Merge branch 'sh-latest' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[pandora-kernel.git] / arch / arm / kernel / kprobes.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
30
31 #include "kprobes.h"
32
33 #define MIN_STACK_SIZE(addr)                            \
34         min((unsigned long)MAX_STACK_SIZE,              \
35             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
36
37 #define flush_insns(addr, size)                         \
38         flush_icache_range((unsigned long)(addr),       \
39                            (unsigned long)(addr) +      \
40                            (size))
41
42 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
43 #define JPROBE_MAGIC_ADDR               0xffffffff
44
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47
48
49 int __kprobes arch_prepare_kprobe(struct kprobe *p)
50 {
51         kprobe_opcode_t insn;
52         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
53         unsigned long addr = (unsigned long)p->addr;
54         bool thumb;
55         kprobe_decode_insn_t *decode_insn;
56         int is;
57
58         if (in_exception_text(addr))
59                 return -EINVAL;
60
61 #ifdef CONFIG_THUMB2_KERNEL
62         thumb = true;
63         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
64         insn = ((u16 *)addr)[0];
65         if (is_wide_instruction(insn)) {
66                 insn <<= 16;
67                 insn |= ((u16 *)addr)[1];
68                 decode_insn = thumb32_kprobe_decode_insn;
69         } else
70                 decode_insn = thumb16_kprobe_decode_insn;
71 #else /* !CONFIG_THUMB2_KERNEL */
72         thumb = false;
73         if (addr & 0x3)
74                 return -EINVAL;
75         insn = *p->addr;
76         decode_insn = arm_kprobe_decode_insn;
77 #endif
78
79         p->opcode = insn;
80         p->ainsn.insn = tmp_insn;
81
82         switch ((*decode_insn)(insn, &p->ainsn)) {
83         case INSN_REJECTED:     /* not supported */
84                 return -EINVAL;
85
86         case INSN_GOOD:         /* instruction uses slot */
87                 p->ainsn.insn = get_insn_slot();
88                 if (!p->ainsn.insn)
89                         return -ENOMEM;
90                 for (is = 0; is < MAX_INSN_SIZE; ++is)
91                         p->ainsn.insn[is] = tmp_insn[is];
92                 flush_insns(p->ainsn.insn,
93                                 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
94                 p->ainsn.insn_fn = (kprobe_insn_fn_t *)
95                                         ((uintptr_t)p->ainsn.insn | thumb);
96                 break;
97
98         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
99                 p->ainsn.insn = NULL;
100                 break;
101         }
102
103         return 0;
104 }
105
106 #ifdef CONFIG_THUMB2_KERNEL
107
108 /*
109  * For a 32-bit Thumb breakpoint spanning two memory words we need to take
110  * special precautions to insert the breakpoint atomically, especially on SMP
111  * systems. This is achieved by calling this arming function using stop_machine.
112  */
113 static int __kprobes set_t32_breakpoint(void *addr)
114 {
115         ((u16 *)addr)[0] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION >> 16;
116         ((u16 *)addr)[1] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION & 0xffff;
117         flush_insns(addr, 2*sizeof(u16));
118         return 0;
119 }
120
121 void __kprobes arch_arm_kprobe(struct kprobe *p)
122 {
123         uintptr_t addr = (uintptr_t)p->addr & ~1; /* Remove any Thumb flag */
124
125         if (!is_wide_instruction(p->opcode)) {
126                 *(u16 *)addr = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
127                 flush_insns(addr, sizeof(u16));
128         } else if (addr & 2) {
129                 /* A 32-bit instruction spanning two words needs special care */
130                 stop_machine(set_t32_breakpoint, (void *)addr, &cpu_online_map);
131         } else {
132                 /* Word aligned 32-bit instruction can be written atomically */
133                 u32 bkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
134 #ifndef __ARMEB__ /* Swap halfwords for little-endian */
135                 bkp = (bkp >> 16) | (bkp << 16);
136 #endif
137                 *(u32 *)addr = bkp;
138                 flush_insns(addr, sizeof(u32));
139         }
140 }
141
142 #else /* !CONFIG_THUMB2_KERNEL */
143
144 void __kprobes arch_arm_kprobe(struct kprobe *p)
145 {
146         kprobe_opcode_t insn = p->opcode;
147         kprobe_opcode_t brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
148         if (insn >= 0xe0000000)
149                 brkp |= 0xe0000000;  /* Unconditional instruction */
150         else
151                 brkp |= insn & 0xf0000000;  /* Copy condition from insn */
152         *p->addr = brkp;
153         flush_insns(p->addr, sizeof(p->addr[0]));
154 }
155
156 #endif /* !CONFIG_THUMB2_KERNEL */
157
158 /*
159  * The actual disarming is done here on each CPU and synchronized using
160  * stop_machine. This synchronization is necessary on SMP to avoid removing
161  * a probe between the moment the 'Undefined Instruction' exception is raised
162  * and the moment the exception handler reads the faulting instruction from
163  * memory. It is also needed to atomically set the two half-words of a 32-bit
164  * Thumb breakpoint.
