Merge branch 'devel-stable' into devel
[pandora-kernel.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27
28 #include <asm/atomic.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/pgalloc.h>
35 #include <asm/processor.h>
36 #include <asm/tlbflush.h>
37 #include <asm/ptrace.h>
38 #include <asm/localtimer.h>
39 #include <asm/smp_plat.h>
40
41 /*
42  * as from 2.5, kernels no longer have an init_tasks structure
43  * so we need some other way of telling a new secondary core
44  * where to place its SVC stack
45  */
46 struct secondary_data secondary_data;
47
48 /*
49  * structures for inter-processor calls
50  * - A collection of single bit ipi messages.
51  */
52 struct ipi_data {
53         spinlock_t lock;
54         unsigned long ipi_count;
55         unsigned long bits;
56 };
57
58 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
59         .lock   = SPIN_LOCK_UNLOCKED,
60 };
61
62 enum ipi_msg_type {
63         IPI_TIMER,
64         IPI_RESCHEDULE,
65         IPI_CALL_FUNC,
66         IPI_CALL_FUNC_SINGLE,
67         IPI_CPU_STOP,
68 };
69
70 int __cpuinit __cpu_up(unsigned int cpu)
71 {
72         struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
73         struct task_struct *idle = ci->idle;
74         pgd_t *pgd;
75         pmd_t *pmd;
76         int ret;
77
78         /*
79          * Spawn a new process manually, if not already done.
80          * Grab a pointer to its task struct so we can mess with it
81          */
82         if (!idle) {
83                 idle = fork_idle(cpu);
84                 if (IS_ERR(idle)) {
85                         printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
86                         return PTR_ERR(idle);
87                 }
88                 ci->idle = idle;
89         } else {
90                 /*
91                  * Since this idle thread is being re-used, call
92                  * init_idle() to reinitialize the thread structure.
93                  */
94                 init_idle(idle, cpu);
95         }
96
97         /*
98          * Allocate initial page tables to allow the new CPU to
99          * enable the MMU safely.  This essentially means a set
100          * of our "standard" page tables, with the addition of
101          * a 1:1 mapping for the physical address of the kernel.
102          */
103         pgd = pgd_alloc(&init_mm);
104         pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
105         *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
106                      PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
107         flush_pmd_entry(pmd);
108         outer_clean_range(__pa(pmd), __pa(pmd + 1));
109
110         /*
111          * We need to tell the secondary core where to find
112          * its stack and the page tables.
113          */
114         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
115         secondary_data.pgdir = virt_to_phys(pgd);
116         __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
117         outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
118
119         /*
120          * Now bring the CPU into our world.
121          */
122         ret = boot_secondary(cpu, idle);
123         if (ret == 0) {
124                 unsigned long timeout;
125
126                 /*
127                  * CPU was successfully started, wait for it
128                  * to come online or time out.
129                  */
130                 timeout = jiffies + HZ;
131                 while (time_before(jiffies, timeout)) {
132                         if (cpu_online(cpu))
133                                 break;
134
135                         udelay(10);
136                         barrier();
137                 }
138
139                 if (!cpu_online(cpu))
140                         ret = -EIO;
141         }
142
143         secondary_data.stack = NULL;
144         secondary_data.pgdir = 0;
145
146         *pmd = __pmd(0);
147         clean_pmd_entry(pmd);
148         pgd_free(&init_mm, pgd);
149
150         if (ret) {
151                 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
152
153                 /*
154                  * FIXME: We need to clean up the new idle thread. --rmk
155                  */
156         }
157
158         return ret;
159 }
160
161 #ifdef CONFIG_HOTPLUG_CPU
162 /*
163  * __cpu_disable runs on the processor to be shutdown.
164  */
165 int __cpu_disable(void)
166 {
167         unsigned int cpu = smp_processor_id();
168         struct task_struct *p;
169         int ret;
170
171         ret = platform_cpu_disable(cpu);
172         if (ret)
173                 return ret;
174
175         /*
176          * Take this CPU offline.  Once we clear this, we can't return,
177          * and we must not schedule until we're ready to give up the cpu.
178          */
179         set_cpu_online(cpu, false);
180
181         /*
182          * OK - migrate IRQs away from this CPU
183          */
184         migrate_irqs();
185
186         /*
187          * Stop the local timer for this CPU.
188          */
189         local_timer_stop();
190
191         /*
192          * Flush user cache and TLB mappings, and then remove this CPU
193          * from the vm mask set of all processes.
