Merge branch 'x86-olpc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
36 /*
37  * empty_zero_page is a special page that is used for
38  * zero-initialized data and COW.
39  */
40 struct page *empty_zero_page;
41 EXPORT_SYMBOL(empty_zero_page);
42
43 /*
44  * The pmd table for the upper-most set of pages.
45  */
46 pmd_t *top_pmd;
47
48 #define CPOLICY_UNCACHED        0
49 #define CPOLICY_BUFFERED        1
50 #define CPOLICY_WRITETHROUGH    2
51 #define CPOLICY_WRITEBACK       3
52 #define CPOLICY_WRITEALLOC      4
53
54 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55 static unsigned int ecc_mask __initdata = 0;
56 pgprot_t pgprot_user;
57 pgprot_t pgprot_kernel;
58
59 EXPORT_SYMBOL(pgprot_user);
60 EXPORT_SYMBOL(pgprot_kernel);
61
62 struct cachepolicy {
63         const char      policy[16];
64         unsigned int    cr_mask;
65         unsigned int    pmd;
66         pteval_t        pte;
67 };
68
69 static struct cachepolicy cache_policies[] __initdata = {
70         {
71                 .policy         = "uncached",
72                 .cr_mask        = CR_W|CR_C,
73                 .pmd            = PMD_SECT_UNCACHED,
74                 .pte            = L_PTE_MT_UNCACHED,
75         }, {
76                 .policy         = "buffered",
77                 .cr_mask        = CR_C,
78                 .pmd            = PMD_SECT_BUFFERED,
79                 .pte            = L_PTE_MT_BUFFERABLE,
80         }, {
81                 .policy         = "writethrough",
82                 .cr_mask        = 0,
83                 .pmd            = PMD_SECT_WT,
84                 .pte            = L_PTE_MT_WRITETHROUGH,
85         }, {
86                 .policy         = "writeback",
87                 .cr_mask        = 0,
88                 .pmd            = PMD_SECT_WB,
89                 .pte            = L_PTE_MT_WRITEBACK,
90         }, {
91                 .policy         = "writealloc",
92                 .cr_mask        = 0,
93                 .pmd            = PMD_SECT_WBWA,
94                 .pte            = L_PTE_MT_WRITEALLOC,
95         }
96 };
97
98 /*
99  * These are useful for identifying cache coherency
100  * problems by allowing the cache or the cache and
101  * writebuffer to be turned off.  (Note: the write
102  * buffer should not be on and the cache off).
103  */
104 static int __init early_cachepolicy(char *p)
105 {
106         int i;
107
108         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109                 int len = strlen(cache_policies[i].policy);
110
111                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
112                         cachepolicy = i;
113                         cr_alignment &= ~cache_policies[i].cr_mask;
114                         cr_no_alignment &= ~cache_policies[i].cr_mask;
115                         break;
116                 }
117         }
118         if (i == ARRAY_SIZE(cache_policies))
119                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120         /*
121          * This restriction is partly to do with the way we boot; it is
122          * unpredictable to have memory mapped using two different sets of
123          * memory attributes (shared, type, and cache attribs).  We can not
124          * change these attributes once the initial assembly has setup the
125          * page tables.