165  */
166 int __kprobes __arch_disarm_kprobe(void *p)
167 {
168         struct kprobe *kp = p;
169 #ifdef CONFIG_THUMB2_KERNEL
170         u16 *addr = (u16 *)((uintptr_t)kp->addr & ~1);
171         kprobe_opcode_t insn = kp->opcode;
172         unsigned int len;
173
174         if (is_wide_instruction(insn)) {
175                 ((u16 *)addr)[0] = insn>>16;
176                 ((u16 *)addr)[1] = insn;
177                 len = 2*sizeof(u16);
178         } else {
179                 ((u16 *)addr)[0] = insn;
180                 len = sizeof(u16);
181         }
182         flush_insns(addr, len);
183
184 #else /* !CONFIG_THUMB2_KERNEL */
185         *kp->addr = kp->opcode;
186         flush_insns(kp->addr, sizeof(kp->addr[0]));
187 #endif
188         return 0;
189 }
190
191 void __kprobes arch_disarm_kprobe(struct kprobe *p)
192 {
193         stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
194 }
195
196 void __kprobes arch_remove_kprobe(struct kprobe *p)
197 {
198         if (p->ainsn.insn) {
199                 free_insn_slot(p->ainsn.insn, 0);
200                 p->ainsn.insn = NULL;
201         }
202 }
203
204 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
205 {
206         kcb->prev_kprobe.kp = kprobe_running();
207         kcb->prev_kprobe.status = kcb->kprobe_status;
208 }
209
210 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
211 {
212         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
213         kcb->kprobe_status = kcb->prev_kprobe.status;
214 }
215
216 static void __kprobes set_current_kprobe(struct kprobe *p)
217 {
218         __get_cpu_var(current_kprobe) = p;
219 }
220
221 static void __kprobes
222 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
223 {
224 #ifdef CONFIG_THUMB2_KERNEL
225         regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
226         if (is_wide_instruction(p->opcode))
227                 regs->ARM_pc += 4;
228         else
229                 regs->ARM_pc += 2;
230 #else
231         regs->ARM_pc += 4;
232 #endif
233 }
234
235 static inline void __kprobes
236 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
237 {
238         p->ainsn.insn_singlestep(p, regs);
239 }
240
241 /*
242  * Called with IRQs disabled. IRQs must remain disabled from that point
243  * all the way until processing this kprobe is complete.  The current
244  * kprobes implementation cannot process more than one nested level of
245  * kprobe, and that level is reserved for user kprobe handlers, so we can't
246  * risk encountering a new kprobe in an interrupt handler.
247  */
248 void __kprobes kprobe_handler(struct pt_regs *regs)
249 {
250         struct kprobe *p, *cur;
251         struct kprobe_ctlblk *kcb;
252
253         kcb = get_kprobe_ctlblk();
254         cur = kprobe_running();
255
256 #ifdef CONFIG_THUMB2_KERNEL
257         /*
258          * First look for a probe which was registered using an address with
259          * bit 0 set, this is the usual situation for pointers to Thumb code.
260          * If not found, fallback to looking for one with bit 0 clear.
