Merge branch 'drm-nouveau-next' of git://git.freedesktop.org/git/nouveau/linux-2...
[pandora-kernel.git] / arch / arm / include / asm / pgtable.h
1 /*
2  *  arch/arm/include/asm/pgtable.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12
13 #include <linux/const.h>
14 #include <asm-generic/4level-fixup.h>
15 #include <asm/proc-fns.h>
16
17 #ifndef CONFIG_MMU
18
19 #include "pgtable-nommu.h"
20
21 #else
22
23 #include <asm/memory.h>
24 #include <mach/vmalloc.h>
25 #include <asm/pgtable-hwdef.h>
26
27 /*
28  * Just any arbitrary offset to the start of the vmalloc VM area: the
29  * current 8MB value just means that there will be a 8MB "hole" after the
30  * physical memory until the kernel virtual memory starts.  That means that
31  * any out-of-bounds memory accesses will hopefully be caught.
32  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
33  * area for the same reason. ;)
34  *
35  * Note that platforms may override VMALLOC_START, but they must provide
36  * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
37  * which may not overlap IO space.
38  */
39 #ifndef VMALLOC_START
40 #define VMALLOC_OFFSET          (8*1024*1024)
41 #define VMALLOC_START           (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
42 #endif
43
44 /*
45  * Hardware-wise, we have a two level page table structure, where the first
46  * level has 4096 entries, and the second level has 256 entries.  Each entry
47  * is one 32-bit word.  Most of the bits in the second level entry are used
48  * by hardware, and there aren't any "accessed" and "dirty" bits.
49  *
50  * Linux on the other hand has a three level page table structure, which can
51  * be wrapped to fit a two level page table structure easily - using the PGD
52  * and PTE only.  However, Linux also expects one "PTE" table per page, and
53  * at least a "dirty" bit.
54  *
55  * Therefore, we tweak the implementation slightly - we tell Linux that we
56  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
57  * hardware pointers to the second level.)  The second level contains two
58  * hardware PTE tables arranged contiguously, preceded by Linux versions
59  * which contain the state information Linux needs.  We, therefore, end up
60  * with 512 entries in the "PTE" level.
61  *
62  * This leads to the page tables having the following layout:
63  *
64  *    pgd             pte
65  * |        |
66  * +--------+
67  * |        |       +------------+ +0
68  * +- - - - +       | Linux pt 0 |
69  * |        |       +------------+ +1024
70  * +--------+ +0    | Linux pt 1 |
71  * |        |-----> +------------+ +2048
72  * +- - - - + +4    |  h/w pt 0  |
73  * |        |-----> +------------+ +3072
74  * +--------+ +8    |  h/w pt 1  |
75  * |        |       +------------+ +4096
76  *
77  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
78  * PTE_xxx for definitions of bits appearing in the "h/w pt".
79  *
80  * PMD_xxx definitions refer to bits in the first level page table.
81  *
82  * The "dirty" bit is emulated by only granting hardware write permission
83  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
84  * means that a write to a clean page will cause a permission fault, and
85  * the Linux MM layer will mark the page dirty via handle_pte_fault().
86  * For the hardware to notice the permission change, the TLB entry must
87  * be flushed, and ptep_set_access_flags() does that for us.
88  *
89  * The "accessed" or "young" bit is emulated by a similar method; we only
90  * allow accesses to the page if the "young" bit is set.  Accesses to the
91  * page will cause a fault, and handle_pte_fault() will set the young bit
92  * for us as long as the page is marked present in the corresponding Linux
93  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
94  * up to date.
95  *
96  * However, when the "young" bit is cleared, we deny access to the page
97  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
98  * for us in this case, which means the TLB will retain the transation
99  * until either the TLB entry is evicted under pressure, or a context
100  * switch which changes the user space mapping occurs.
