Merge branches 'perf-urgent-for-linus' and 'sched-urgent-for-linus' of git://git...
[pandora-kernel.git] / arch / arm / mach-exynos / mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22
23 #include <asm/hardware/gic.h>
24
25 #include <plat/cpu.h>
26
27 #include <mach/map.h>
28 #include <mach/irqs.h>
29 #include <mach/regs-mct.h>
30 #include <asm/mach/time.h>
31
32 enum {
33         MCT_INT_SPI,
34         MCT_INT_PPI
35 };
36
37 static unsigned long clk_cnt_per_tick;
38 static unsigned long clk_rate;
39 static unsigned int mct_int_type;
40
41 struct mct_clock_event_device {
42         struct clock_event_device *evt;
43         void __iomem *base;
44         char name[10];
45 };
46
47 static void exynos4_mct_write(unsigned int value, void *addr)
48 {
49         void __iomem *stat_addr;
50         u32 mask;
51         u32 i;
52
53         __raw_writel(value, addr);
54
55         if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
56                 u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
57                 switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
58                 case (u32) MCT_L_TCON_OFFSET:
59                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
60                         mask = 1 << 3;          /* L_TCON write status */
61                         break;
62                 case (u32) MCT_L_ICNTB_OFFSET:
63                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
64                         mask = 1 << 1;          /* L_ICNTB write status */
65                         break;
66                 case (u32) MCT_L_TCNTB_OFFSET:
67                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
68                         mask = 1 << 0;          /* L_TCNTB write status */
69                         break;
70                 default:
71                         return;
72                 }
73         } else {
74                 switch ((u32) addr) {
75                 case (u32) EXYNOS4_MCT_G_TCON:
76                         stat_addr = EXYNOS4_MCT_G_WSTAT;
77                         mask = 1 << 16;         /* G_TCON write status */
78                         break;
79                 case (u32) EXYNOS4_MCT_G_COMP0_L:
80                         stat_addr = EXYNOS4_MCT_G_WSTAT;
81                         mask = 1 << 0;          /* G_COMP0_L write status */
82                         break;
83                 case (u32) EXYNOS4_MCT_G_COMP0_U:
84                         stat_addr = EXYNOS4_MCT_G_WSTAT;
85                         mask = 1 << 1;          /* G_COMP0_U write status */
86                         break;
87                 case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
88                         stat_addr = EXYNOS4_MCT_G_WSTAT;
89                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
90                         break;
91                 case (u32) EXYNOS4_MCT_G_CNT_L:
92                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
93                         mask = 1 << 0;          /* G_CNT_L write status */
94                         break;
95                 case (u32) EXYNOS4_MCT_G_CNT_U:
96                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
97                         mask = 1 << 1;          /* G_CNT_U write status */
98                         break;
99                 default:
100                         return;
101                 }
102         }
103
104         /* Wait maximum 1 ms until written values are applied */
105         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
106                 if (__raw_readl(stat_addr) & mask) {
107                         __raw_writel(mask, stat_addr);
108                         return;
109                 }
110
111         panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
112 }
113
114 /* Clocksource handling */
115 static void exynos4_mct_frc_start(u32 hi, u32 lo)
116 {
117         u32 reg;
118
119         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
120         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
121
122         reg = __raw_readl(EXYNOS4_MCT_G_TCON);
123         reg |= MCT_G_TCON_START;
124         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
125 }
126
127 static cycle_t exynos4_frc_read(struct clocksource *cs)
128 {
129         unsigned int lo, hi;
130         u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
131
132         do {
133                 hi = hi2;
134                 lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
135                 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
136         } while (hi != hi2);
137
138         return ((cycle_t)hi << 32) | lo;
139 }
140
141 static void exynos4_frc_resume(struct clocksource *cs)
142 {
143         exynos4_mct_frc_start(0, 0);
144 }
145
146 struct clocksource mct_frc = {
147         .name           = "mct-frc",
148         .rating         = 400,
149         .read           = exynos4_frc_read,
150         .mask           = CLOCKSOURCE_MASK(64),
151         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
152         .resume         = exynos4_frc_resume,
153 };
154
155 static void __init exynos4_clocksource_init(void)
156 {
157         exynos4_mct_frc_start(0, 0);
158
159         if (clocksource_register_hz(&mct_frc, clk_rate))
160                 panic("%s: can't register clocksource\n", mct_frc.name);
161 }
162
163 static void exynos4_mct_comp0_stop(void)
164 {
165         unsigned int tcon;
166
167         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
168         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
169
170         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