126          */
127         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129                 cachepolicy = CPOLICY_WRITEBACK;
130         }
131         flush_cache_all();
132         set_cr(cr_alignment);
133         return 0;
134 }
135 early_param("cachepolicy", early_cachepolicy);
136
137 static int __init early_nocache(char *__unused)
138 {
139         char *p = "buffered";
140         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141         early_cachepolicy(p);
142         return 0;
143 }
144 early_param("nocache", early_nocache);
145
146 static int __init early_nowrite(char *__unused)
147 {
148         char *p = "uncached";
149         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150         early_cachepolicy(p);
151         return 0;
152 }
153 early_param("nowb", early_nowrite);
154
155 static int __init early_ecc(char *p)
156 {
157         if (memcmp(p, "on", 2) == 0)
158                 ecc_mask = PMD_PROTECTION;
159         else if (memcmp(p, "off", 3) == 0)
160                 ecc_mask = 0;
161         return 0;
162 }
163 early_param("ecc", early_ecc);
164
165 static int __init noalign_setup(char *__unused)
166 {
167         cr_alignment &= ~CR_A;
168         cr_no_alignment &= ~CR_A;
169         set_cr(cr_alignment);
170         return 1;
171 }
172 __setup("noalign", noalign_setup);
173
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
176 {
177         unsigned long flags;
178
179         mask &= ~CR_A;
180
181         set &= mask;
182
183         local_irq_save(flags);
184
185         cr_no_alignment = (cr_no_alignment & ~mask) | set;
186         cr_alignment = (cr_alignment & ~mask) | set;
187
188         set_cr((get_cr() & ~mask) | set);
189
190         local_irq_restore(flags);
191 }
192 #endif
193
194 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
195 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196
197 static struct mem_type mem_types[] = {
198         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
199                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200                                   L_PTE_SHARED,
201                 .prot_l1        = PMD_TYPE_TABLE,
202                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
203                 .domain         = DOMAIN_IO,
204         },
205         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207                 .prot_l1        = PMD_TYPE_TABLE,
208                 .prot_sect      = PROT_SECT_DEVICE,
209                 .domain         = DOMAIN_IO,
210         },
211         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
212                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213                 .prot_l1        = PMD_TYPE_TABLE,
214                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
215                 .domain         = DOMAIN_IO,
216         },      
217         [MT_DEVICE_WC] = {      /* ioremap_wc */
218                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219                 .prot_l1        = PMD_TYPE_TABLE,
220                 .prot_sect      = PROT_SECT_DEVICE,
221                 .domain         = DOMAIN_IO,
222         },
223         [MT_UNCACHED] = {
224                 .prot_pte       = PROT_PTE_DEVICE,
225                 .prot_l1        = PMD_TYPE_TABLE,
226                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
227                 .domain         = DOMAIN_IO,
228         },
229         [MT_CACHECLEAN] = {
230                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231                 .domain    = DOMAIN_KERNEL,
232         },
233         [MT_MINICLEAN] = {
234                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
235                 .domain    = DOMAIN_KERNEL,
236         },
237         [MT_LOW_VECTORS] = {
238                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239                                 L_PTE_RDONLY,
240                 .prot_l1   = PMD_TYPE_TABLE,
241                 .domain    = DOMAIN_USER,
242         },
243         [MT_HIGH_VECTORS] = {
244                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245                                 L_PTE_USER | L_PTE_RDONLY,
246                 .prot_l1   = PMD_TYPE_TABLE,
247                 .domain    = DOMAIN_USER,
248         },
249         [MT_MEMORY] = {
250                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
251                 .prot_l1   = PMD_TYPE_TABLE,
252                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
253                 .domain    = DOMAIN_KERNEL,
254         },
255         [MT_ROM] = {
256                 .prot_sect = PMD_TYPE_SECT,
257                 .domain    = DOMAIN_KERNEL,
258         },
259         [MT_MEMORY_NONCACHED] = {
260                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
261                                 L_PTE_MT_BUFFERABLE,
262                 .prot_l1   = PMD_TYPE_TABLE,
263                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
264                 .domain    = DOMAIN_KERNEL,
265         },
266         [MT_MEMORY_DTCM] = {
267                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
268                                 L_PTE_XN,
269                 .prot_l1   = PMD_TYPE_TABLE,
270                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271                 .domain    = DOMAIN_KERNEL,
272         },
273         [MT_MEMORY_ITCM] = {
274                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
275                 .prot_l1   = PMD_TYPE_TABLE,
276                 .domain    = DOMAIN_KERNEL,
277         },
278 };
279
280 const struct mem_type *get_mem_type(unsigned int type)
281 {
282         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
283 }
284 EXPORT_SYMBOL(get_mem_type);
285
286 /*
287  * Adjust the PMD section entries according to the CPU in use.
288  */
289 static void __init build_mem_type_table(void)
290 {
291         struct cachepolicy *cp;
292         unsigned int cr = get_cr();
293         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
294         int cpu_arch = cpu_architecture();
295         int i;
296
297         if (cpu_arch < CPU_ARCH_ARMv6) {
298 #if defined(CONFIG_CPU_DCACHE_DISABLE)
299                 if (cachepolicy > CPOLICY_BUFFERED)
300                         cachepolicy = CPOLICY_BUFFERED;
301 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
302                 if (cachepolicy > CPOLICY_WRITETHROUGH)
303                         cachepolicy = CPOLICY_WRITETHROUGH;
304 #endif
305         }
306         if (cpu_arch < CPU_ARCH_ARMv5) {
307                 if (cachepolicy >= CPOLICY_WRITEALLOC)
308                         cachepolicy = CPOLICY_WRITEBACK;
309                 ecc_mask = 0;
310         }
311         if (is_smp())
312                 cachepolicy = CPOLICY_WRITEALLOC;
313
314         /*
315          * Strip out features not present on earlier architectures.
