Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / arm / kernel / kprobes.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/stop_machine.h>
26 #include <linux/stringify.h>
27 #include <asm/traps.h>
28 #include <asm/cacheflush.h>
29
30 #define MIN_STACK_SIZE(addr)                            \
31         min((unsigned long)MAX_STACK_SIZE,              \
32             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
33
34 #define flush_insns(addr, cnt)                          \
35         flush_icache_range((unsigned long)(addr),       \
36                            (unsigned long)(addr) +      \
37                            sizeof(kprobe_opcode_t) * (cnt))
38
39 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
40 #define JPROBE_MAGIC_ADDR               0xffffffff
41
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44
45
46 int __kprobes arch_prepare_kprobe(struct kprobe *p)
47 {
48         kprobe_opcode_t insn;
49         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
50         unsigned long addr = (unsigned long)p->addr;
51         int is;
52
53         if (addr & 0x3 || in_exception_text(addr))
54                 return -EINVAL;
55
56         insn = *p->addr;
57         p->opcode = insn;
58         p->ainsn.insn = tmp_insn;
59
60         switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
61         case INSN_REJECTED:     /* not supported */
62                 return -EINVAL;
63
64         case INSN_GOOD:         /* instruction uses slot */
65                 p->ainsn.insn = get_insn_slot();
66                 if (!p->ainsn.insn)
67                         return -ENOMEM;
68                 for (is = 0; is < MAX_INSN_SIZE; ++is)
69                         p->ainsn.insn[is] = tmp_insn[is];
70                 flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
71                 break;
72
73         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
74                 p->ainsn.insn = NULL;
75                 break;
76         }
77
78         return 0;
79 }
80
81 void __kprobes arch_arm_kprobe(struct kprobe *p)
82 {
83         *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
84         flush_insns(p->addr, 1);
85 }
86
87 /*
88  * The actual disarming is done here on each CPU and synchronized using
89  * stop_machine. This synchronization is necessary on SMP to avoid removing
90  * a probe between the moment the 'Undefined Instruction' exception is raised
91  * and the moment the exception handler reads the faulting instruction from
92  * memory.
93  */
94 int __kprobes __arch_disarm_kprobe(void *p)
95 {
96         struct kprobe *kp = p;
97         *kp->addr = kp->opcode;
98         flush_insns(kp->addr, 1);
99         return 0;
100 }
101
102 void __kprobes arch_disarm_kprobe(struct kprobe *p)
103 {
104         stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
105 }
106
107 void __kprobes arch_remove_kprobe(struct kprobe *p)
108 {
109         if (p->ainsn.insn) {
110                 free_insn_slot(p->ainsn.insn, 0);
111                 p->ainsn.insn = NULL;
112         }
113 }
114
115 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
116 {
117         kcb->prev_kprobe.kp = kprobe_running();
118         kcb->prev_kprobe.status = kcb->kprobe_status;
119 }
120
121 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
122 {
123         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
124         kcb->kprobe_status = kcb->prev_kprobe.status;
125 }
126
127 static void __kprobes set_current_kprobe(struct kprobe *p)
128 {
129         __get_cpu_var(current_kprobe) = p;
130 }
131
132 static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
133                                  struct kprobe_ctlblk *kcb)
134 {
135         regs->ARM_pc += 4;
136         p->ainsn.insn_handler(p, regs);
137 }
138
139 /*
140  * Called with IRQs disabled. IRQs must remain disabled from that point
141  * all the way until processing this kprobe is complete.  The current
142  * kprobes implementation cannot process more than one nested level of
143  * kprobe, and that level is reserved for user kprobe handlers, so we can't
144  * risk encountering a new kprobe in an interrupt handler.
145  */
146 void __kprobes kprobe_handler(struct pt_regs *regs)
147 {
148         struct kprobe *p, *cur;
149         struct kprobe_ctlblk *kcb;
150         kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
151
152         kcb = get_kprobe_ctlblk();
153         cur = kprobe_running();
154         p = get_kprobe(addr);
155
156         if (p) {
157                 if (cur) {
158                         /* Kprobe is pending, so we're recursing. */
159                         switch (kcb->kprobe_status) {
160                         case KPROBE_HIT_ACTIVE:
161                         case KPROBE_HIT_SSDONE:
162                                 /* A pre- or post-handler probe got us here. */
163                                 kprobes_inc_nmissed_count(p);
164                                 save_previous_kprobe(kcb);
165                                 set_current_kprobe(p);
166                                 kcb->kprobe_status = KPROBE_REENTER;
167                                 singlestep(p, regs, kcb);
168                                 restore_previous_kprobe(kcb);
169                                 break;
170                         default:
171                                 /* impossible cases */
172                                 BUG();
173                         }
174                 } else {
175                         set_current_kprobe(p);
176                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
177
178                         /*
179                          * If we have no pre-handler or it returned 0, we
180                          * continue with normal processing.  If we have a
181                          * pre-handler and it returned non-zero, it prepped
182                          * for calling the break_handler below on re-entry,
183                          * so get out doing nothing more here.