194          */
195         flush_cache_all();
196         local_flush_tlb_all();
197
198         read_lock(&tasklist_lock);
199         for_each_process(p) {
200                 if (p->mm)
201                         cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
202         }
203         read_unlock(&tasklist_lock);
204
205         return 0;
206 }
207
208 /*
209  * called on the thread which is asking for a CPU to be shutdown -
210  * waits until shutdown has completed, or it is timed out.
211  */
212 void __cpu_die(unsigned int cpu)
213 {
214         if (!platform_cpu_kill(cpu))
215                 printk("CPU%u: unable to kill\n", cpu);
216 }
217
218 /*
219  * Called from the idle thread for the CPU which has been shutdown.
220  *
221  * Note that we disable IRQs here, but do not re-enable them
222  * before returning to the caller. This is also the behaviour
223  * of the other hotplug-cpu capable cores, so presumably coming
224  * out of idle fixes this.
225  */
226 void __ref cpu_die(void)
227 {
228         unsigned int cpu = smp_processor_id();
229
230         local_irq_disable();
231         idle_task_exit();
232
233         /*
234          * actual CPU shutdown procedure is at least platform (if not
235          * CPU) specific
236          */
237         platform_cpu_die(cpu);
238
239         /*
240          * Do not return to the idle loop - jump back to the secondary
241          * cpu initialisation.  There's some initialisation which needs
242          * to be repeated to undo the effects of taking the CPU offline.
243          */
244         __asm__("mov    sp, %0\n"
245         "       b       secondary_start_kernel"
246                 :
247                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
248 }
249 #endif /* CONFIG_HOTPLUG_CPU */
250
251 /*
252  * This is the secondary CPU boot entry.  We're using this CPUs
253  * idle thread stack, but a set of temporary page tables.
254  */
255 asmlinkage void __cpuinit secondary_start_kernel(void)
256 {
257         struct mm_struct *mm = &init_mm;
258         unsigned int cpu = smp_processor_id();
259
260         printk("CPU%u: Booted secondary processor\n", cpu);
261
262         /*
263          * All kernel threads share the same mm context; grab a
264          * reference and switch to it.
265          */
266         atomic_inc(&mm->mm_users);
267         atomic_inc(&mm->mm_count);
268         current->active_mm = mm;
269         cpumask_set_cpu(cpu, mm_cpumask(mm));
270         cpu_switch_mm(mm->pgd, mm);
271         enter_lazy_tlb(mm, current);
272         local_flush_tlb_all();
273
274         cpu_init();
275         preempt_disable();
276
277         /*
278          * Give the platform a chance to do its own initialisation.
279          */
280         platform_secondary_init(cpu);
281
282         /*
283          * Enable local interrupts.
284          */
285         notify_cpu_starting(cpu);
286         local_irq_enable();
287         local_fiq_enable();
288
289         /*
290          * Setup the percpu timer for this CPU.
291          */
292         percpu_timer_setup();
293
294         calibrate_delay();
295
296         smp_store_cpu_info(cpu);
297
298         /*
299          * OK, now it's safe to let the boot CPU continue
300          */
301         set_cpu_online(cpu, true);
302
303         /*
304          * OK, it's off to the idle thread for us
305          */
306         cpu_idle();
307 }
308
309 /*
310  * Called by both boot and secondaries to move global data into
311  * per-processor storage.
312  */
313 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
314 {
315         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
316
317         cpu_info->loops_per_jiffy = loops_per_jiffy;
318 }
319
320 void __init smp_cpus_done(unsigned int max_cpus)
321 {
322         int cpu;
323         unsigned long bogosum = 0;
324
325         for_each_online_cpu(cpu)
326                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
327
328         printk(KERN_INFO "SMP: Total of %d processors activated "
329                "(%lu.%02lu BogoMIPS).\n",
330                num_online_cpus(),
331                bogosum / (500000/HZ),
332                (bogosum / (5000/HZ)) % 100);
333 }
334
335 void __init smp_prepare_boot_cpu(void)
336 {
337         unsigned int cpu = smp_processor_id();
338
339         per_cpu(cpu_data, cpu).idle = current;
340 }
341
342 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
343 {
344         unsigned long flags;
345         unsigned int cpu;
346
347         local_irq_save(flags);
348
349         for_each_cpu(cpu, mask) {
350                 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
351
352                 spin_lock(&ipi->lock);
353                 ipi->bits |= 1 << msg;
354                 spin_unlock(&ipi->lock);
355         }
356
357         /*
358          * Call the platform specific cross-CPU call function.
