Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[pandora-kernel.git] / arch / arm / mm / mm-armv.c
1 /*
2  *  linux/arch/arm/mm/mm-armv.c
3  *
4  *  Copyright (C) 1998-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  Page table sludge for ARM v3 and v4 processor architectures.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 #include <linux/highmem.h>
17 #include <linux/nodemask.h>
18
19 #include <asm/pgalloc.h>
20 #include <asm/page.h>
21 #include <asm/setup.h>
22 #include <asm/tlbflush.h>
23
24 #include <asm/mach/map.h>
25
26 #define CPOLICY_UNCACHED        0
27 #define CPOLICY_BUFFERED        1
28 #define CPOLICY_WRITETHROUGH    2
29 #define CPOLICY_WRITEBACK       3
30 #define CPOLICY_WRITEALLOC      4
31
32 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
33 static unsigned int ecc_mask __initdata = 0;
34 pgprot_t pgprot_kernel;
35
36 EXPORT_SYMBOL(pgprot_kernel);
37
38 pmd_t *top_pmd;
39
40 struct cachepolicy {
41         const char      policy[16];
42         unsigned int    cr_mask;
43         unsigned int    pmd;
44         unsigned int    pte;
45 };
46
47 static struct cachepolicy cache_policies[] __initdata = {
48         {
49                 .policy         = "uncached",
50                 .cr_mask        = CR_W|CR_C,
51                 .pmd            = PMD_SECT_UNCACHED,
52                 .pte            = 0,
53         }, {
54                 .policy         = "buffered",
55                 .cr_mask        = CR_C,
56                 .pmd            = PMD_SECT_BUFFERED,
57                 .pte            = PTE_BUFFERABLE,
58         }, {
59                 .policy         = "writethrough",
60                 .cr_mask        = 0,
61                 .pmd            = PMD_SECT_WT,
62                 .pte            = PTE_CACHEABLE,
63         }, {
64                 .policy         = "writeback",
65                 .cr_mask        = 0,
66                 .pmd            = PMD_SECT_WB,
67                 .pte            = PTE_BUFFERABLE|PTE_CACHEABLE,
68         }, {
69                 .policy         = "writealloc",
70                 .cr_mask        = 0,
71                 .pmd            = PMD_SECT_WBWA,
72                 .pte            = PTE_BUFFERABLE|PTE_CACHEABLE,
73         }
74 };
75
76 /*
77  * These are useful for identifing cache coherency
78  * problems by allowing the cache or the cache and
79  * writebuffer to be turned off.  (Note: the write
80  * buffer should not be on and the cache off).
81  */
82 static void __init early_cachepolicy(char **p)
83 {
84         int i;
85
86         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
87                 int len = strlen(cache_policies[i].policy);
88
89                 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
90                         cachepolicy = i;
91                         cr_alignment &= ~cache_policies[i].cr_mask;
92                         cr_no_alignment &= ~cache_policies[i].cr_mask;
93                         *p += len;
94                         break;
95                 }
96         }
97         if (i == ARRAY_SIZE(cache_policies))
98                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
99         flush_cache_all();
100         set_cr(cr_alignment);
101 }
102
103 static void __init early_nocache(char **__unused)
104 {
105         char *p = "buffered";
106         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
107         early_cachepolicy(&p);
108 }
109
110 static void __init early_nowrite(char **__unused)
111 {
112         char *p = "uncached";
113         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
114         early_cachepolicy(&p);
115 }
116
117 static void __init early_ecc(char **p)
118 {
119         if (memcmp(*p, "on", 2) == 0) {
120                 ecc_mask = PMD_PROTECTION;
121                 *p += 2;
122         } else if (memcmp(*p, "off", 3) == 0) {
123                 ecc_mask = 0;
124                 *p += 3;
125         }
126 }
127
128 __early_param("nocache", early_nocache);
129 __early_param("nowb", early_nowrite);
130 __early_param("cachepolicy=", early_cachepolicy);
131 __early_param("ecc=", early_ecc);
132
133 static int __init noalign_setup(char *__unused)
134 {
135         cr_alignment &= ~CR_A;
136         cr_no_alignment &= ~CR_A;
137         set_cr(cr_alignment);
138         return 1;
139 }
140
141 __setup("noalign", noalign_setup);
142
143 #define FIRST_KERNEL_PGD_NR     (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
144
145 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
146 {
147         return pmd_offset(pgd, virt);
148 }
149
150 static inline pmd_t *pmd_off_k(unsigned long virt)
151 {
152         return pmd_off(pgd_offset_k(virt), virt);
153 }
154
155 /*
156  * need to get a 16k page for level 1
157  */
158 pgd_t *get_pgd_slow(struct mm_struct *mm)
159 {
160         pgd_t *new_pgd, *init_pgd;
161         pmd_t *new_pmd, *init_pmd;
162         pte_t *new_pte, *init_pte;
163
164         new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
165         if (!new_pgd)
166                 goto no_pgd;
167
168         memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
169
170         /*
171          * Copy over the kernel and IO PGD entries
172          */
173         init_pgd = pgd_offset_k(0);
174         memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
175                        (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
176
177         clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
178
179         if (!vectors_high()) {
180                 /*
181                  * On ARM, first page must always be allocated since it
182                  * contains the machine vectors.