184                          */
185                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
186                                 kcb->kprobe_status = KPROBE_HIT_SS;
187                                 singlestep(p, regs, kcb);
188                                 if (p->post_handler) {
189                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
190                                         p->post_handler(p, regs, 0);
191                                 }
192                                 reset_current_kprobe();
193                         }
194                 }
195         } else if (cur) {
196                 /* We probably hit a jprobe.  Call its break handler. */
197                 if (cur->break_handler && cur->break_handler(cur, regs)) {
198                         kcb->kprobe_status = KPROBE_HIT_SS;
199                         singlestep(cur, regs, kcb);
200                         if (cur->post_handler) {
201                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
202                                 cur->post_handler(cur, regs, 0);
203                         }
204                 }
205                 reset_current_kprobe();
206         } else {
207                 /*
208                  * The probe was removed and a race is in progress.
209                  * There is nothing we can do about it.  Let's restart
210                  * the instruction.  By the time we can restart, the
211                  * real instruction will be there.
212                  */
213         }
214 }
215
216 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
217 {
218         unsigned long flags;
219         local_irq_save(flags);
220         kprobe_handler(regs);
221         local_irq_restore(flags);
222         return 0;
223 }
224
225 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
226 {
227         struct kprobe *cur = kprobe_running();
228         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
229
230         switch (kcb->kprobe_status) {
231         case KPROBE_HIT_SS:
232         case KPROBE_REENTER:
233                 /*
234                  * We are here because the instruction being single
235                  * stepped caused a page fault. We reset the current
236                  * kprobe and the PC to point back to the probe address
237                  * and allow the page fault handler to continue as a
238                  * normal page fault.
239                  */
240                 regs->ARM_pc = (long)cur->addr;
241                 if (kcb->kprobe_status == KPROBE_REENTER) {
242                         restore_previous_kprobe(kcb);
243                 } else {
244                         reset_current_kprobe();
245                 }
246                 break;
247
248         case KPROBE_HIT_ACTIVE:
249         case KPROBE_HIT_SSDONE:
250                 /*
251                  * We increment the nmissed count for accounting,
252                  * we can also use npre/npostfault count for accounting
253                  * these specific fault cases.
254                  */
255                 kprobes_inc_nmissed_count(cur);
256
257                 /*
258                  * We come here because instructions in the pre/post
259                  * handler caused the page_fault, this could happen
260                  * if handler tries to access user space by
261                  * copy_from_user(), get_user() etc. Let the
262                  * user-specified handler try to fix it.
263                  */
264                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
265                         return 1;
266                 break;
267
268         default:
269                 break;
270         }
271
272         return 0;
273 }
274
275 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
276                                        unsigned long val, void *data)
277 {
278         /*
279          * notify_die() is currently never called on ARM,
280          * so this callback is currently empty.
281          */
282         return NOTIFY_DONE;
283 }
284
285 /*
286  * When a retprobed function returns, trampoline_handler() is called,
287  * calling the kretprobe's handler. We construct a struct pt_regs to
288  * give a view of registers r0-r11 to the user return-handler.  This is
289  * not a complete pt_regs structure, but that should be plenty sufficient
290  * for kretprobe handlers which should normally be interested in r0 only
291  * anyway.
292  */
293 void __naked __kprobes kretprobe_trampoline(void)
294 {
295         __asm__ __volatile__ (
296                 "stmdb  sp!, {r0 - r11}         \n\t"
297                 "mov    r0, sp                  \n\t"
298                 "bl     trampoline_handler      \n\t"
299                 "mov    lr, r0                  \n\t"
300                 "ldmia  sp!, {r0 - r11}         \n\t"
301                 "mov    pc, lr                  \n\t"
302                 : : : "memory");
303 }
304
305 /* Called from kretprobe_trampoline */
306 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
307 {
308         struct kretprobe_instance *ri = NULL;
309         struct hlist_head *head, empty_rp;
310         struct hlist_node *node, *tmp;
311         unsigned long flags, orig_ret_address = 0;
312         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
313
314         INIT_HLIST_HEAD(&empty_rp);
315         kretprobe_hash_lock(current, &head, &flags);
316
317         /*
318          * It is possible to have multiple instances associated with a given
319          * task either because multiple functions in the call path have
320          * a return probe installed on them, and/or more than one return
321          * probe was registered for a target function.
