CPOLICY_WRITETHROUGH;
278 #endif
279         }
280         if (cpu_arch < CPU_ARCH_ARMv5) {
281                 if (cachepolicy >= CPOLICY_WRITEALLOC)
282                         cachepolicy = CPOLICY_WRITEBACK;
283                 ecc_mask = 0;
284         }
285 #ifdef CONFIG_SMP
286         cachepolicy = CPOLICY_WRITEALLOC;
287 #endif
288
289         /*
290          * Strip out features not present on earlier architectures.
291          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
292          * without extended page tables don't have the 'Shared' bit.
293          */
294         if (cpu_arch < CPU_ARCH_ARMv5)
295                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
296                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
297         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
298                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
299                         mem_types[i].prot_sect &= ~PMD_SECT_S;
300
301         /*
302          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
303          * "update-able on write" bit on ARM610).  However, Xscale and
304          * Xscale3 require this bit to be cleared.
305          */
306         if (cpu_is_xscale() || cpu_is_xsc3()) {
307                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
308                         mem_types[i].prot_sect &= ~PMD_BIT4;
309                         mem_types[i].prot_l1 &= ~PMD_BIT4;
310                 }
311         } else if (cpu_arch < CPU_ARCH_ARMv6) {
312                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
313                         if (mem_types[i].prot_l1)
314                                 mem_types[i].prot_l1 |= PMD_BIT4;
315                         if (mem_types[i].prot_sect)
316                                 mem_types[i].prot_sect |= PMD_BIT4;
317                 }
318         }
319
320         /*
321          * Mark the device areas according to the CPU/architecture.
322          */
323         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
324                 if (!cpu_is_xsc3()) {
325                         /*
326                          * Mark device regions on ARMv6+ as execute-never
327                          * to prevent speculative instruction fetches.
328                          */
329                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
330                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
331                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
332                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
333                 }
334                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
335                         /*
336                          * For ARMv7 with TEX remapping,
337                          * - shared device is SXCB=1100
338                          * - nonshared device is SXCB=0100
339                          * - write combine device mem is SXCB=0001
340                          * (Uncached Normal memory)
341                          */
342                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
343                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
344                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
345                 } else if (cpu_is_xsc3()) {
346                         /*
347                          * For Xscale3,
348                          * - shared device is TEXCB=00101
349                          * - nonshared device is TEXCB=01000
350                          * - write combine device mem is TEXCB=00100
351                          * (Inner/Outer Uncacheable in xsc3 parlance)
352                          */
353                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
354                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
355                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
356                 } else {
357                         /*
358                          * For ARMv6 and ARMv7 without TEX remapping,
359                          * - shared device is TEXCB=00001
360                          * - nonshared device is TEXCB=01000
361                          * - write combine device mem is TEXCB=00100
362                          * (Uncached Normal in ARMv6 parlance).
363                          */
364                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
365                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
366                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
367                 }
368         } else {
369                 /*
370                  * On others, write combining is "Uncached/Buffered"
371                  */
372                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
373         }
374
375         /*
376          * Now deal with the memory-type mappings
377          */
378         cp = &cache_policies[cachepolicy];
379         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
380
381 #ifndef CONFIG_SMP
382         /*
383          * Only use write-through for non-SMP systems
384          */
385         if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
386                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
387 #endif
388
389         /*
390          * Enable CPU-specific coherency if supported.
391          * (Only available on XSC3 at the moment.)
392          */
393         if (arch_is_coherent() && cpu_is_xsc3())
394                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
395
396         /*
397          * ARMv6 and above have extended page tables.
398          */
399         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
400                 /*
401                  * Mark cache clean areas and XIP ROM read only
402                  * from SVC mode and no access from userspace.