316          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
317          * without extended page tables don't have the 'Shared' bit.
318          */
319         if (cpu_arch < CPU_ARCH_ARMv5)
320                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
321                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
322         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
323                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
324                         mem_types[i].prot_sect &= ~PMD_SECT_S;
325
326         /*
327          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
328          * "update-able on write" bit on ARM610).  However, Xscale and
329          * Xscale3 require this bit to be cleared.
330          */
331         if (cpu_is_xscale() || cpu_is_xsc3()) {
332                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
333                         mem_types[i].prot_sect &= ~PMD_BIT4;
334                         mem_types[i].prot_l1 &= ~PMD_BIT4;
335                 }
336         } else if (cpu_arch < CPU_ARCH_ARMv6) {
337                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
338                         if (mem_types[i].prot_l1)
339                                 mem_types[i].prot_l1 |= PMD_BIT4;
340                         if (mem_types[i].prot_sect)
341                                 mem_types[i].prot_sect |= PMD_BIT4;
342                 }
343         }
344
345         /*
346          * Mark the device areas according to the CPU/architecture.
347          */
348         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
349                 if (!cpu_is_xsc3()) {
350                         /*
351                          * Mark device regions on ARMv6+ as execute-never
352                          * to prevent speculative instruction fetches.
353                          */
354                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
355                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
356                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
357                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
358                 }
359                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
360                         /*
361                          * For ARMv7 with TEX remapping,
362                          * - shared device is SXCB=1100
363                          * - nonshared device is SXCB=0100
364                          * - write combine device mem is SXCB=0001
365                          * (Uncached Normal memory)
366                          */
367                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
368                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
369                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
370                 } else if (cpu_is_xsc3()) {
371                         /*
372                          * For Xscale3,
373                          * - shared device is TEXCB=00101
374                          * - nonshared device is TEXCB=01000
375                          * - write combine device mem is TEXCB=00100
376                          * (Inner/Outer Uncacheable in xsc3 parlance)
377                          */
378                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
379                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
380                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
381                 } else {
382                         /*
383                          * For ARMv6 and ARMv7 without TEX remapping,
384                          * - shared device is TEXCB=00001
385                          * - nonshared device is TEXCB=01000
386                          * - write combine device mem is TEXCB=00100
387                          * (Uncached Normal in ARMv6 parlance).
388                          */
389                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
390                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
391                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
392                 }
393         } else {
394                 /*
395                  * On others, write combining is "Uncached/Buffered"
396                  */
397                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
398         }
399
400         /*
401          * Now deal with the memory-type mappings
402          */
403         cp = &cache_policies[cachepolicy];
404         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
405
406         /*
407          * Only use write-through for non-SMP systems
408          */
409         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
410                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
411
412         /*
413          * Enable CPU-specific coherency if supported.
414          * (Only available on XSC3 at the moment.)
415          */
416         if (arch_is_coherent() && cpu_is_xsc3()) {
417                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
418                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
419                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
420                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
421         }
422         /*
423          * ARMv6 and above have extended page tables.
424          */
425         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
426                 /*
427                  * Mark cache clean areas and XIP ROM read only
428                  * from SVC mode and no access from userspace.
