Merge branch 'msm-fix' of git://codeaurora.org/quic/kernel/davidb/linux-msm into...
[pandora-kernel.git] / arch / arm / mach-exynos / mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22
23 #include <asm/hardware/gic.h>
24
25 #include <plat/cpu.h>
26
27 #include <mach/map.h>
28 #include <mach/irqs.h>
29 #include <mach/regs-mct.h>
30 #include <asm/mach/time.h>
31
32 enum {
33         MCT_INT_SPI,
34         MCT_INT_PPI
35 };
36
37 static unsigned long clk_cnt_per_tick;
38 static unsigned long clk_rate;
39 static unsigned int mct_int_type;
40
41 struct mct_clock_event_device {
42         struct clock_event_device *evt;
43         void __iomem *base;
44         char name[10];
45 };
46
47 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
48
49 static void exynos4_mct_write(unsigned int value, void *addr)
50 {
51         void __iomem *stat_addr;
52         u32 mask;
53         u32 i;
54
55         __raw_writel(value, addr);
56
57         if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
58                 u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
59                 switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
60                 case (u32) MCT_L_TCON_OFFSET:
61                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
62                         mask = 1 << 3;          /* L_TCON write status */
63                         break;
64                 case (u32) MCT_L_ICNTB_OFFSET:
65                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
66                         mask = 1 << 1;          /* L_ICNTB write status */
67                         break;
68                 case (u32) MCT_L_TCNTB_OFFSET:
69                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
70                         mask = 1 << 0;          /* L_TCNTB write status */
71                         break;
72                 default:
73                         return;
74                 }
75         } else {
76                 switch ((u32) addr) {
77                 case (u32) EXYNOS4_MCT_G_TCON:
78                         stat_addr = EXYNOS4_MCT_G_WSTAT;
79                         mask = 1 << 16;         /* G_TCON write status */
80                         break;
81                 case (u32) EXYNOS4_MCT_G_COMP0_L:
82                         stat_addr = EXYNOS4_MCT_G_WSTAT;
83                         mask = 1 << 0;          /* G_COMP0_L write status */
84                         break;
85                 case (u32) EXYNOS4_MCT_G_COMP0_U:
86                         stat_addr = EXYNOS4_MCT_G_WSTAT;
87                         mask = 1 << 1;          /* G_COMP0_U write status */
88                         break;
89                 case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
90                         stat_addr = EXYNOS4_MCT_G_WSTAT;
91                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
92                         break;
93                 case (u32) EXYNOS4_MCT_G_CNT_L:
94                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
95                         mask = 1 << 0;          /* G_CNT_L write status */
96                         break;
97                 case (u32) EXYNOS4_MCT_G_CNT_U:
98                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
99                         mask = 1 << 1;          /* G_CNT_U write status */
100                         break;
101                 default:
102                         return;
103                 }
104         }
105
106         /* Wait maximum 1 ms until written values are applied */
107         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
108                 if (__raw_readl(stat_addr) & mask) {
109                         __raw_writel(mask, stat_addr);
110                         return;
111                 }
112
113         panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
114 }
115
116 /* Clocksource handling */
117 static void exynos4_mct_frc_start(u32 hi, u32 lo)
118 {
119         u32 reg;
120
121         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
122         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
123
124         reg = __raw_readl(EXYNOS4_MCT_G_TCON);
125         reg |= MCT_G_TCON_START;
126         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
127 }
128
129 static cycle_t exynos4_frc_read(struct clocksource *cs)
130 {
131         unsigned int lo, hi;
132         u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
133
134         do {
135                 hi = hi2;
136                 lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
137                 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
138         } while (hi != hi2);
139
140         return ((cycle_t)hi << 32) | lo;
141 }
142
143 static void exynos4_frc_resume(struct clocksource *cs)
144 {
145         exynos4_mct_frc_start(0, 0);
146 }
147
148 struct clocksource mct_frc = {
149         .name           = "mct-frc",
150         .rating         = 400,
151         .read           = exynos4_frc_read,
152         .mask           = CLOCKSOURCE_MASK(64),
153         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
154         .resume         = exynos4_frc_resume,
155 };
156
157 static void __init exynos4_clocksource_init(void)
158 {
159         exynos4_mct_frc_start(0, 0);
160
161         if (clocksource_register_hz(&mct_frc, clk_rate))
162                 panic("%s: can't register clocksource\n", mct_frc.name);
163 }
164
165 static void exynos4_mct_comp0_stop(void)
166 {
167         unsigned int tcon;
168
169         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
170         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