183                  */
184                 new_pmd = pmd_alloc(mm, new_pgd, 0);
185                 if (!new_pmd)
186                         goto no_pmd;
187
188                 new_pte = pte_alloc_map(mm, new_pmd, 0);
189                 if (!new_pte)
190                         goto no_pte;
191
192                 init_pmd = pmd_offset(init_pgd, 0);
193                 init_pte = pte_offset_map_nested(init_pmd, 0);
194                 set_pte(new_pte, *init_pte);
195                 pte_unmap_nested(init_pte);
196                 pte_unmap(new_pte);
197         }
198
199         return new_pgd;
200
201 no_pte:
202         pmd_free(new_pmd);
203 no_pmd:
204         free_pages((unsigned long)new_pgd, 2);
205 no_pgd:
206         return NULL;
207 }
208
209 void free_pgd_slow(pgd_t *pgd)
210 {
211         pmd_t *pmd;
212         struct page *pte;
213
214         if (!pgd)
215                 return;
216
217         /* pgd is always present and good */
218         pmd = pmd_off(pgd, 0);
219         if (pmd_none(*pmd))
220                 goto free;
221         if (pmd_bad(*pmd)) {
222                 pmd_ERROR(*pmd);
223                 pmd_clear(pmd);
224                 goto free;
225         }
226
227         pte = pmd_page(*pmd);
228         pmd_clear(pmd);
229         dec_zone_page_state(virt_to_page((unsigned long *)pgd), NR_PAGETABLE);
230         pte_lock_deinit(pte);
231         pte_free(pte);
232         pmd_free(pmd);
233 free:
234         free_pages((unsigned long) pgd, 2);
235 }
236
237 /*
238  * Create a SECTION PGD between VIRT and PHYS in domain
239  * DOMAIN with protection PROT.  This operates on half-
240  * pgdir entry increments.
241  */
242 static inline void
243 alloc_init_section(unsigned long virt, unsigned long phys, int prot)
244 {
245         pmd_t *pmdp = pmd_off_k(virt);
246
247         if (virt & (1 << 20))
248                 pmdp++;
249
250         *pmdp = __pmd(phys | prot);
251         flush_pmd_entry(pmdp);
252 }
253
254 /*
255  * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
256  */
257 static inline void
258 alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
259 {
260         int i;
261
262         for (i = 0; i < 16; i += 1) {
263                 alloc_init_section(virt, phys, prot | PMD_SECT_SUPER);
264
265                 virt += (PGDIR_SIZE / 2);
266         }
267 }
268
269 /*
270  * Add a PAGE mapping between VIRT and PHYS in domain
271  * DOMAIN with protection PROT.  Note that due to the
272  * way we map the PTEs, we must allocate two PTE_SIZE'd
273  * blocks - one for the Linux pte table, and one for
274  * the hardware pte table.