429                  */
430                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
431                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
432                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
433
434                 if (is_smp()) {
435                         /*
436                          * Mark memory with the "shared" attribute
437                          * for SMP systems
438                          */
439                         user_pgprot |= L_PTE_SHARED;
440                         kern_pgprot |= L_PTE_SHARED;
441                         vecs_pgprot |= L_PTE_SHARED;
442                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
443                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
444                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
445                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
446                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
447                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
448                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
449                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
450                 }
451         }
452
453         /*
454          * Non-cacheable Normal - intended for memory areas that must
455          * not cause dirty cache line writebacks when used
456          */
457         if (cpu_arch >= CPU_ARCH_ARMv6) {
458                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
459                         /* Non-cacheable Normal is XCB = 001 */
460                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
461                                 PMD_SECT_BUFFERED;
462                 } else {
463                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
464                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
465                                 PMD_SECT_TEX(1);
466                 }
467         } else {
468                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
469         }
470
471         for (i = 0; i < 16; i++) {
472                 unsigned long v = pgprot_val(protection_map[i]);
473                 protection_map[i] = __pgprot(v | user_pgprot);
474         }
475
476         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
477         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
478
479         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
480         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
481                                  L_PTE_DIRTY | kern_pgprot);
482
483         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
484         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
485         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
486         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
487         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
488         mem_types[MT_ROM].prot_sect |= cp->pmd;
489
490         switch (cp->pmd) {
491         case PMD_SECT_WT:
492                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
493                 break;
494         case PMD_SECT_WB:
495         case PMD_SECT_WBWA:
496                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
497                 break;
498         }
499         printk("Memory policy: ECC %sabled, Data cache %s\n",
500                 ecc_mask ? "en" : "dis", cp->policy);
501
502         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
503                 struct mem_type *t = &mem_types[i];
504                 if (t->prot_l1)
505                         t->prot_l1 |= PMD_DOMAIN(t->domain);
506                 if (t->prot_sect)
507                         t->prot_sect |= PMD_DOMAIN(t->domain);
508         }
509 }
510
511 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
512 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
513                               unsigned long size, pgprot_t vma_prot)
514 {
515         if (!pfn_valid(pfn))
516                 return pgprot_noncached(vma_prot);
517         else if (file->f_flags & O_SYNC)
518                 return pgprot_writecombine(vma_prot);
519         return vma_prot;
520 }
521 EXPORT_SYMBOL(phys_mem_access_prot);
522 #endif
523
524 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
525
526 static void __init *early_alloc(unsigned long sz)
527 {
528         void *ptr = __va(memblock_alloc(sz, sz));
529         memset(ptr, 0, sz);
530         return ptr;
531 }
532
533 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
534 {
535         if (pmd_none(*pmd)) {
536                 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
537                 __pmd_populate(pmd, __pa(pte), prot);
538         }
539         BUG_ON(pmd_bad(*pmd));
540         return pte_offset_kernel(pmd, addr);
541 }
542
543 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
544                                   unsigned long end, unsigned long pfn,
545                                   const struct mem_type *type)
546 {
547         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
548         do {
549                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
550                 pfn++;
551         } while (pte++, addr += PAGE_SIZE, addr != end);
552 }
553
554 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
555                                       unsigned long end, phys_addr_t phys,
556                                       const struct mem_type *type)
557 {
558         pmd_t *pmd = pmd_offset(pgd, addr);
559
560         /*
561          * Try a section mapping - end, addr and phys must all be aligned
562          * to a section boundary.  Note that PMDs refer to the individual
563          * L1 entries, whereas PGDs refer to a group of L1 entries making
564          * up one logical pointer to an L2 table.
565          */
566         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
567                 pmd_t *p = pmd;
568
569                 if (addr & SECTION_SIZE)
570                         pmd++;
571
572                 do {
573                         *pmd = __pmd(phys | type->prot_sect);
574                         phys += SECTION_SIZE;
575                 } while (pmd++, addr += SECTION_SIZE, addr != end);
576
577                 flush_pmd_entry(p);
578         } else {
579                 /*
580                  * No need to loop; pte's aren't interested in the
581                  * individual L1 entries.
582                  */
583                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
584         }
585 }
586
587 static void __init create_36bit_mapping(struct map_desc *md,
588                                         const struct mem_type *type)
589 {
590         unsigned long addr, length, end;
591         phys_addr_t phys;
592         pgd_t *pgd;
593
594         addr = md->virtual;
595         phys = (unsigned long)__pfn_to_phys(md->pfn);
596         length = PAGE_ALIGN(md->length);
597
598         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
599                 printk(KERN_ERR "MM: CPU does not support supersection "
600                        "mapping for 0x%08llx at 0x%08lx\n",
601                        __pfn_to_phys((u64)md->pfn), addr);
602                 return;
603         }
604
605         /* N.B. ARMv6 supersections are only defined to work with domain 0.
606          *      Since domain assignments can in fact be arbitrary, the
607          *      'domain == 0' check below is required to insure that ARMv6
608          *      supersections are only allocated for domain 0 regardless
609          *      of the actual domain assignments in use.