261          */
262         p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
263         if (!p)
264                 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
265
266 #else /* ! CONFIG_THUMB2_KERNEL */
267         p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
268 #endif
269
270         if (p) {
271                 if (cur) {
272                         /* Kprobe is pending, so we're recursing. */
273                         switch (kcb->kprobe_status) {
274                         case KPROBE_HIT_ACTIVE:
275                         case KPROBE_HIT_SSDONE:
276                                 /* A pre- or post-handler probe got us here. */
277                                 kprobes_inc_nmissed_count(p);
278                                 save_previous_kprobe(kcb);
279                                 set_current_kprobe(p);
280                                 kcb->kprobe_status = KPROBE_REENTER;
281                                 singlestep(p, regs, kcb);
282                                 restore_previous_kprobe(kcb);
283                                 break;
284                         default:
285                                 /* impossible cases */
286                                 BUG();
287                         }
288                 } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
289                         /* Probe hit and conditional execution check ok. */
290                         set_current_kprobe(p);
291                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
292
293                         /*
294                          * If we have no pre-handler or it returned 0, we
295                          * continue with normal processing.  If we have a
296                          * pre-handler and it returned non-zero, it prepped
297                          * for calling the break_handler below on re-entry,
298                          * so get out doing nothing more here.
299                          */
300                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
301                                 kcb->kprobe_status = KPROBE_HIT_SS;
302                                 singlestep(p, regs, kcb);
303                                 if (p->post_handler) {
304                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
305                                         p->post_handler(p, regs, 0);
306                                 }
307                                 reset_current_kprobe();
308                         }
309                 } else {
310                         /*
311                          * Probe hit but conditional execution check failed,
312                          * so just skip the instruction and continue as if
313                          * nothing had happened.
314                          */
315                         singlestep_skip(p, regs);
316                 }
317         } else if (cur) {
318                 /* We probably hit a jprobe.  Call its break handler. */
319                 if (cur->break_handler && cur->break_handler(cur, regs)) {
320                         kcb->kprobe_status = KPROBE_HIT_SS;
321                         singlestep(cur, regs, kcb);
322                         if (cur->post_handler) {
323                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
324                                 cur->post_handler(cur, regs, 0);
325                         }
326                 }
327                 reset_current_kprobe();
328         } else {
329                 /*
330                  * The probe was removed and a race is in progress.
331                  * There is nothing we can do about it.  Let's restart
332                  * the instruction.  By the time we can restart, the
333                  * real instruction will be there.
334                  */
335         }
336 }
337
338 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
339 {
340         unsigned long flags;
341         local_irq_save(flags);
342         kprobe_handler(regs);
343         local_irq_restore(flags);
344         return 0;
345 }
346
347 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
348 {
349         struct kprobe *cur = kprobe_running();
350         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
351
352         switch (kcb->kprobe_status) {
353         case KPROBE_HIT_SS:
354         case KPROBE_REENTER:
355                 /*
356                  * We are here because the instruction being single
357                  * stepped caused a page fault. We reset the current
358                  * kprobe and the PC to point back to the probe address
359                  * and allow the page fault handler to continue as a
360                  * normal page fault.
361                  */
362                 regs->ARM_pc = (long)cur->addr;
363                 if (kcb->kprobe_status == KPROBE_REENTER) {
364                         restore_previous_kprobe(kcb);
365                 } else {
366                         reset_current_kprobe();
367                 }
368                 break;
369
370         case KPROBE_HIT_ACTIVE:
371         case KPROBE_HIT_SSDONE:
372                 /*
373                  * We increment the nmissed count for accounting,
374                  * we can also use npre/npostfault count for accounting
375                  * these specific fault cases.
376                  */
377                 kprobes_inc_nmissed_count(cur);
378
379                 /*
380                  * We come here because instructions in the pre/post
381                  * handler caused the page_fault, this could happen
382                  * if handler tries to access user space by
383                  * copy_from_user(), get_user() etc. Let the
384                  * user-specified handler try to fix it.
385                  */
386                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
387                         return 1;
388                 break;
389
390         default:
391                 break;
392         }
393
394         return 0;
395 }
396
397 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
398                                        unsigned long val, void *data)
399 {
400         /*
401          * notify_die() is currently never called on ARM,
402          * so this callback is currently empty.