359          */
360         smp_cross_call(mask);
361
362         local_irq_restore(flags);
363 }
364
365 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
366 {
367         send_ipi_message(mask, IPI_CALL_FUNC);
368 }
369
370 void arch_send_call_function_single_ipi(int cpu)
371 {
372         send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
373 }
374
375 void show_ipi_list(struct seq_file *p)
376 {
377         unsigned int cpu;
378
379         seq_puts(p, "IPI:");
380
381         for_each_present_cpu(cpu)
382                 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
383
384         seq_putc(p, '\n');
385 }
386
387 void show_local_irqs(struct seq_file *p)
388 {
389         unsigned int cpu;
390
391         seq_printf(p, "LOC: ");
392
393         for_each_present_cpu(cpu)
394                 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
395
396         seq_putc(p, '\n');
397 }
398
399 /*
400  * Timer (local or broadcast) support
401  */
402 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
403
404 static void ipi_timer(void)
405 {
406         struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
407         irq_enter();
408         evt->event_handler(evt);
409         irq_exit();
410 }
411
412 #ifdef CONFIG_LOCAL_TIMERS
413 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
414 {
415         struct pt_regs *old_regs = set_irq_regs(regs);
416         int cpu = smp_processor_id();
417
418         if (local_timer_ack()) {
419                 irq_stat[cpu].local_timer_irqs++;
420                 ipi_timer();
421         }
422
423         set_irq_regs(old_regs);
424 }
425 #endif
426
427 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
428 static void smp_timer_broadcast(const struct cpumask *mask)
429 {
430         send_ipi_message(mask, IPI_TIMER);
431 }
432
433 static void broadcast_timer_set_mode(enum clock_event_mode mode,
434         struct clock_event_device *evt)
435 {
436 }
437
438 static void local_timer_setup(struct clock_event_device *evt)
439 {
440         evt->name       = "dummy_timer";
441         evt->features   = CLOCK_EVT_FEAT_ONESHOT |
442                           CLOCK_EVT_FEAT_PERIODIC |
443                           CLOCK_EVT_FEAT_DUMMY;
444         evt->rating     = 400;
445         evt->mult       = 1;
446         evt->set_mode   = broadcast_timer_set_mode;
447         evt->broadcast  = smp_timer_broadcast;
448
449         clockevents_register_device(evt);
450 }
451 #endif
452
453 void __cpuinit percpu_timer_setup(void)
454 {
455         unsigned int cpu = smp_processor_id();
456         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
457
458         evt->cpumask = cpumask_of(cpu);
459
460         local_timer_setup(evt);
461 }
462
463 static DEFINE_SPINLOCK(stop_lock);
464
465 /*
466  * ipi_cpu_stop - handle IPI from smp_send_stop()
467  */
468 static void ipi_cpu_stop(unsigned int cpu)
469 {
470         spin_lock(&stop_lock);
471         printk(KERN_CRIT "CPU%u: stopping\n", cpu);
472         dump_stack();
473         spin_unlock(&stop_lock);
474
475         set_cpu_online(cpu, false);
476
477         local_fiq_disable();
478         local_irq_disable();
479
480         while (1)
481                 cpu_relax();
482 }
483
484 /*
485  * Main handler for inter-processor interrupts
486  *
487  * For ARM, the ipimask now only identifies a single
488  * category of IPI (Bit 1 IPIs have been replaced by a
489  * different mechanism):
490  *
491  *  Bit 0 - Inter-processor function call
492  */
493 asmlinkage void __exception do_IPI(struct pt_regs *regs)
494 {
495         unsigned int cpu = smp_processor_id();
496         struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
497         struct pt_regs *old_regs = set_irq_regs(regs);
498
499         ipi->ipi_count++;
500
501         for (;;) {
502                 unsigned long msgs;
503
504                 spin_lock(&ipi->lock);
505                 msgs = ipi->bits;
506                 ipi->bits = 0;
507                 spin_unlock(&ipi->lock);
508
509                 if (!msgs)
510                         break;
511
512                 do {
513                         unsigned nextmsg;
514
515                         nextmsg = msgs & -msgs;
516                         msgs &= ~nextmsg;
517                         nextmsg = ffz(~nextmsg);
518
519                         switch (nextmsg) {
520                         case IPI_TIMER:
521                                 ipi_timer();
522                                 break;
523
524                         case IPI_RESCHEDULE:
525                                 /*
526                                  * nothing more to do - eveything is
527                                  * done on the interrupt return path
528                                  */
529                                 break;
530
531                         case IPI_CALL_FUNC:
532                                 generic_smp_call_function_interrupt();