322          *
323          * We can handle this because:
324          *     - instances are always inserted at the head of the list
325          *     - when multiple return probes are registered for the same
326          *       function, the first instance's ret_addr will point to the
327          *       real return address, and all the rest will point to
328          *       kretprobe_trampoline
329          */
330         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
331                 if (ri->task != current)
332                         /* another task is sharing our hash bucket */
333                         continue;
334
335                 if (ri->rp && ri->rp->handler) {
336                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
337                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
338                         ri->rp->handler(ri, regs);
339                         __get_cpu_var(current_kprobe) = NULL;
340                 }
341
342                 orig_ret_address = (unsigned long)ri->ret_addr;
343                 recycle_rp_inst(ri, &empty_rp);
344
345                 if (orig_ret_address != trampoline_address)
346                         /*
347                          * This is the real return address. Any other
348                          * instances associated with this task are for
349                          * other calls deeper on the call stack
350                          */
351                         break;
352         }
353
354         kretprobe_assert(ri, orig_ret_address, trampoline_address);
355         kretprobe_hash_unlock(current, &flags);
356
357         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
358                 hlist_del(&ri->hlist);
359                 kfree(ri);
360         }
361
362         return (void *)orig_ret_address;
363 }
364
365 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
366                                       struct pt_regs *regs)
367 {
368         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
369
370         /* Replace the return addr with trampoline addr. */
371         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
372 }
373
374 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
375 {
376         struct jprobe *jp = container_of(p, struct jprobe, kp);
377         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
378         long sp_addr = regs->ARM_sp;
379
380         kcb->jprobe_saved_regs = *regs;
381         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
382         regs->ARM_pc = (long)jp->entry;
383         regs->ARM_cpsr |= PSR_I_BIT;
384         preempt_disable();
385         return 1;
386 }
387
388 void __kprobes jprobe_return(void)
389 {
390         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
391
392         __asm__ __volatile__ (
393                 /*
394                  * Setup an empty pt_regs. Fill SP and PC fields as
395                  * they're needed by longjmp_break_handler.
396                  */
397                 "sub    sp, %0, %1              \n\t"
398                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
399                 "str    %0, [sp, %2]            \n\t"
400                 "str    r0, [sp, %3]            \n\t"
401                 "mov    r0, sp                  \n\t"
402                 "bl     kprobe_handler          \n\t"
403
404                 /*
405                  * Return to the context saved by setjmp_pre_handler
406                  * and restored by longjmp_break_handler.
407                  */
408                 "ldr    r0, [sp, %4]            \n\t"
409                 "msr    cpsr_cxsf, r0           \n\t"
410                 "ldmia  sp, {r0 - pc}           \n\t"
411                 :
412                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
413                   "I" (sizeof(struct pt_regs)),
414                   "J" (offsetof(struct pt_regs, ARM_sp)),
415                   "J" (offsetof(struct pt_regs, ARM_pc)),
416                   "J" (offsetof(struct pt_regs, ARM_cpsr))
417                 : "memory", "cc");
418 }
419
420 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
421 {
422         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
423         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
424         long orig_sp = regs->ARM_sp;
425         struct jprobe *jp = container_of(p, struct jprobe, kp);
426
427         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
428                 if (orig_sp != stack_addr) {
429                         struct pt_regs *saved_regs =
430                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
431                         printk("current sp %lx does not match saved sp %lx\n",
432                                orig_sp, stack_addr);
433                         printk("Saved registers for jprobe %p\n", jp);
434                         show_regs(saved_regs);
435                         printk("Current registers\n");
436                         show_regs(regs);
437                         BUG();
438                 }
439                 *regs = kcb->jprobe_saved_regs;
440                 memcpy((void *)stack_addr, kcb->jprobes_stack,
441                        MIN_STACK_SIZE(stack_addr));
442                 preempt_enable_no_resched();
443                 return 1;
444         }
445         return 0;
446 }
447
448 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
449 {
450         return 0;
451 }
452
453 static struct undef_hook kprobes_break_hook = {
454         .instr_mask     = 0xffffffff,
455         .instr_val      = KPROBE_BREAKPOINT_INSTRUCTION,
456         .cpsr_mask      = MODE_MASK,
457         .cpsr_val       = SVC_MODE,
458         .fn             = kprobe_trap_handler,
459 };
460
461 int __init arch_init_kprobes()
462 {
463         arm_kprobe_decode_init();
464         register_undef_hook(&kprobes_break_hook);
465         return 0;
466 }