403          */
404         return NOTIFY_DONE;
405 }
406
407 /*
408  * When a retprobed function returns, trampoline_handler() is called,
409  * calling the kretprobe's handler. We construct a struct pt_regs to
410  * give a view of registers r0-r11 to the user return-handler.  This is
411  * not a complete pt_regs structure, but that should be plenty sufficient
412  * for kretprobe handlers which should normally be interested in r0 only
413  * anyway.
414  */
415 void __naked __kprobes kretprobe_trampoline(void)
416 {
417         __asm__ __volatile__ (
418                 "stmdb  sp!, {r0 - r11}         \n\t"
419                 "mov    r0, sp                  \n\t"
420                 "bl     trampoline_handler      \n\t"
421                 "mov    lr, r0                  \n\t"
422                 "ldmia  sp!, {r0 - r11}         \n\t"
423 #ifdef CONFIG_THUMB2_KERNEL
424                 "bx     lr                      \n\t"
425 #else
426                 "mov    pc, lr                  \n\t"
427 #endif
428                 : : : "memory");
429 }
430
431 /* Called from kretprobe_trampoline */
432 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
433 {
434         struct kretprobe_instance *ri = NULL;
435         struct hlist_head *head, empty_rp;
436         struct hlist_node *node, *tmp;
437         unsigned long flags, orig_ret_address = 0;
438         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
439
440         INIT_HLIST_HEAD(&empty_rp);
441         kretprobe_hash_lock(current, &head, &flags);
442
443         /*
444          * It is possible to have multiple instances associated with a given
445          * task either because multiple functions in the call path have
446          * a return probe installed on them, and/or more than one return
447          * probe was registered for a target function.
448          *
449          * We can handle this because:
450          *     - instances are always inserted at the head of the list
451          *     - when multiple return probes are registered for the same
452          *       function, the first instance's ret_addr will point to the
453          *       real return address, and all the rest will point to
454          *       kretprobe_trampoline
455          */
456         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
457                 if (ri->task != current)
458                         /* another task is sharing our hash bucket */
459                         continue;
460
461                 if (ri->rp && ri->rp->handler) {
462                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
463                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
464                         ri->rp->handler(ri, regs);
465                         __get_cpu_var(current_kprobe) = NULL;
466                 }
467
468                 orig_ret_address = (unsigned long)ri->ret_addr;
469                 recycle_rp_inst(ri, &empty_rp);
470
471                 if (orig_ret_address != trampoline_address)
472                         /*
473                          * This is the real return address. Any other
474                          * instances associated with this task are for
475                          * other calls deeper on the call stack
476                          */
477                         break;
478         }
479
480         kretprobe_assert(ri, orig_ret_address, trampoline_address);
481         kretprobe_hash_unlock(current, &flags);
482
483         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
484                 hlist_del(&ri->hlist);
485                 kfree(ri);
486         }
487
488         return (void *)orig_ret_address;
489 }
490
491 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
492                                       struct pt_regs *regs)
493 {
494         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
495
496         /* Replace the return addr with trampoline addr. */
497         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
498 }
499
500 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
501 {
502         struct jprobe *jp = container_of(p, struct jprobe, kp);
503         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
504         long sp_addr = regs->ARM_sp;
505         long cpsr;
506
507         kcb->jprobe_saved_regs = *regs;
508         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
509         regs->ARM_pc = (long)jp->entry;
510
511         cpsr = regs->ARM_cpsr | PSR_I_BIT;
512 #ifdef CONFIG_THUMB2_KERNEL
513         /* Set correct Thumb state in cpsr */
514         if (regs->ARM_pc & 1)
515                 cpsr |= PSR_T_BIT;
516         else
517                 cpsr &= ~PSR_T_BIT;
518 #endif
519         regs->ARM_cpsr = cpsr;
520
521         preempt_disable();
522         return 1;
523 }
524
525 void __kprobes jprobe_return(void)
526 {
527         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
528
529         __asm__ __volatile__ (
530                 /*
531                  * Setup an empty pt_regs. Fill SP and PC fields as
532                  * they're needed by longjmp_break_handler.
533                  *
534                  * We allocate some slack between the original SP and start of
535                  * our fabricated regs. To be precise we want to have worst case
536                  * covered which is STMFD with all 16 regs so we allocate 2 *
537                  * sizeof(struct_pt_regs)).