171
172         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
173         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
174 }
175
176 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
177                                     unsigned long cycles)
178 {
179         unsigned int tcon;
180         cycle_t comp_cycle;
181
182         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
183
184         if (mode == CLOCK_EVT_MODE_PERIODIC) {
185                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
186                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
187         }
188
189         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
190         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
191         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
192
193         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
194
195         tcon |= MCT_G_TCON_COMP0_ENABLE;
196         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
197 }
198
199 static int exynos4_comp_set_next_event(unsigned long cycles,
200                                        struct clock_event_device *evt)
201 {
202         exynos4_mct_comp0_start(evt->mode, cycles);
203
204         return 0;
205 }
206
207 static void exynos4_comp_set_mode(enum clock_event_mode mode,
208                                   struct clock_event_device *evt)
209 {
210         exynos4_mct_comp0_stop();
211
212         switch (mode) {
213         case CLOCK_EVT_MODE_PERIODIC:
214                 exynos4_mct_comp0_start(mode, clk_cnt_per_tick);
215                 break;
216
217         case CLOCK_EVT_MODE_ONESHOT:
218         case CLOCK_EVT_MODE_UNUSED:
219         case CLOCK_EVT_MODE_SHUTDOWN:
220         case CLOCK_EVT_MODE_RESUME:
221                 break;
222         }
223 }
224
225 static struct clock_event_device mct_comp_device = {
226         .name           = "mct-comp",
227         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
228         .rating         = 250,
229         .set_next_event = exynos4_comp_set_next_event,
230         .set_mode       = exynos4_comp_set_mode,
231 };
232
233 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
234 {
235         struct clock_event_device *evt = dev_id;
236
237         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
238
239         evt->event_handler(evt);
240
241         return IRQ_HANDLED;
242 }
243
244 static struct irqaction mct_comp_event_irq = {
245         .name           = "mct_comp_irq",
246         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
247         .handler        = exynos4_mct_comp_isr,
248         .dev_id         = &mct_comp_device,
249 };
250
251 static void exynos4_clockevent_init(void)
252 {
253         clk_cnt_per_tick = clk_rate / 2 / HZ;
254
255         clockevents_calc_mult_shift(&mct_comp_device, clk_rate / 2, 5);
256         mct_comp_device.max_delta_ns =
257                 clockevent_delta2ns(0xffffffff, &mct_comp_device);
258         mct_comp_device.min_delta_ns =
259                 clockevent_delta2ns(0xf, &mct_comp_device);
260         mct_comp_device.cpumask = cpumask_of(0);
261         clockevents_register_device(&mct_comp_device);
262
263         setup_irq(IRQ_MCT_G0, &mct_comp_event_irq);
264 }
265
266 #ifdef CONFIG_LOCAL_TIMERS
267 /* Clock event handling */
268 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
269 {
270         unsigned long tmp;
271         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
272         void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
273
274         tmp = __raw_readl(addr);
275         if (tmp & mask) {
276                 tmp &= ~mask;
277                 exynos4_mct_write(tmp, addr);
278         }
279 }
280
281 static void exynos4_mct_tick_start(unsigned long cycles,
282                                    struct mct_clock_event_device *mevt)
283 {
284         unsigned long tmp;
285
286         exynos4_mct_tick_stop(mevt);
287
288         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
289
290         /* update interrupt count buffer */
291         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
292
293         /* enable MCT tick interrupt */
294         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
295
296         tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
297         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
298                MCT_L_TCON_INTERVAL_MODE;
299         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
300 }
301
302 static int exynos4_tick_set_next_event(unsigned long cycles,
303                                        struct clock_event_device *evt)
304 {
305         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
306
307         exynos4_mct_tick_start(cycles, mevt);
308
309         return 0;
310 }
311
312 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
313                                          struct clock_event_device *evt)
314 {
315         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
316
317         exynos4_mct_tick_stop(mevt);
318
319         switch (mode) {
320         case CLOCK_EVT_MODE_PERIODIC:
321                 exynos4_mct_tick_start(clk_cnt_per_tick, mevt);
322                 break;
323
324         case CLOCK_EVT_MODE_ONESHOT:
325         case CLOCK_EVT_MODE_UNUSED:
326         case CLOCK_EVT_MODE_SHUTDOWN:
327         case CLOCK_EVT_MODE_RESUME:
328                 break;
329         }
330 }
331
332 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
333 {
334         struct clock_event_device *evt = mevt->evt;
335
336         /*
337          * This is for supporting oneshot mode.