533                                 break;
534
535                         case IPI_CALL_FUNC_SINGLE:
536                                 generic_smp_call_function_single_interrupt();
537                                 break;
538
539                         case IPI_CPU_STOP:
540                                 ipi_cpu_stop(cpu);
541                                 break;
542
543                         default:
544                                 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
545                                        cpu, nextmsg);
546                                 break;
547                         }
548                 } while (msgs);
549         }
550
551         set_irq_regs(old_regs);
552 }
553
554 void smp_send_reschedule(int cpu)
555 {
556         send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
557 }
558
559 void smp_send_stop(void)
560 {
561         cpumask_t mask = cpu_online_map;
562         cpu_clear(smp_processor_id(), mask);
563         send_ipi_message(&mask, IPI_CPU_STOP);
564 }
565
566 /*
567  * not supported here
568  */
569 int setup_profiling_timer(unsigned int multiplier)
570 {
571         return -EINVAL;
572 }
573
574 static void
575 on_each_cpu_mask(void (*func)(void *), void *info, int wait,
576                 const struct cpumask *mask)
577 {
578         preempt_disable();
579
580         smp_call_function_many(mask, func, info, wait);
581         if (cpumask_test_cpu(smp_processor_id(), mask))
582                 func(info);
583
584         preempt_enable();
585 }
586
587 /**********************************************************************/
588
589 /*
590  * TLB operations
591  */
592 struct tlb_args {
593         struct vm_area_struct *ta_vma;
594         unsigned long ta_start;
595         unsigned long ta_end;
596 };
597
598 static inline void ipi_flush_tlb_all(void *ignored)
599 {
600         local_flush_tlb_all();
601 }
602
603 static inline void ipi_flush_tlb_mm(void *arg)
604 {
605         struct mm_struct *mm = (struct mm_struct *)arg;
606
607         local_flush_tlb_mm(mm);
608 }
609
610 static inline void ipi_flush_tlb_page(void *arg)
611 {
612         struct tlb_args *ta = (struct tlb_args *)arg;
613
614         local_flush_tlb_page(ta->ta_vma, ta->ta_start);
615 }
616
617 static inline void ipi_flush_tlb_kernel_page(void *arg)
618 {
619         struct tlb_args *ta = (struct tlb_args *)arg;
620
621         local_flush_tlb_kernel_page(ta->ta_start);
622 }
623
624 static inline void ipi_flush_tlb_range(void *arg)
625 {
626         struct tlb_args *ta = (struct tlb_args *)arg;
627
628         local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
629 }
630
631 static inline void ipi_flush_tlb_kernel_range(void *arg)
632 {
633         struct tlb_args *ta = (struct tlb_args *)arg;
634
635         local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
636 }
637
638 void flush_tlb_all(void)
639 {
640         if (tlb_ops_need_broadcast())
641                 on_each_cpu(ipi_flush_tlb_all, NULL, 1);
642         else
643                 local_flush_tlb_all();
644 }
645
646 void flush_tlb_mm(struct mm_struct *mm)
647 {
648         if (tlb_ops_need_broadcast())
649                 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
650         else
651                 local_flush_tlb_mm(mm);
652 }
653
654 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
655 {
656         if (tlb_ops_need_broadcast()) {
657                 struct tlb_args ta;
658                 ta.ta_vma = vma;
659                 ta.ta_start = uaddr;
660                 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
661         } else
662                 local_flush_tlb_page(vma, uaddr);
663 }
664
665 void flush_tlb_kernel_page(unsigned long kaddr)
666 {
667         if (tlb_ops_need_broadcast()) {
668                 struct tlb_args ta;
669                 ta.ta_start = kaddr;
670                 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
671         } else
672                 local_flush_tlb_kernel_page(kaddr);
673 }
674
675 void flush_tlb_range(struct vm_area_struct *vma,
676                      unsigned long start, unsigned long end)
677 {
678         if (tlb_ops_need_broadcast()) {
679                 struct tlb_args ta;
680                 ta.ta_vma = vma;
681                 ta.ta_start = start;
682                 ta.ta_end = end;
683                 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
684         } else
685                 local_flush_tlb_range(vma, start, end);
686 }
687
688 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
689 {
690         if (tlb_ops_need_broadcast()) {
691                 struct tlb_args ta;
692                 ta.ta_start = start;
693                 ta.ta_end = end;
694                 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
695         } else
696                 local_flush_tlb_kernel_range(start, end);
697 }