403                  */
404                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
405                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
406                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
407
408 #ifdef CONFIG_SMP
409                 /*
410                  * Mark memory with the "shared" attribute for SMP systems
411                  */
412                 user_pgprot |= L_PTE_SHARED;
413                 kern_pgprot |= L_PTE_SHARED;
414                 vecs_pgprot |= L_PTE_SHARED;
415                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
417 #endif
418         }
419
420         /*
421          * Non-cacheable Normal - intended for memory areas that must
422          * not cause dirty cache line writebacks when used
423          */
424         if (cpu_arch >= CPU_ARCH_ARMv6) {
425                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
426                         /* Non-cacheable Normal is XCB = 001 */
427                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
428                                 PMD_SECT_BUFFERED;
429                 } else {
430                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
431                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
432                                 PMD_SECT_TEX(1);
433                 }
434         } else {
435                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
436         }
437
438         for (i = 0; i < 16; i++) {
439                 unsigned long v = pgprot_val(protection_map[i]);
440                 protection_map[i] = __pgprot(v | user_pgprot);
441         }
442
443         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
444         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
445
446         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
447         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
448                                  L_PTE_DIRTY | L_PTE_WRITE |
449                                  L_PTE_EXEC | kern_pgprot);
450
451         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
452         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
453         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
454         mem_types[MT_ROM].prot_sect |= cp->pmd;
455
456         switch (cp->pmd) {
457         case PMD_SECT_WT:
458                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
459                 break;
460         case PMD_SECT_WB:
461         case PMD_SECT_WBWA:
462                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
463                 break;
464         }
465         printk("Memory policy: ECC %sabled, Data cache %s\n",
466                 ecc_mask ? "en" : "dis", cp->policy);
467
468         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
469                 struct mem_type *t = &mem_types[i];
470                 if (t->prot_l1)
471                         t->prot_l1 |= PMD_DOMAIN(t->domain);
472                 if (t->prot_sect)
473                         t->prot_sect |= PMD_DOMAIN(t->domain);
474         }
475 }
476
477 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
478
479 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
480                                   unsigned long end, unsigned long pfn,
481                                   const struct mem_type *type)
482 {
483         pte_t *pte;
484
485         if (pmd_none(*pmd)) {
486                 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
487                 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
488         }
489
490         pte = pte_offset_kernel(pmd, addr);
491         do {
492                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
493                 pfn++;
494         } while (pte++, addr += PAGE_SIZE, addr != end);
495 }
496
497 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
498                                       unsigned long end, unsigned long phys,
499                                       const struct mem_type *type)
500 {
501         pmd_t *pmd = pmd_offset(pgd, addr);
502
503         /*
504          * Try a section mapping - end, addr and phys must all be aligned
505          * to a section boundary.  Note that PMDs refer to the individual
506          * L1 entries, whereas PGDs refer to a group of L1 entries making
507          * up one logical pointer to an L2 table.
508          */
509         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
510                 pmd_t *p = pmd;
511
512                 if (addr & SECTION_SIZE)
513                         pmd++;
514
515                 do {
516                         *pmd = __pmd(phys | type->prot_sect);
517                         phys += SECTION_SIZE;
518                 } while (pmd++, addr += SECTION_SIZE, addr != end);
519
520                 flush_pmd_entry(p);
521         } else {
522                 /*
523                  * No need to loop; pte's aren't interested in the
524                  * individual L1 entries.
525                  */
526                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
527         }
528 }
529
530 static void __init create_36bit_mapping(struct map_desc *md,
531                                         const struct mem_type *type)
532 {
533         unsigned long phys, addr, length, end;
534         pgd_t *pgd;
535
536         addr = md->virtual;
537         phys = (unsigned long)__pfn_to_phys(md->pfn);
538         length = PAGE_ALIGN(md->length);
539
540         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
541                 printk(KERN_ERR "MM: CPU does not support supersection "
542                        "mapping for 0x%08llx at 0x%08lx\n",
543                        __pfn_to_phys((u64)md->pfn), addr);
544                 return;
545         }
546
547         /* N.B. ARMv6 supersections are only defined to work with domain 0.
548          *      Since domain assignments can in fact be arbitrary, the
549          *      'domain == 0' check below is required to insure that ARMv6
550          *      supersections are only allocated for domain 0 regardless
551          *      of the actual domain assignments in use.
552          */
553         if (type->domain) {
554                 printk(KERN_ERR "MM: invalid domain in supersection "
555                        "mapping for 0x%08llx at 0x%08lx\n",
556                        __pfn_to_phys((u64)md->pfn), addr);
557                 return;
558         }
559
560         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
561                 printk(KERN_ERR "MM: cannot create mapping for "
562                        "0x%08llx at 0x%08lx invalid alignment\n",
563                        __pfn_to_phys((u64)md->pfn), addr);
564                 return;
565         }
566
567         /*
568          * Shift bits [35:32] of address into bits [23:20] of PMD
569          * (See ARMv6 spec).