338          * Mct would generate interrupt periodically
339          * without explicit stopping.
340          */
341         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
342                 exynos4_mct_tick_stop(mevt);
343
344         /* Clear the MCT tick interrupt */
345         if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
346                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
347                 return 1;
348         } else {
349                 return 0;
350         }
351 }
352
353 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
354 {
355         struct mct_clock_event_device *mevt = dev_id;
356         struct clock_event_device *evt = mevt->evt;
357
358         exynos4_mct_tick_clear(mevt);
359
360         evt->event_handler(evt);
361
362         return IRQ_HANDLED;
363 }
364
365 static struct irqaction mct_tick0_event_irq = {
366         .name           = "mct_tick0_irq",
367         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
368         .handler        = exynos4_mct_tick_isr,
369 };
370
371 static struct irqaction mct_tick1_event_irq = {
372         .name           = "mct_tick1_irq",
373         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
374         .handler        = exynos4_mct_tick_isr,
375 };
376
377 static void exynos4_mct_tick_init(struct clock_event_device *evt)
378 {
379         struct mct_clock_event_device *mevt;
380         unsigned int cpu = smp_processor_id();
381
382         mevt = this_cpu_ptr(&percpu_mct_tick);
383         mevt->evt = evt;
384
385         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
386         sprintf(mevt->name, "mct_tick%d", cpu);
387
388         evt->name = mevt->name;
389         evt->cpumask = cpumask_of(cpu);
390         evt->set_next_event = exynos4_tick_set_next_event;
391         evt->set_mode = exynos4_tick_set_mode;
392         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
393         evt->rating = 450;
394
395         clockevents_calc_mult_shift(evt, clk_rate / 2, 5);
396         evt->max_delta_ns =
397                 clockevent_delta2ns(0x7fffffff, evt);
398         evt->min_delta_ns =
399                 clockevent_delta2ns(0xf, evt);
400
401         clockevents_register_device(evt);
402
403         exynos4_mct_write(0x1, mevt->base + MCT_L_TCNTB_OFFSET);
404
405         if (mct_int_type == MCT_INT_SPI) {
406                 if (cpu == 0) {
407                         mct_tick0_event_irq.dev_id = mevt;
408                         evt->irq = IRQ_MCT_L0;
409                         setup_irq(IRQ_MCT_L0, &mct_tick0_event_irq);
410                 } else {
411                         mct_tick1_event_irq.dev_id = mevt;
412                         evt->irq = IRQ_MCT_L1;
413                         setup_irq(IRQ_MCT_L1, &mct_tick1_event_irq);
414                         irq_set_affinity(IRQ_MCT_L1, cpumask_of(1));
415                 }
416         } else {
417                 enable_percpu_irq(IRQ_MCT_LOCALTIMER, 0);
418         }
419 }
420
421 /* Setup the local clock events for a CPU */
422 int __cpuinit local_timer_setup(struct clock_event_device *evt)
423 {
424         exynos4_mct_tick_init(evt);
425
426         return 0;
427 }
428
429 void local_timer_stop(struct clock_event_device *evt)
430 {
431         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
432         if (mct_int_type == MCT_INT_SPI)
433                 disable_irq(evt->irq);
434         else
435                 disable_percpu_irq(IRQ_MCT_LOCALTIMER);
436 }
437 #endif /* CONFIG_LOCAL_TIMERS */
438
439 static void __init exynos4_timer_resources(void)
440 {
441         struct clk *mct_clk;
442         mct_clk = clk_get(NULL, "xtal");
443
444         clk_rate = clk_get_rate(mct_clk);
445
446         if (mct_int_type == MCT_INT_PPI) {
447                 int err;
448
449                 err = request_percpu_irq(IRQ_MCT_LOCALTIMER,
450                                          exynos4_mct_tick_isr, "MCT",
451                                          &percpu_mct_tick);
452                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
453                      IRQ_MCT_LOCALTIMER, err);
454         }
455 }
456
457 static void __init exynos4_timer_init(void)
458 {
459         if (soc_is_exynos4210())
460                 mct_int_type = MCT_INT_SPI;
461         else
462                 mct_int_type = MCT_INT_PPI;
463
464         exynos4_timer_resources();
465         exynos4_clocksource_init();
466         exynos4_clockevent_init();
467 }
468
469 struct sys_timer exynos4_timer = {
470         .init           = exynos4_timer_init,
471 };