610          */
611         if (type->domain) {
612                 printk(KERN_ERR "MM: invalid domain in supersection "
613                        "mapping for 0x%08llx at 0x%08lx\n",
614                        __pfn_to_phys((u64)md->pfn), addr);
615                 return;
616         }
617
618         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
619                 printk(KERN_ERR "MM: cannot create mapping for "
620                        "0x%08llx at 0x%08lx invalid alignment\n",
621                        __pfn_to_phys((u64)md->pfn), addr);
622                 return;
623         }
624
625         /*
626          * Shift bits [35:32] of address into bits [23:20] of PMD
627          * (See ARMv6 spec).
628          */
629         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
630
631         pgd = pgd_offset_k(addr);
632         end = addr + length;
633         do {
634                 pmd_t *pmd = pmd_offset(pgd, addr);
635                 int i;
636
637                 for (i = 0; i < 16; i++)
638                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
639
640                 addr += SUPERSECTION_SIZE;
641                 phys += SUPERSECTION_SIZE;
642                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
643         } while (addr != end);
644 }
645
646 /*
647  * Create the page directory entries and any necessary
648  * page tables for the mapping specified by `md'.  We
649  * are able to cope here with varying sizes and address
650  * offsets, and we take full advantage of sections and
651  * supersections.
652  */
653 static void __init create_mapping(struct map_desc *md)
654 {
655         unsigned long phys, addr, length, end;
656         const struct mem_type *type;
657         pgd_t *pgd;
658
659         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
660                 printk(KERN_WARNING "BUG: not creating mapping for "
661                        "0x%08llx at 0x%08lx in user region\n",
662                        __pfn_to_phys((u64)md->pfn), md->virtual);
663                 return;
664         }
665
666         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
667             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
668                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
669                        "overlaps vmalloc space\n",
670                        __pfn_to_phys((u64)md->pfn), md->virtual);
671         }
672
673         type = &mem_types[md->type];
674
675         /*
676          * Catch 36-bit addresses
677          */
678         if (md->pfn >= 0x100000) {
679                 create_36bit_mapping(md, type);
680                 return;
681         }
682
683         addr = md->virtual & PAGE_MASK;
684         phys = (unsigned long)__pfn_to_phys(md->pfn);
685         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
686
687         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
688                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
689                        "be mapped using pages, ignoring.\n",
690                        __pfn_to_phys(md->pfn), addr);
691                 return;
692         }
693
694         pgd = pgd_offset_k(addr);
695         end = addr + length;
696         do {
697                 unsigned long next = pgd_addr_end(addr, end);
698
699                 alloc_init_section(pgd, addr, next, phys, type);
700
701                 phys += next - addr;
702                 addr = next;
703         } while (pgd++, addr != end);
704 }
705
706 /*
707  * Create the architecture specific mappings
708  */
709 void __init iotable_init(struct map_desc *io_desc, int nr)
710 {
711         int i;
712
713         for (i = 0; i < nr; i++)
714                 create_mapping(io_desc + i);
715 }
716
717 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
718
719 /*
720  * vmalloc=size forces the vmalloc area to be exactly 'size'
721  * bytes. This can be used to increase (or decrease) the vmalloc
722  * area - the default is 128m.
723  */
724 static int __init early_vmalloc(char *arg)
725 {
726         unsigned long vmalloc_reserve = memparse(arg, NULL);
727
728         if (vmalloc_reserve < SZ_16M) {
729                 vmalloc_reserve = SZ_16M;
730                 printk(KERN_WARNING
731                         "vmalloc area too small, limiting to %luMB\n",
732                         vmalloc_reserve >> 20);
733         }
734
735         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
736                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
737                 printk(KERN_WARNING
738                         "vmalloc area is too big, limiting to %luMB\n",
739                         vmalloc_reserve >> 20);
740         }
741
742         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
743         return 0;
744 }
745 early_param("vmalloc", early_vmalloc);
746
747 static phys_addr_t lowmem_limit __initdata = 0;
748
749 static void __init sanity_check_meminfo(void)
750 {
751         int i, j, highmem = 0;
752
753         lowmem_limit = __pa(vmalloc_min - 1) + 1;
754         memblock_set_current_limit(lowmem_limit);
755
756         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
757                 struct membank *bank = &meminfo.bank[j];
758                 *bank = meminfo.bank[i];
759
760 #ifdef CONFIG_HIGHMEM
761                 if (__va(bank->start) > vmalloc_min ||
762                     __va(bank->start) < (void *)PAGE_OFFSET)
763                         highmem = 1;
764
765                 bank->highmem = highmem;
766
767                 /*
768                  * Split those memory banks which are partially overlapping
769                  * the vmalloc area greatly simplifying things later.