570          */
571         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
572
573         pgd = pgd_offset_k(addr);
574         end = addr + length;
575         do {
576                 pmd_t *pmd = pmd_offset(pgd, addr);
577                 int i;
578
579                 for (i = 0; i < 16; i++)
580                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
581
582                 addr += SUPERSECTION_SIZE;
583                 phys += SUPERSECTION_SIZE;
584                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
585         } while (addr != end);
586 }
587
588 /*
589  * Create the page directory entries and any necessary
590  * page tables for the mapping specified by `md'.  We
591  * are able to cope here with varying sizes and address
592  * offsets, and we take full advantage of sections and
593  * supersections.
594  */
595 void __init create_mapping(struct map_desc *md)
596 {
597         unsigned long phys, addr, length, end;
598         const struct mem_type *type;
599         pgd_t *pgd;
600
601         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
602                 printk(KERN_WARNING "BUG: not creating mapping for "
603                        "0x%08llx at 0x%08lx in user region\n",
604                        __pfn_to_phys((u64)md->pfn), md->virtual);
605                 return;
606         }
607
608         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
609             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
610                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
611                        "overlaps vmalloc space\n",
612                        __pfn_to_phys((u64)md->pfn), md->virtual);
613         }
614
615         type = &mem_types[md->type];
616
617         /*
618          * Catch 36-bit addresses
619          */
620         if (md->pfn >= 0x100000) {
621                 create_36bit_mapping(md, type);
622                 return;
623         }
624
625         addr = md->virtual & PAGE_MASK;
626         phys = (unsigned long)__pfn_to_phys(md->pfn);
627         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
628
629         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
630                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
631                        "be mapped using pages, ignoring.\n",
632                        __pfn_to_phys(md->pfn), addr);
633                 return;
634         }
635
636         pgd = pgd_offset_k(addr);
637         end = addr + length;
638         do {
639                 unsigned long next = pgd_addr_end(addr, end);
640
641                 alloc_init_section(pgd, addr, next, phys, type);
642
643                 phys += next - addr;
644                 addr = next;
645         } while (pgd++, addr != end);
646 }
647
648 /*
649  * Create the architecture specific mappings
650  */
651 void __init iotable_init(struct map_desc *io_desc, int nr)
652 {
653         int i;
654
655         for (i = 0; i < nr; i++)
656                 create_mapping(io_desc + i);
657 }
658
659 static unsigned long __initdata vmalloc_reserve = SZ_128M;
660
661 /*
662  * vmalloc=size forces the vmalloc area to be exactly 'size'
663  * bytes. This can be used to increase (or decrease) the vmalloc
664  * area - the default is 128m.
665  */
666 static void __init early_vmalloc(char **arg)
667 {
668         vmalloc_reserve = memparse(*arg, arg);
669
670         if (vmalloc_reserve < SZ_16M) {
671                 vmalloc_reserve = SZ_16M;
672                 printk(KERN_WARNING
673                         "vmalloc area too small, limiting to %luMB\n",
674                         vmalloc_reserve >> 20);
675         }
676
677         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
678                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
679                 printk(KERN_WARNING
680                         "vmalloc area is too big, limiting to %luMB\n",
681                         vmalloc_reserve >> 20);
682         }
683 }
684 __early_param("vmalloc=", early_vmalloc);
685
686 #define VMALLOC_MIN     (void *)(VMALLOC_END - vmalloc_reserve)
687
688 static void __init sanity_check_meminfo(void)
689 {
690         int i, j;
691
692         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
693                 struct membank *bank = &meminfo.bank[j];
694                 *bank = meminfo.bank[i];
695
696 #ifdef CONFIG_HIGHMEM
697                 /*
698                  * Split those memory banks which are partially overlapping
699                  * the vmalloc area greatly simplifying things later.
700                  */
701                 if (__va(bank->start) < VMALLOC_MIN &&
702                     bank->size > VMALLOC_MIN - __va(bank->start)) {
703                         if (meminfo.nr_banks >= NR_BANKS) {
704                                 printk(KERN_CRIT "NR_BANKS too low, "
705                                                  "ignoring high memory\n");
706                         } else if (cache_is_vipt_aliasing()) {
707                                 printk(KERN_CRIT "HIGHMEM is not yet supported "
708                                                  "with VIPT aliasing cache, "
709                                                  "ignoring high memory\n");
710                         } else {
711                                 memmove(bank + 1, bank,
712                                         (meminfo.nr_banks - i) * sizeof(*bank));
713                                 meminfo.nr_banks++;
714                                 i++;
715                                 bank[1].size -= VMALLOC_MIN - __va(bank->start);
716                                 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
717                                 j++;
718                         }
719                         bank->size = VMALLOC_MIN - __va(bank->start);
720                 }
721 #else
722                 /*
723                  * Check whether this memory bank would entirely overlap
724                  * the vmalloc area.