101  */
102 #define PTRS_PER_PTE            512
103 #define PTRS_PER_PMD            1
104 #define PTRS_PER_PGD            2048
105
106 #define PTE_HWTABLE_PTRS        (PTRS_PER_PTE)
107 #define PTE_HWTABLE_OFF         (PTE_HWTABLE_PTRS * sizeof(pte_t))
108 #define PTE_HWTABLE_SIZE        (PTRS_PER_PTE * sizeof(u32))
109
110 /*
111  * PMD_SHIFT determines the size of the area a second-level page table can map
112  * PGDIR_SHIFT determines what a third-level page table entry can map
113  */
114 #define PMD_SHIFT               21
115 #define PGDIR_SHIFT             21
116
117 #define LIBRARY_TEXT_START      0x0c000000
118
119 #ifndef __ASSEMBLY__
120 extern void __pte_error(const char *file, int line, pte_t);
121 extern void __pmd_error(const char *file, int line, pmd_t);
122 extern void __pgd_error(const char *file, int line, pgd_t);
123
124 #define pte_ERROR(pte)          __pte_error(__FILE__, __LINE__, pte)
125 #define pmd_ERROR(pmd)          __pmd_error(__FILE__, __LINE__, pmd)
126 #define pgd_ERROR(pgd)          __pgd_error(__FILE__, __LINE__, pgd)
127 #endif /* !__ASSEMBLY__ */
128
129 #define PMD_SIZE                (1UL << PMD_SHIFT)
130 #define PMD_MASK                (~(PMD_SIZE-1))
131 #define PGDIR_SIZE              (1UL << PGDIR_SHIFT)
132 #define PGDIR_MASK              (~(PGDIR_SIZE-1))
133
134 /*
135  * This is the lowest virtual address we can permit any user space
136  * mapping to be mapped at.  This is particularly important for
137  * non-high vector CPUs.
138  */
139 #define FIRST_USER_ADDRESS      PAGE_SIZE
140
141 #define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
142
143 /*
144  * section address mask and size definitions.
145  */
146 #define SECTION_SHIFT           20
147 #define SECTION_SIZE            (1UL << SECTION_SHIFT)
148 #define SECTION_MASK            (~(SECTION_SIZE-1))
149
150 /*
151  * ARMv6 supersection address mask and size definitions.
152  */
153 #define SUPERSECTION_SHIFT      24
154 #define SUPERSECTION_SIZE       (1UL << SUPERSECTION_SHIFT)
155 #define SUPERSECTION_MASK       (~(SUPERSECTION_SIZE-1))
156
157 /*
158  * "Linux" PTE definitions.
159  *
160  * We keep two sets of PTEs - the hardware and the linux version.
161  * This allows greater flexibility in the way we map the Linux bits
162  * onto the hardware tables, and allows us to have YOUNG and DIRTY
163  * bits.
164  *
165  * The PTE table pointer refers to the hardware entries; the "Linux"
166  * entries are stored 1024 bytes below.