538                  *
539                  * This is to prevent any simulated instruction from writing
540                  * over the regs when they are accessing the stack.
541                  */
542 #ifdef CONFIG_THUMB2_KERNEL
543                 "sub    r0, %0, %1              \n\t"
544                 "mov    sp, r0                  \n\t"
545 #else
546                 "sub    sp, %0, %1              \n\t"
547 #endif
548                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
549                 "str    %0, [sp, %2]            \n\t"
550                 "str    r0, [sp, %3]            \n\t"
551                 "mov    r0, sp                  \n\t"
552                 "bl     kprobe_handler          \n\t"
553
554                 /*
555                  * Return to the context saved by setjmp_pre_handler
556                  * and restored by longjmp_break_handler.
557                  */
558 #ifdef CONFIG_THUMB2_KERNEL
559                 "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
560                 "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
561                 "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
562                 "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
563                                                       /* rfe context */
564                 "ldmia  sp, {r0 - r12}          \n\t"
565                 "mov    sp, lr                  \n\t"
566                 "ldr    lr, [sp], #4            \n\t"
567                 "rfeia  sp!                     \n\t"
568 #else
569                 "ldr    r0, [sp, %4]            \n\t"
570                 "msr    cpsr_cxsf, r0           \n\t"
571                 "ldmia  sp, {r0 - pc}           \n\t"
572 #endif
573                 :
574                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
575                   "I" (sizeof(struct pt_regs) * 2),
576                   "J" (offsetof(struct pt_regs, ARM_sp)),
577                   "J" (offsetof(struct pt_regs, ARM_pc)),
578                   "J" (offsetof(struct pt_regs, ARM_cpsr)),
579                   "J" (offsetof(struct pt_regs, ARM_lr))
580                 : "memory", "cc");
581 }
582
583 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
584 {
585         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
587         long orig_sp = regs->ARM_sp;
588         struct jprobe *jp = container_of(p, struct jprobe, kp);
589
590         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
591                 if (orig_sp != stack_addr) {
592                         struct pt_regs *saved_regs =
593                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
594                         printk("current sp %lx does not match saved sp %lx\n",
595                                orig_sp, stack_addr);
596                         printk("Saved registers for jprobe %p\n", jp);
597                         show_regs(saved_regs);
598                         printk("Current registers\n");
599                         show_regs(regs);
600                         BUG();
601                 }
602                 *regs = kcb->jprobe_saved_regs;
603                 memcpy((void *)stack_addr, kcb->jprobes_stack,
604                        MIN_STACK_SIZE(stack_addr));
605                 preempt_enable_no_resched();
606                 return 1;
607         }
608         return 0;
609 }
610
611 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
612 {
613         return 0;
614 }
615
616 #ifdef CONFIG_THUMB2_KERNEL
617
618 static struct undef_hook kprobes_thumb16_break_hook = {
619         .instr_mask     = 0xffff,
620         .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
621         .cpsr_mask      = MODE_MASK,
622         .cpsr_val       = SVC_MODE,
623         .fn             = kprobe_trap_handler,
624 };
625
626 static struct undef_hook kprobes_thumb32_break_hook = {
627         .instr_mask     = 0xffffffff,
628         .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
629         .cpsr_mask      = MODE_MASK,
630         .cpsr_val       = SVC_MODE,
631         .fn             = kprobe_trap_handler,
632 };
633
634 #else  /* !CONFIG_THUMB2_KERNEL */
635
636 static struct undef_hook kprobes_arm_break_hook = {
637         .instr_mask     = 0x0fffffff,
638         .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
639         .cpsr_mask      = MODE_MASK,
640         .cpsr_val       = SVC_MODE,
641         .fn             = kprobe_trap_handler,
642 };
643
644 #endif /* !CONFIG_THUMB2_KERNEL */
645
646 int __init arch_init_kprobes()
647 {
648         arm_kprobe_decode_init();
649 #ifdef CONFIG_THUMB2_KERNEL
650         register_undef_hook(&kprobes_thumb16_break_hook);
651         register_undef_hook(&kprobes_thumb32_break_hook);
652 #else
653         register_undef_hook(&kprobes_arm_break_hook);
654 #endif
655         return 0;
656 }