725                  */
726                 if (__va(bank->start) >= VMALLOC_MIN ||
727                     __va(bank->start) < (void *)PAGE_OFFSET) {
728                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
729                                "(vmalloc region overlap).\n",
730                                bank->start, bank->start + bank->size - 1);
731                         continue;
732                 }
733
734                 /*
735                  * Check whether this memory bank would partially overlap
736                  * the vmalloc area.
737                  */
738                 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
739                     __va(bank->start + bank->size) < __va(bank->start)) {
740                         unsigned long newsize = VMALLOC_MIN - __va(bank->start);
741                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
742                                "to -%.8lx (vmalloc region overlap).\n",
743                                bank->start, bank->start + bank->size - 1,
744                                bank->start + newsize - 1);
745                         bank->size = newsize;
746                 }
747 #endif
748                 j++;
749         }
750         meminfo.nr_banks = j;
751 }
752
753 static inline void prepare_page_table(void)
754 {
755         unsigned long addr;
756
757         /*
758          * Clear out all the mappings below the kernel image.
759          */
760         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
761                 pmd_clear(pmd_off_k(addr));
762
763 #ifdef CONFIG_XIP_KERNEL
764         /* The XIP kernel is mapped in the module area -- skip over it */
765         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
766 #endif
767         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
768                 pmd_clear(pmd_off_k(addr));
769
770         /*
771          * Clear out all the kernel space mappings, except for the first
772          * memory bank, up to the end of the vmalloc region.
773          */
774         for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
775              addr < VMALLOC_END; addr += PGDIR_SIZE)
776                 pmd_clear(pmd_off_k(addr));
777 }
778
779 /*
780  * Reserve the various regions of node 0
781  */
782 void __init reserve_node_zero(pg_data_t *pgdat)
783 {
784         unsigned long res_size = 0;
785
786         /*
787          * Register the kernel text and data with bootmem.
788          * Note that this can only be in node 0.
789          */
790 #ifdef CONFIG_XIP_KERNEL
791         reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
792                         BOOTMEM_DEFAULT);
793 #else
794         reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
795                         BOOTMEM_DEFAULT);
796 #endif
797
798         /*
799          * Reserve the page tables.  These are already in use,
800          * and can only be in node 0.
801          */
802         reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
803                              PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
804
805         /*
806          * Hmm... This should go elsewhere, but we really really need to
807          * stop things allocating the low memory; ideally we need a better
808          * implementation of GFP_DMA which does not assume that DMA-able
809          * memory starts at zero.
810          */
811         if (machine_is_integrator() || machine_is_cintegrator())
812                 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
813
814         /*
815          * These should likewise go elsewhere.  They pre-reserve the
816          * screen memory region at the start of main system memory.
817          */
818         if (machine_is_edb7211())
819                 res_size = 0x00020000;
820         if (machine_is_p720t())
821                 res_size = 0x00014000;
822
823         /* H1940 and RX3715 need to reserve this for suspend */
824
825         if (machine_is_h1940() || machine_is_rx3715()) {
826                 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
827                                 BOOTMEM_DEFAULT);
828                 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
829                                 BOOTMEM_DEFAULT);
830         }
831
832         if (machine_is_palmld() || machine_is_palmtx()) {
833                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
834                                 BOOTMEM_EXCLUSIVE);
835                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
836                                 BOOTMEM_EXCLUSIVE);
837         }
838
839         if (machine_is_treo680()) {
840                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
841                                 BOOTMEM_EXCLUSIVE);
842                 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
843                                 BOOTMEM_EXCLUSIVE);
844         }
845
846         if (machine_is_palmt5())
847                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
848                                 BOOTMEM_EXCLUSIVE);
849
850         /*
851          * U300 - This platform family can share physical memory
852          * between two ARM cpus, one running Linux and the other
853          * running another OS.
854          */
855         if (machine_is_u300()) {
856 #ifdef CONFIG_MACH_U300_SINGLE_RAM
857 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&    \
858         CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
859                 res_size = 0x00100000;
860 #endif
861 #endif
862         }
863
864 #ifdef CONFIG_SA1111
865         /*
866          * Because of the SA1111 DMA bug, we want to preserve our
867          * precious DMA-able memory...
868          */
869         res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
870 #endif
871         if (res_size)
872                 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
873                                 BOOTMEM_DEFAULT);
874 }
875
876 /*
877  * Set up device the mappings.  Since we clear out the page tables for all
878  * mappings above VMALLOC_END, we will remove any debug device mappings.