167  */
168 #define L_PTE_PRESENT           (_AT(pteval_t, 1) << 0)
169 #define L_PTE_YOUNG             (_AT(pteval_t, 1) << 1)
170 #define L_PTE_FILE              (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
171 #define L_PTE_DIRTY             (_AT(pteval_t, 1) << 6)
172 #define L_PTE_RDONLY            (_AT(pteval_t, 1) << 7)
173 #define L_PTE_USER              (_AT(pteval_t, 1) << 8)
174 #define L_PTE_XN                (_AT(pteval_t, 1) << 9)
175 #define L_PTE_SHARED            (_AT(pteval_t, 1) << 10)        /* shared(v6), coherent(xsc3) */
176
177 /*
178  * These are the memory types, defined to be compatible with
179  * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
180  */
181 #define L_PTE_MT_UNCACHED       (_AT(pteval_t, 0x00) << 2)      /* 0000 */
182 #define L_PTE_MT_BUFFERABLE     (_AT(pteval_t, 0x01) << 2)      /* 0001 */
183 #define L_PTE_MT_WRITETHROUGH   (_AT(pteval_t, 0x02) << 2)      /* 0010 */
184 #define L_PTE_MT_WRITEBACK      (_AT(pteval_t, 0x03) << 2)      /* 0011 */
185 #define L_PTE_MT_MINICACHE      (_AT(pteval_t, 0x06) << 2)      /* 0110 (sa1100, xscale) */
186 #define L_PTE_MT_WRITEALLOC     (_AT(pteval_t, 0x07) << 2)      /* 0111 */
187 #define L_PTE_MT_DEV_SHARED     (_AT(pteval_t, 0x04) << 2)      /* 0100 */
188 #define L_PTE_MT_DEV_NONSHARED  (_AT(pteval_t, 0x0c) << 2)      /* 1100 */
189 #define L_PTE_MT_DEV_WC         (_AT(pteval_t, 0x09) << 2)      /* 1001 */
190 #define L_PTE_MT_DEV_CACHED     (_AT(pteval_t, 0x0b) << 2)      /* 1011 */
191 #define L_PTE_MT_MASK           (_AT(pteval_t, 0x0f) << 2)
192
193 #ifndef __ASSEMBLY__
194
195 /*
196  * The pgprot_* and protection_map entries will be fixed up in runtime
197  * to include the cachable and bufferable bits based on memory policy,
198  * as well as any architecture dependent bits like global/ASID and SMP
199  * shared mapping bits.
200  */
201 #define _L_PTE_DEFAULT  L_PTE_PRESENT | L_PTE_YOUNG
202
203 extern pgprot_t         pgprot_user;
204 extern pgprot_t         pgprot_kernel;
205
206 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
207
208 #define PAGE_NONE               _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
209 #define PAGE_SHARED             _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
210 #define PAGE_SHARED_EXEC        _MOD_PROT(pgprot_user, L_PTE_USER)
211 #define PAGE_COPY               _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
212 #define PAGE_COPY_EXEC          _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
213 #define PAGE_READONLY           _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
214 #define PAGE_READONLY_EXEC      _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
215 #define PAGE_KERNEL             _MOD_PROT(pgprot_kernel, L_PTE_XN)
216 #define PAGE_KERNEL_EXEC        pgprot_kernel
217
218 #define __PAGE_NONE             __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
219 #define __PAGE_SHARED           __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
220 #define __PAGE_SHARED_EXEC      __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
221 #define __PAGE_COPY             __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
222 #define __PAGE_COPY_EXEC        __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
223 #define __PAGE_READONLY         __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
224 #define __PAGE_READONLY_EXEC    __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
225
226 #define __pgprot_modify(prot,mask,bits)         \
227         __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
228
229 #define pgprot_noncached(prot) \
230         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
231
232 #define pgprot_writecombine(prot) \
233         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
234
235 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
236 #define pgprot_dmacoherent(prot) \
237         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
238 #define __HAVE_PHYS_MEM_ACCESS_PROT
239 struct file;
240 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
241                                      unsigned long size, pgprot_t vma_prot);
242 #else
243 #define pgprot_dmacoherent(prot) \
244         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
245 #endif
246
247 #endif /* __ASSEMBLY__ */
248
249 /*
250  * The table below defines the page protection levels that we insert into our
251  * Linux page table version.  These get translated into the best that the
252  * architecture can perform.  Note that on most ARM hardware:
253  *  1) We cannot do execute protection
254  *  2) If we could do execute protection, then read is implied
255  *  3) write implies read permissions
256  */
257 #define __P000  __PAGE_NONE
258 #define __P001  __PAGE_READONLY
259 #define __P010  __PAGE_COPY
260 #define __P011  __PAGE_COPY
261 #define __P100  __PAGE_READONLY_EXEC
262 #define __P101  __PAGE_READONLY_EXEC
263 #define __P110  __PAGE_COPY_EXEC
264 #define __P111  __PAGE_COPY_EXEC
265
266 #define __S000  __PAGE_NONE
267 #define __S001  __PAGE_READONLY
268 #define __S010  __PAGE_SHARED
269 #define __S011  __PAGE_SHARED
270 #define __S100  __PAGE_READONLY_EXEC
271 #define __S101  __PAGE_READONLY_EXEC
272 #define __S110  __PAGE_SHARED_EXEC
273 #define __S111  __PAGE_SHARED_EXEC
274
275 #ifndef __ASSEMBLY__
276 /*
277  * ZERO_PAGE is a global shared page that is always zero: used
278  * for zero-mapped memory areas etc..