275  */
276 static inline void
277 alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
278 {
279         pmd_t *pmdp = pmd_off_k(virt);
280         pte_t *ptep;
281
282         if (pmd_none(*pmdp)) {
283                 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
284                                                sizeof(pte_t));
285
286                 __pmd_populate(pmdp, __pa(ptep) | prot_l1);
287         }
288         ptep = pte_offset_kernel(pmdp, virt);
289
290         set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
291 }
292
293 struct mem_types {
294         unsigned int    prot_pte;
295         unsigned int    prot_l1;
296         unsigned int    prot_sect;
297         unsigned int    domain;
298 };
299
300 static struct mem_types mem_types[] __initdata = {
301         [MT_DEVICE] = {
302                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303                                 L_PTE_WRITE,
304                 .prot_l1   = PMD_TYPE_TABLE,
305                 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_UNCACHED |
306                                 PMD_SECT_AP_WRITE,
307                 .domain    = DOMAIN_IO,
308         },
309         [MT_CACHECLEAN] = {
310                 .prot_sect = PMD_TYPE_SECT | PMD_BIT4,
311                 .domain    = DOMAIN_KERNEL,
312         },
313         [MT_MINICLEAN] = {
314                 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_MINICACHE,
315                 .domain    = DOMAIN_KERNEL,
316         },
317         [MT_LOW_VECTORS] = {
318                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319                                 L_PTE_EXEC,
320                 .prot_l1   = PMD_TYPE_TABLE,
321                 .domain    = DOMAIN_USER,
322         },
323         [MT_HIGH_VECTORS] = {
324                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
325                                 L_PTE_USER | L_PTE_EXEC,
326                 .prot_l1   = PMD_TYPE_TABLE,
327                 .domain    = DOMAIN_USER,
328         },
329         [MT_MEMORY] = {
330                 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_AP_WRITE,
331                 .domain    = DOMAIN_KERNEL,
332         },
333         [MT_ROM] = {
334                 .prot_sect = PMD_TYPE_SECT | PMD_BIT4,
335                 .domain    = DOMAIN_KERNEL,
336         },
337         [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
338                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
339                                 L_PTE_WRITE,
340                 .prot_l1   = PMD_TYPE_TABLE,
341                 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_UNCACHED |
342                                 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
343                                 PMD_SECT_TEX(1),
344                 .domain    = DOMAIN_IO,
345         },
346         [MT_NONSHARED_DEVICE] = {
347                 .prot_l1   = PMD_TYPE_TABLE,
348                 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_NONSHARED_DEV |
349                                 PMD_SECT_AP_WRITE,
350                 .domain    = DOMAIN_IO,
351         }
352 };
353
354 /*
355  * Adjust the PMD section entries according to the CPU in use.
356  */
357 void __init build_mem_type_table(void)
358 {
359         struct cachepolicy *cp;
360         unsigned int cr = get_cr();
361         unsigned int user_pgprot, kern_pgprot;
362         int cpu_arch = cpu_architecture();
363         int i;
364
365 #if defined(CONFIG_CPU_DCACHE_DISABLE)
366         if (cachepolicy > CPOLICY_BUFFERED)
367                 cachepolicy = CPOLICY_BUFFERED;
368 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
369         if (cachepolicy > CPOLICY_WRITETHROUGH)
370                 cachepolicy = CPOLICY_WRITETHROUGH;
371 #endif
372         if (cpu_arch < CPU_ARCH_ARMv5) {
373                 if (cachepolicy >= CPOLICY_WRITEALLOC)
374                         cachepolicy = CPOLICY_WRITEBACK;
375                 ecc_mask = 0;
376         }
377
378         /*
379          * Xscale must not have PMD bit 4 set for section mappings.
380          */
381         if (cpu_is_xscale())
382                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
383                         mem_types[i].prot_sect &= ~PMD_BIT4;
384
385         /*
386          * ARMv5 and lower, excluding Xscale, bit 4 must be set for
387          * page tables.