879  * This means you have to be careful how you debug this function, or any
880  * called function.  This means you can't use any function or debugging
881  * method which may touch any device, otherwise the kernel _will_ crash.
882  */
883 static void __init devicemaps_init(struct machine_desc *mdesc)
884 {
885         struct map_desc map;
886         unsigned long addr;
887         void *vectors;
888
889         /*
890          * Allocate the vector page early.
891          */
892         vectors = alloc_bootmem_low_pages(PAGE_SIZE);
893
894         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
895                 pmd_clear(pmd_off_k(addr));
896
897         /*
898          * Map the kernel if it is XIP.
899          * It is always first in the modulearea.
900          */
901 #ifdef CONFIG_XIP_KERNEL
902         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
903         map.virtual = MODULES_VADDR;
904         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
905         map.type = MT_ROM;
906         create_mapping(&map);
907 #endif
908
909         /*
910          * Map the cache flushing regions.
911          */
912 #ifdef FLUSH_BASE
913         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
914         map.virtual = FLUSH_BASE;
915         map.length = SZ_1M;
916         map.type = MT_CACHECLEAN;
917         create_mapping(&map);
918 #endif
919 #ifdef FLUSH_BASE_MINICACHE
920         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
921         map.virtual = FLUSH_BASE_MINICACHE;
922         map.length = SZ_1M;
923         map.type = MT_MINICLEAN;
924         create_mapping(&map);
925 #endif
926
927         /*
928          * Create a mapping for the machine vectors at the high-vectors
929          * location (0xffff0000).  If we aren't using high-vectors, also
930          * create a mapping at the low-vectors virtual address.
931          */
932         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
933         map.virtual = 0xffff0000;
934         map.length = PAGE_SIZE;
935         map.type = MT_HIGH_VECTORS;
936         create_mapping(&map);
937
938         if (!vectors_high()) {
939                 map.virtual = 0;
940                 map.type = MT_LOW_VECTORS;
941                 create_mapping(&map);
942         }
943
944         /*
945          * Ask the machine support to map in the statically mapped devices.
946          */
947         if (mdesc->map_io)
948                 mdesc->map_io();
949
950         /*
951          * Finally flush the caches and tlb to ensure that we're in a
952          * consistent state wrt the writebuffer.  This also ensures that
953          * any write-allocated cache lines in the vector page are written
954          * back.  After this point, we can start to touch devices again.
955          */
956         local_flush_tlb_all();
957         flush_cache_all();
958 }
959
960 static void __init kmap_init(void)
961 {
962 #ifdef CONFIG_HIGHMEM
963         pmd_t *pmd = pmd_off_k(PKMAP_BASE);
964         pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
965         BUG_ON(!pmd_none(*pmd) || !pte);
966         __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
967         pkmap_page_table = pte + PTRS_PER_PTE;
968 #endif
969 }
970
971 /*
972  * paging_init() sets up the page tables, initialises the zone memory
973  * maps, and sets up the zero page, bad page and bad page tables.
974  */
975 void __init paging_init(struct machine_desc *mdesc)
976 {
977         void *zero_page;
978
979         build_mem_type_table();
980         sanity_check_meminfo();
981         prepare_page_table();
982         bootmem_init();
983         devicemaps_init(mdesc);
984         kmap_init();
985
986         top_pmd = pmd_off_k(0xffff0000);
987
988         /*
989          * allocate the zero page.  Note that this always succeeds and
990          * returns a zeroed result.
991          */
992         zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
993         empty_zero_page = virt_to_page(zero_page);
994         flush_dcache_page(empty_zero_page);
995 }
996
997 /*
998  * In order to soft-boot, we need to insert a 1:1 mapping in place of
999  * the user-mode pages.  This will then ensure that we have predictable
1000  * results when turning the mmu off
1001  */
1002 void setup_mm_for_reboot(char mode)
1003 {
1004         unsigned long base_pmdval;
1005         pgd_t *pgd;
1006         int i;
1007
1008         if (current->mm && current->mm->pgd)
1009                 pgd = current->mm->pgd;
1010         else
1011                 pgd = init_mm.pgd;
1012
1013         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1014         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1015                 base_pmdval |= PMD_BIT4;
1016
1017         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1018                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1019                 pmd_t *pmd;
1020
1021                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1022                 pmd[0] = __pmd(pmdval);
1023                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1024                 flush_pmd_entry(pmd);
1025         }
1026 }