279  */
280 extern struct page *empty_zero_page;
281 #define ZERO_PAGE(vaddr)        (empty_zero_page)
282
283
284 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
285
286 /* to find an entry in a page-table-directory */
287 #define pgd_index(addr)         ((addr) >> PGDIR_SHIFT)
288
289 #define pgd_offset(mm, addr)    ((mm)->pgd + pgd_index(addr))
290
291 /* to find an entry in a kernel page-table-directory */
292 #define pgd_offset_k(addr)      pgd_offset(&init_mm, addr)
293
294 /*
295  * The "pgd_xxx()" functions here are trivial for a folded two-level
296  * setup: the pgd is never bad, and a pmd always exists (as it's folded
297  * into the pgd entry)
298  */
299 #define pgd_none(pgd)           (0)
300 #define pgd_bad(pgd)            (0)
301 #define pgd_present(pgd)        (1)
302 #define pgd_clear(pgdp)         do { } while (0)
303 #define set_pgd(pgd,pgdp)       do { } while (0)
304
305
306 /* Find an entry in the second-level page table.. */
307 #define pmd_offset(dir, addr)   ((pmd_t *)(dir))
308
309 #define pmd_none(pmd)           (!pmd_val(pmd))
310 #define pmd_present(pmd)        (pmd_val(pmd))
311 #define pmd_bad(pmd)            (pmd_val(pmd) & 2)
312
313 #define copy_pmd(pmdpd,pmdps)           \
314         do {                            \
315                 pmdpd[0] = pmdps[0];    \
316                 pmdpd[1] = pmdps[1];    \
317                 flush_pmd_entry(pmdpd); \
318         } while (0)
319
320 #define pmd_clear(pmdp)                 \
321         do {                            \
322                 pmdp[0] = __pmd(0);     \
323                 pmdp[1] = __pmd(0);     \
324                 clean_pmd_entry(pmdp);  \
325         } while (0)
326
327 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
328 {
329         return __va(pmd_val(pmd) & PAGE_MASK);
330 }
331
332 #define pmd_page(pmd)           pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
333
334 /* we don't need complex calculations here as the pmd is folded into the pgd */
335 #define pmd_addr_end(addr,end)  (end)
336
337
338 #ifndef CONFIG_HIGHPTE
339 #define __pte_map(pmd)          pmd_page_vaddr(*(pmd))
340 #define __pte_unmap(pte)        do { } while (0)
341 #else
342 #define __pte_map(pmd)          (pte_t *)kmap_atomic(pmd_page(*(pmd)))
343 #define __pte_unmap(pte)        kunmap_atomic(pte)
344 #endif
345
346 #define pte_index(addr)         (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
347
348 #define pte_offset_kernel(pmd,addr)     (pmd_page_vaddr(*(pmd)) + pte_index(addr))
349
350 #define pte_offset_map(pmd,addr)        (__pte_map(pmd) + pte_index(addr))
351 #define pte_unmap(pte)                  __pte_unmap(pte)
352
353 #define pte_pfn(pte)            (pte_val(pte) >> PAGE_SHIFT)
354 #define pfn_pte(pfn,prot)       __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
355
356 #define pte_page(pte)           pfn_to_page(pte_pfn(pte))
357 #define mk_pte(page,prot)       pfn_pte(page_to_pfn(page), prot)
358
359 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
360 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
361
362 #if __LINUX_ARM_ARCH__ < 6
363 static inline void __sync_icache_dcache(pte_t pteval)
364 {
365 }
366 #else
367 extern void __sync_icache_dcache(pte_t pteval);
368 #endif
369
370 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
371                               pte_t *ptep, pte_t pteval)
372 {
373         if (addr >= TASK_SIZE)
374                 set_pte_ext(ptep, pteval, 0);
375         else {
376                 __sync_icache_dcache(pteval);
377                 set_pte_ext(ptep, pteval, PTE_EXT_NG);
378         }
379 }
380
381 #define pte_none(pte)           (!pte_val(pte))
382 #define pte_present(pte)        (pte_val(pte) & L_PTE_PRESENT)
383 #define pte_write(pte)          (!(pte_val(pte) & L_PTE_RDONLY))