388          */
389         if (cpu_arch < CPU_ARCH_ARMv6 && !cpu_is_xscale())
390                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
391                         if (mem_types[i].prot_l1)
392                                 mem_types[i].prot_l1 |= PMD_BIT4;
393
394         cp = &cache_policies[cachepolicy];
395         kern_pgprot = user_pgprot = cp->pte;
396
397         /*
398          * Enable CPU-specific coherency if supported.
399          * (Only available on XSC3 at the moment.)
400          */
401         if (arch_is_coherent()) {
402                 if (cpu_is_xsc3()) {
403                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
404                         mem_types[MT_MEMORY].prot_pte |= L_PTE_COHERENT;
405                 }
406         }
407
408         /*
409          * ARMv6 and above have extended page tables.
410          */
411         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
412                 /*
413                  * bit 4 becomes XN which we must clear for the
414                  * kernel memory mapping.
415                  */
416                 mem_types[MT_MEMORY].prot_sect &= ~PMD_SECT_XN;
417                 mem_types[MT_ROM].prot_sect &= ~PMD_SECT_XN;
418
419                 /*
420                  * Mark cache clean areas and XIP ROM read only
421                  * from SVC mode and no access from userspace.
422                  */
423                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
424                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
425                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
426
427                 /*
428                  * Mark the device area as "shared device"
429                  */
430                 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
431                 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
432
433                 /*
434                  * User pages need to be mapped with the ASID
435                  * (iow, non-global)
436                  */
437                 user_pgprot |= L_PTE_ASID;
438
439 #ifdef CONFIG_SMP
440                 /*
441                  * Mark memory with the "shared" attribute for SMP systems
442                  */
443                 user_pgprot |= L_PTE_SHARED;
444                 kern_pgprot |= L_PTE_SHARED;
445                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
446 #endif
447         }
448
449         for (i = 0; i < 16; i++) {
450                 unsigned long v = pgprot_val(protection_map[i]);
451                 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
452                 protection_map[i] = __pgprot(v);
453         }
454
455         mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
456         mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
457
458         if (cpu_arch >= CPU_ARCH_ARMv5) {
459 #ifndef CONFIG_SMP
460                 /*
461                  * Only use write-through for non-SMP systems
462                  */
463                 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
464                 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
465 #endif
466         } else {
467                 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
468         }
469
470         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
471                                  L_PTE_DIRTY | L_PTE_WRITE |
472                                  L_PTE_EXEC | kern_pgprot);
473
474         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
475         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
476         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
477         mem_types[MT_ROM].prot_sect |= cp->pmd;
478
479         switch (cp->pmd) {
480         case PMD_SECT_WT:
481                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
482                 break;
483         case PMD_SECT_WB:
484         case PMD_SECT_WBWA:
485                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
486                 break;
487         }
488         printk("Memory policy: ECC %sabled, Data cache %s\n",
489                 ecc_mask ? "en" : "dis", cp->policy);
490 }
491
492 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
493
494 /*
495  * Create the page directory entries and any necessary
496  * page tables for the mapping specified by `md'.  We
497  * are able to cope here with varying sizes and address
498  * offsets, and we take full advantage of sections and
499  * supersections.
500  */
501 void __init create_mapping(struct map_desc *md)
502 {
503         unsigned long virt, length;
504         int prot_sect, prot_l1, domain;
505         pgprot_t prot_pte;
506         unsigned long off = (u32)__pfn_to_phys(md->pfn);
507
508         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
509                 printk(KERN_WARNING "BUG: not creating mapping for "
510                        "0x%08llx at 0x%08lx in user region\n",
511                        __pfn_to_phys((u64)md->pfn), md->virtual);
512                 return;
513         }
514
515         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
516             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
517                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
518                        "overlaps vmalloc space\n",
519                        __pfn_to_phys((u64)md->pfn), md->virtual);
520         }
521
522         domain    = mem_types[md->type].domain;
523         prot_pte  = __pgprot(mem_types[md->type].prot_pte);
524         prot_l1   = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
525         prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
526
527         /*
528          * Catch 36-bit addresses
529          */
530         if(md->pfn >= 0x100000) {
531                 if(domain) {
532                         printk(KERN_ERR "MM: invalid domain in supersection "
533                                 "mapping for 0x%08llx at 0x%08lx\n",
534                                 __pfn_to_phys((u64)md->pfn), md->virtual);
535                         return;
536                 }
537                 if((md->virtual | md->length | __pfn_to_phys(md->pfn))
538                         & ~SUPERSECTION_MASK) {
539                         printk(KERN_ERR "MM: cannot create mapping for "
540                                 "0x%08llx at 0x%08lx invalid alignment\n",
541                                 __pfn_to_phys((u64)md->pfn), md->virtual);
542                         return;
543                 }
544
545                 /*
546                  * Shift bits [35:32] of address into bits [23:20] of PMD
547                  * (See ARMv6 spec).