171         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
172 }
173
174 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
175                                     unsigned long cycles)
176 {
177         unsigned int tcon;
178         cycle_t comp_cycle;
179
180         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
181
182         if (mode == CLOCK_EVT_MODE_PERIODIC) {
183                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
184                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
185         }
186
187         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
188         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
189         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
190
191         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
192
193         tcon |= MCT_G_TCON_COMP0_ENABLE;
194         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
195 }
196
197 static int exynos4_comp_set_next_event(unsigned long cycles,
198                                        struct clock_event_device *evt)
199 {
200         exynos4_mct_comp0_start(evt->mode, cycles);
201
202         return 0;
203 }
204
205 static void exynos4_comp_set_mode(enum clock_event_mode mode,
206                                   struct clock_event_device *evt)
207 {
208         exynos4_mct_comp0_stop();
209
210         switch (mode) {
211         case CLOCK_EVT_MODE_PERIODIC:
212                 exynos4_mct_comp0_start(mode, clk_cnt_per_tick);
213                 break;
214
215         case CLOCK_EVT_MODE_ONESHOT:
216         case CLOCK_EVT_MODE_UNUSED:
217         case CLOCK_EVT_MODE_SHUTDOWN:
218         case CLOCK_EVT_MODE_RESUME:
219                 break;
220         }
221 }
222
223 static struct clock_event_device mct_comp_device = {
224         .name           = "mct-comp",
225         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
226         .rating         = 250,
227         .set_next_event = exynos4_comp_set_next_event,
228         .set_mode       = exynos4_comp_set_mode,
229 };
230
231 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
232 {
233         struct clock_event_device *evt = dev_id;
234
235         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
236
237         evt->event_handler(evt);
238
239         return IRQ_HANDLED;
240 }
241
242 static struct irqaction mct_comp_event_irq = {
243         .name           = "mct_comp_irq",
244         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
245         .handler        = exynos4_mct_comp_isr,
246         .dev_id         = &mct_comp_device,
247 };
248
249 static void exynos4_clockevent_init(void)
250 {
251         clk_cnt_per_tick = clk_rate / 2 / HZ;
252
253         clockevents_calc_mult_shift(&mct_comp_device, clk_rate / 2, 5);
254         mct_comp_device.max_delta_ns =
255                 clockevent_delta2ns(0xffffffff, &mct_comp_device);
256         mct_comp_device.min_delta_ns =
257                 clockevent_delta2ns(0xf, &mct_comp_device);
258         mct_comp_device.cpumask = cpumask_of(0);
259         clockevents_register_device(&mct_comp_device);
260
261         setup_irq(IRQ_MCT_G0, &mct_comp_event_irq);
262 }
263
264 #ifdef CONFIG_LOCAL_TIMERS
265
266 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
267
268 /* Clock event handling */
269 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
270 {
271         unsigned long tmp;
272         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
273         void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
274
275         tmp = __raw_readl(addr);
276         if (tmp & mask) {
277                 tmp &= ~mask;
278                 exynos4_mct_write(tmp, addr);
279         }
280 }
281
282 static void exynos4_mct_tick_start(unsigned long cycles,
283                                    struct mct_clock_event_device *mevt)
284 {
285         unsigned long tmp;
286
287         exynos4_mct_tick_stop(mevt);
288
289         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
290
291         /* update interrupt count buffer */
292         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
293
294         /* enable MCT tick interrupt */
295         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
296
297         tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
298         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
299                MCT_L_TCON_INTERVAL_MODE;
300         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
301 }
302
303 static int exynos4_tick_set_next_event(unsigned long cycles,
304                                        struct clock_event_device *evt)
305 {
306         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
307
308         exynos4_mct_tick_start(cycles, mevt);
309
310         return 0;
311 }
312
313 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
314                                          struct clock_event_device *evt)
315 {
316         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
317
318         exynos4_mct_tick_stop(mevt);
319
320         switch (mode) {
321         case CLOCK_EVT_MODE_PERIODIC:
322                 exynos4_mct_tick_start(clk_cnt_per_tick, mevt);
323                 break;
324
325         case CLOCK_EVT_MODE_ONESHOT:
326         case CLOCK_EVT_MODE_UNUSED:
327         case CLOCK_EVT_MODE_SHUTDOWN:
328         case CLOCK_EVT_MODE_RESUME:
329                 break;
330         }
331 }
332
333 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
334 {
335         struct clock_event_device *evt = mevt->evt;
336
337         /*
338          * This is for supporting oneshot mode.
339          * Mct would generate interrupt periodically
340          * without explicit stopping.