384 #define pte_dirty(pte)          (pte_val(pte) & L_PTE_DIRTY)
385 #define pte_young(pte)          (pte_val(pte) & L_PTE_YOUNG)
386 #define pte_exec(pte)           (!(pte_val(pte) & L_PTE_XN))
387 #define pte_special(pte)        (0)
388
389 #define pte_present_user(pte) \
390         ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
391          (L_PTE_PRESENT | L_PTE_USER))
392
393 #define PTE_BIT_FUNC(fn,op) \
394 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
395
396 PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
397 PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
398 PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
399 PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
400 PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
401 PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
402
403 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
404
405 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
406 {
407         const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
408         pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
409         return pte;
410 }
411
412 /*
413  * Encode and decode a swap entry.  Swap entries are stored in the Linux
414  * page tables as follows:
415  *
416  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
417  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
418  *   <--------------- offset --------------------> <- type --> 0 0 0
419  *
420  * This gives us up to 63 swap files and 32GB per swap file.  Note that
421  * the offset field is always non-zero.
422  */
423 #define __SWP_TYPE_SHIFT        3
424 #define __SWP_TYPE_BITS         6
425 #define __SWP_TYPE_MASK         ((1 << __SWP_TYPE_BITS) - 1)
426 #define __SWP_OFFSET_SHIFT      (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
427
428 #define __swp_type(x)           (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
429 #define __swp_offset(x)         ((x).val >> __SWP_OFFSET_SHIFT)
430 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
431
432 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
433 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
434
435 /*
436  * It is an error for the kernel to have more swap files than we can
437  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
438  * is increased beyond what we presently support.
439  */
440 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
441
442 /*
443  * Encode and decode a file entry.  File entries are stored in the Linux
444  * page tables as follows:
445  *
446  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
447  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
448  *   <----------------------- offset ------------------------> 1 0 0
449  */
450 #define pte_file(pte)           (pte_val(pte) & L_PTE_FILE)
451 #define pte_to_pgoff(x)         (pte_val(x) >> 3)
452 #define pgoff_to_pte(x)         __pte(((x) << 3) | L_PTE_FILE)
453
454 #define PTE_FILE_MAX_BITS       29
455
456 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
457 /* FIXME: this is not correct */
458 #define kern_addr_valid(addr)   (1)
459
460 #include <asm-generic/pgtable.h>
461
462 /*
463  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
464  */
465 #define HAVE_ARCH_UNMAPPED_AREA
466
467 /*
468  * remap a physical page `pfn' of size `size' with page protection `prot'
469  * into virtual address `from'
470  */
471 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
472                 remap_pfn_range(vma, from, pfn, size, prot)
473
474 #define pgtable_cache_init() do { } while (0)
475
476 void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
477 void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
478
479 #endif /* !__ASSEMBLY__ */
480
481 #endif /* CONFIG_MMU */
482
483 #endif /* _ASMARM_PGTABLE_H */