770                  */
771                 if (__va(bank->start) < vmalloc_min &&
772                     bank->size > vmalloc_min - __va(bank->start)) {
773                         if (meminfo.nr_banks >= NR_BANKS) {
774                                 printk(KERN_CRIT "NR_BANKS too low, "
775                                                  "ignoring high memory\n");
776                         } else {
777                                 memmove(bank + 1, bank,
778                                         (meminfo.nr_banks - i) * sizeof(*bank));
779                                 meminfo.nr_banks++;
780                                 i++;
781                                 bank[1].size -= vmalloc_min - __va(bank->start);
782                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
783                                 bank[1].highmem = highmem = 1;
784                                 j++;
785                         }
786                         bank->size = vmalloc_min - __va(bank->start);
787                 }
788 #else
789                 bank->highmem = highmem;
790
791                 /*
792                  * Check whether this memory bank would entirely overlap
793                  * the vmalloc area.
794                  */
795                 if (__va(bank->start) >= vmalloc_min ||
796                     __va(bank->start) < (void *)PAGE_OFFSET) {
797                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
798                                "(vmalloc region overlap).\n",
799                                bank->start, bank->start + bank->size - 1);
800                         continue;
801                 }
802
803                 /*
804                  * Check whether this memory bank would partially overlap
805                  * the vmalloc area.
806                  */
807                 if (__va(bank->start + bank->size) > vmalloc_min ||
808                     __va(bank->start + bank->size) < __va(bank->start)) {
809                         unsigned long newsize = vmalloc_min - __va(bank->start);
810                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
811                                "to -%.8lx (vmalloc region overlap).\n",
812                                bank->start, bank->start + bank->size - 1,
813                                bank->start + newsize - 1);
814                         bank->size = newsize;
815                 }
816 #endif
817                 j++;
818         }
819 #ifdef CONFIG_HIGHMEM
820         if (highmem) {
821                 const char *reason = NULL;
822
823                 if (cache_is_vipt_aliasing()) {
824                         /*
825                          * Interactions between kmap and other mappings
826                          * make highmem support with aliasing VIPT caches
827                          * rather difficult.
828                          */
829                         reason = "with VIPT aliasing cache";
830                 } else if (is_smp() && tlb_ops_need_broadcast()) {
831                         /*
832                          * kmap_high needs to occasionally flush TLB entries,
833                          * however, if the TLB entries need to be broadcast
834                          * we may deadlock:
835                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
836                          *  flush_tlb_kernel_range->smp_call_function_many
837                          *   (must not be called with irqs off)
838                          */
839                         reason = "without hardware TLB ops broadcasting";
840                 }
841                 if (reason) {
842                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
843                                 reason);
844                         while (j > 0 && meminfo.bank[j - 1].highmem)
845                                 j--;
846                 }
847         }
848 #endif
849         meminfo.nr_banks = j;
850 }
851
852 static inline void prepare_page_table(void)
853 {
854         unsigned long addr;
855         phys_addr_t end;
856
857         /*
858          * Clear out all the mappings below the kernel image.
859          */
860         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
861                 pmd_clear(pmd_off_k(addr));
862
863 #ifdef CONFIG_XIP_KERNEL
864         /* The XIP kernel is mapped in the module area -- skip over it */
865         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
866 #endif
867         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
868                 pmd_clear(pmd_off_k(addr));
869
870         /*
871          * Find the end of the first block of lowmem.
872          */
873         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
874         if (end >= lowmem_limit)
875                 end = lowmem_limit;
876
877         /*
878          * Clear out all the kernel space mappings, except for the first
879          * memory bank, up to the end of the vmalloc region.
880          */
881         for (addr = __phys_to_virt(end);
882              addr < VMALLOC_END; addr += PGDIR_SIZE)
883                 pmd_clear(pmd_off_k(addr));
884 }
885
886 /*
887  * Reserve the special regions of memory
888  */
889 void __init arm_mm_memblock_reserve(void)
890 {
891         /*
892          * Reserve the page tables.  These are already in use,
893          * and can only be in node 0.
894          */
895         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
896
897 #ifdef CONFIG_SA1111
898         /*
899          * Because of the SA1111 DMA bug, we want to preserve our
900          * precious DMA-able memory...