341          */
342         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
343                 exynos4_mct_tick_stop(mevt);
344
345         /* Clear the MCT tick interrupt */
346         if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
347                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
348                 return 1;
349         } else {
350                 return 0;
351         }
352 }
353
354 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
355 {
356         struct mct_clock_event_device *mevt = dev_id;
357         struct clock_event_device *evt = mevt->evt;
358
359         exynos4_mct_tick_clear(mevt);
360
361         evt->event_handler(evt);
362
363         return IRQ_HANDLED;
364 }
365
366 static struct irqaction mct_tick0_event_irq = {
367         .name           = "mct_tick0_irq",
368         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
369         .handler        = exynos4_mct_tick_isr,
370 };
371
372 static struct irqaction mct_tick1_event_irq = {
373         .name           = "mct_tick1_irq",
374         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
375         .handler        = exynos4_mct_tick_isr,
376 };
377
378 static void exynos4_mct_tick_init(struct clock_event_device *evt)
379 {
380         struct mct_clock_event_device *mevt;
381         unsigned int cpu = smp_processor_id();
382
383         mevt = this_cpu_ptr(&percpu_mct_tick);
384         mevt->evt = evt;
385
386         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
387         sprintf(mevt->name, "mct_tick%d", cpu);
388
389         evt->name = mevt->name;
390         evt->cpumask = cpumask_of(cpu);
391         evt->set_next_event = exynos4_tick_set_next_event;
392         evt->set_mode = exynos4_tick_set_mode;
393         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
394         evt->rating = 450;
395
396         clockevents_calc_mult_shift(evt, clk_rate / 2, 5);
397         evt->max_delta_ns =
398                 clockevent_delta2ns(0x7fffffff, evt);
399         evt->min_delta_ns =
400                 clockevent_delta2ns(0xf, evt);
401
402         clockevents_register_device(evt);
403
404         exynos4_mct_write(0x1, mevt->base + MCT_L_TCNTB_OFFSET);
405
406         if (mct_int_type == MCT_INT_SPI) {
407                 if (cpu == 0) {
408                         mct_tick0_event_irq.dev_id = mevt;
409                         evt->irq = IRQ_MCT_L0;
410                         setup_irq(IRQ_MCT_L0, &mct_tick0_event_irq);
411                 } else {
412                         mct_tick1_event_irq.dev_id = mevt;
413                         evt->irq = IRQ_MCT_L1;
414                         setup_irq(IRQ_MCT_L1, &mct_tick1_event_irq);
415                         irq_set_affinity(IRQ_MCT_L1, cpumask_of(1));
416                 }
417         } else {
418                 enable_percpu_irq(IRQ_MCT_LOCALTIMER, 0);
419         }
420 }
421
422 /* Setup the local clock events for a CPU */
423 int __cpuinit local_timer_setup(struct clock_event_device *evt)
424 {
425         exynos4_mct_tick_init(evt);
426
427         return 0;
428 }
429
430 void local_timer_stop(struct clock_event_device *evt)
431 {
432         unsigned int cpu = smp_processor_id();
433         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
434         if (mct_int_type == MCT_INT_SPI)
435                 if (cpu == 0)
436                         remove_irq(evt->irq, &mct_tick0_event_irq);
437                 else
438                         remove_irq(evt->irq, &mct_tick1_event_irq);
439         else
440                 disable_percpu_irq(IRQ_MCT_LOCALTIMER);
441 }
442 #endif /* CONFIG_LOCAL_TIMERS */
443
444 static void __init exynos4_timer_resources(void)
445 {
446         struct clk *mct_clk;
447         mct_clk = clk_get(NULL, "xtal");
448
449         clk_rate = clk_get_rate(mct_clk);
450
451 #ifdef CONFIG_LOCAL_TIMERS
452         if (mct_int_type == MCT_INT_PPI) {
453                 int err;
454
455                 err = request_percpu_irq(IRQ_MCT_LOCALTIMER,
456                                          exynos4_mct_tick_isr, "MCT",
457                                          &percpu_mct_tick);
458                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
459                      IRQ_MCT_LOCALTIMER, err);
460         }
461 #endif /* CONFIG_LOCAL_TIMERS */
462 }
463
464 static void __init exynos4_timer_init(void)
465 {
466         if (soc_is_exynos4210())
467                 mct_int_type = MCT_INT_SPI;
468         else
469                 mct_int_type = MCT_INT_PPI;
470
471         exynos4_timer_resources();
472         exynos4_clocksource_init();
473         exynos4_clockevent_init();
474 }
475
476 struct sys_timer exynos4_timer = {
477         .init           = exynos4_timer_init,
478 };