548                  */
549                 off |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
550         }
551
552         virt   = md->virtual;
553         off   -= virt;
554         length = md->length;
555
556         if (mem_types[md->type].prot_l1 == 0 &&
557             (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
558                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
559                        "be mapped using pages, ignoring.\n",
560                        __pfn_to_phys(md->pfn), md->virtual);
561                 return;
562         }
563
564         while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
565                 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
566
567                 virt   += PAGE_SIZE;
568                 length -= PAGE_SIZE;
569         }
570
571         /* N.B. ARMv6 supersections are only defined to work with domain 0.
572          *      Since domain assignments can in fact be arbitrary, the
573          *      'domain == 0' check below is required to insure that ARMv6
574          *      supersections are only allocated for domain 0 regardless
575          *      of the actual domain assignments in use.
576          */
577         if ((cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())
578                 && domain == 0) {
579                 /*
580                  * Align to supersection boundary if !high pages.
581                  * High pages have already been checked for proper
582                  * alignment above and they will fail the SUPSERSECTION_MASK
583                  * check because of the way the address is encoded into
584                  * offset.
585                  */
586                 if (md->pfn <= 0x100000) {
587                         while ((virt & ~SUPERSECTION_MASK ||
588                                 (virt + off) & ~SUPERSECTION_MASK) &&
589                                 length >= (PGDIR_SIZE / 2)) {
590                                 alloc_init_section(virt, virt + off, prot_sect);
591
592                                 virt   += (PGDIR_SIZE / 2);
593                                 length -= (PGDIR_SIZE / 2);
594                         }
595                 }
596
597                 while (length >= SUPERSECTION_SIZE) {
598                         alloc_init_supersection(virt, virt + off, prot_sect);
599
600                         virt   += SUPERSECTION_SIZE;
601                         length -= SUPERSECTION_SIZE;
602                 }
603         }
604
605         /*
606          * A section mapping covers half a "pgdir" entry.
607          */
608         while (length >= (PGDIR_SIZE / 2)) {
609                 alloc_init_section(virt, virt + off, prot_sect);
610
611                 virt   += (PGDIR_SIZE / 2);
612                 length -= (PGDIR_SIZE / 2);
613         }
614
615         while (length >= PAGE_SIZE) {
616                 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
617
618                 virt   += PAGE_SIZE;
619                 length -= PAGE_SIZE;
620         }
621 }
622
623 /*
624  * In order to soft-boot, we need to insert a 1:1 mapping in place of
625  * the user-mode pages.  This will then ensure that we have predictable
626  * results when turning the mmu off
627  */
628 void setup_mm_for_reboot(char mode)
629 {
630         unsigned long base_pmdval;
631         pgd_t *pgd;
632         int i;
633
634         if (current->mm && current->mm->pgd)
635                 pgd = current->mm->pgd;
636         else
637                 pgd = init_mm.pgd;
638
639         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
640         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
641                 base_pmdval |= PMD_BIT4;
642
643         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
644                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
645                 pmd_t *pmd;
646
647                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
648                 pmd[0] = __pmd(pmdval);
649                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
650                 flush_pmd_entry(pmd);
651         }
652 }
653
654 /*
655  * Create the architecture specific mappings
656  */
657 void __init iotable_init(struct map_desc *io_desc, int nr)
658 {
659         int i;
660
661         for (i = 0; i < nr; i++)
662                 create_mapping(io_desc + i);
663 }