901          */
902         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
903 #endif
904 }
905
906 /*
907  * Set up device the mappings.  Since we clear out the page tables for all
908  * mappings above VMALLOC_END, we will remove any debug device mappings.
909  * This means you have to be careful how you debug this function, or any
910  * called function.  This means you can't use any function or debugging
911  * method which may touch any device, otherwise the kernel _will_ crash.
912  */
913 static void __init devicemaps_init(struct machine_desc *mdesc)
914 {
915         struct map_desc map;
916         unsigned long addr;
917
918         /*
919          * Allocate the vector page early.
920          */
921         vectors_page = early_alloc(PAGE_SIZE);
922
923         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
924                 pmd_clear(pmd_off_k(addr));
925
926         /*
927          * Map the kernel if it is XIP.
928          * It is always first in the modulearea.
929          */
930 #ifdef CONFIG_XIP_KERNEL
931         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
932         map.virtual = MODULES_VADDR;
933         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
934         map.type = MT_ROM;
935         create_mapping(&map);
936 #endif
937
938         /*
939          * Map the cache flushing regions.
940          */
941 #ifdef FLUSH_BASE
942         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
943         map.virtual = FLUSH_BASE;
944         map.length = SZ_1M;
945         map.type = MT_CACHECLEAN;
946         create_mapping(&map);
947 #endif
948 #ifdef FLUSH_BASE_MINICACHE
949         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
950         map.virtual = FLUSH_BASE_MINICACHE;
951         map.length = SZ_1M;
952         map.type = MT_MINICLEAN;
953         create_mapping(&map);
954 #endif
955
956         /*
957          * Create a mapping for the machine vectors at the high-vectors
958          * location (0xffff0000).  If we aren't using high-vectors, also
959          * create a mapping at the low-vectors virtual address.
960          */
961         map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
962         map.virtual = 0xffff0000;
963         map.length = PAGE_SIZE;
964         map.type = MT_HIGH_VECTORS;
965         create_mapping(&map);
966
967         if (!vectors_high()) {
968                 map.virtual = 0;
969                 map.type = MT_LOW_VECTORS;
970                 create_mapping(&map);
971         }
972
973         /*
974          * Ask the machine support to map in the statically mapped devices.
975          */
976         if (mdesc->map_io)
977                 mdesc->map_io();
978
979         /*
980          * Finally flush the caches and tlb to ensure that we're in a
981          * consistent state wrt the writebuffer.  This also ensures that
982          * any write-allocated cache lines in the vector page are written
983          * back.  After this point, we can start to touch devices again.
984          */
985         local_flush_tlb_all();
986         flush_cache_all();
987 }
988
989 static void __init kmap_init(void)
990 {
991 #ifdef CONFIG_HIGHMEM
992         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
993                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
994 #endif
995 }
996
997 static void __init map_lowmem(void)
998 {
999         struct memblock_region *reg;
1000
1001         /* Map all the lowmem memory banks. */
1002         for_each_memblock(memory, reg) {
1003                 phys_addr_t start = reg->base;
1004                 phys_addr_t end = start + reg->size;
1005                 struct map_desc map;
1006
1007                 if (end > lowmem_limit)
1008                         end = lowmem_limit;
1009                 if (start >= end)
1010                         break;
1011
1012                 map.pfn = __phys_to_pfn(start);
1013                 map.virtual = __phys_to_virt(start);
1014                 map.length = end - start;
1015                 map.type = MT_MEMORY;
1016
1017                 create_mapping(&map);
1018         }
1019 }
1020
1021 /*
1022  * paging_init() sets up the page tables, initialises the zone memory
1023  * maps, and sets up the zero page, bad page and bad page tables.
1024  */
1025 void __init paging_init(struct machine_desc *mdesc)
1026 {
1027         void *zero_page;
1028
1029         build_mem_type_table();
1030         sanity_check_meminfo();
1031         prepare_page_table();
1032         map_lowmem();
1033         devicemaps_init(mdesc);
1034         kmap_init();
1035
1036         top_pmd = pmd_off_k(0xffff0000);
1037
1038         /* allocate the zero page. */
1039         zero_page = early_alloc(PAGE_SIZE);
1040
1041         bootmem_init();
1042
1043         empty_zero_page = virt_to_page(zero_page);
1044         __flush_dcache_page(NULL, empty_zero_page);
1045 }