Merge branch 'upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[pandora-kernel.git] / arch / arm / common / dmabounce.c
1 /*
2  *  arch/arm/common/dmabounce.c
3  *
4  *  Special dma_{map/unmap/dma_sync}_* routines for systems that have
5  *  limited DMA windows. These functions utilize bounce buffers to
6  *  copy data to/from buffers located outside the DMA region. This
7  *  only works for systems in which DMA memory is at the bottom of
8  *  RAM, the remainder of memory is at the top and the DMA memory
9  *  can be marked as ZONE_DMA. Anything beyond that such as discontigous
10  *  DMA windows will require custom implementations that reserve memory
11  *  areas at early bootup.
12  *
13  *  Original version by Brad Parker (brad@heeltoe.com)
14  *  Re-written by Christopher Hoover <ch@murgatroid.com>
15  *  Made generic by Deepak Saxena <dsaxena@plexity.net>
16  *
17  *  Copyright (C) 2002 Hewlett Packard Company.
18  *  Copyright (C) 2004 MontaVista Software, Inc.
19  *
20  *  This program is free software; you can redistribute it and/or
21  *  modify it under the terms of the GNU General Public License
22  *  version 2 as published by the Free Software Foundation.
23  */
24
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/list.h>
32
33 #include <asm/cacheflush.h>
34
35 #undef DEBUG
36 #undef STATS
37
38 #ifdef STATS
39 #define DO_STATS(X) do { X ; } while (0)
40 #else
41 #define DO_STATS(X) do { } while (0)
42 #endif
43
44 /* ************************************************** */
45
46 struct safe_buffer {
47         struct list_head node;
48
49         /* original request */
50         void            *ptr;
51         size_t          size;
52         int             direction;
53
54         /* safe buffer info */
55         struct dmabounce_pool *pool;
56         void            *safe;
57         dma_addr_t      safe_dma_addr;
58 };
59
60 struct dmabounce_pool {
61         unsigned long   size;
62         struct dma_pool *pool;
63 #ifdef STATS
64         unsigned long   allocs;
65 #endif
66 };
67
68 struct dmabounce_device_info {
69         struct list_head node;
70
71         struct device *dev;
72         struct list_head safe_buffers;
73 #ifdef STATS
74         unsigned long total_allocs;
75         unsigned long map_op_count;
76         unsigned long bounce_count;
77 #endif
78         struct dmabounce_pool   small;
79         struct dmabounce_pool   large;
80
81         rwlock_t lock;
82 };
83
84 static LIST_HEAD(dmabounce_devs);
85
86 #ifdef STATS
87 static void print_alloc_stats(struct dmabounce_device_info *device_info)
88 {
89         printk(KERN_INFO
90                 "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
91                 device_info->dev->bus_id,
92                 device_info->small.allocs, device_info->large.allocs,
93                 device_info->total_allocs - device_info->small.allocs -
94                         device_info->large.allocs,
95                 device_info->total_allocs);
96 }
97 #endif
98
99 /* find the given device in the dmabounce device list */
100 static inline struct dmabounce_device_info *
101 find_dmabounce_dev(struct device *dev)
102 {
103         struct dmabounce_device_info *d;
104
105         list_for_each_entry(d, &dmabounce_devs, node)
106                 if (d->dev == dev)
107                         return d;
108
109         return NULL;
110 }
111
112
113 /* allocate a 'safe' buffer and keep track of it */
114 static inline struct safe_buffer *
115 alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
116                   size_t size, enum dma_data_direction dir)
117 {
118         struct safe_buffer *buf;
119         struct dmabounce_pool *pool;
120         struct device *dev = device_info->dev;
121         unsigned long flags;
122
123         dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
124                 __func__, ptr, size, dir);
125
126         if (size <= device_info->small.size) {
127                 pool = &device_info->small;
128         } else if (size <= device_info->large.size) {
129                 pool = &device_info->large;
130         } else {
131                 pool = NULL;
132         }
133
134         buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
135         if (buf == NULL) {
136                 dev_warn(dev, "%s: kmalloc failed\n", __func__);
137                 return NULL;
138         }
139
140         buf->ptr = ptr;
141         buf->size = size;
142         buf->direction = dir;
143         buf->pool = pool;
144
145         if (pool) {
146                 buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
147                                            &buf->safe_dma_addr);
148         } else {
149                 buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
150                                                GFP_ATOMIC);
151         }
152
153         if (buf->safe == NULL) {
154                 dev_warn(dev,
155                          "%s: could not alloc dma memory (size=%d)\n",
156                          __func__, size);
157                 kfree(buf);
158                 return NULL;
159         }
160
161 #ifdef STATS
162         if (pool)
163                 pool->allocs++;
164         device_info->total_allocs++;
165         if (device_info->total_allocs % 1000 == 0)
166                 print_alloc_stats(device_info);
167 #endif
168
169         write_lock_irqsave(&device_info->lock, flags);
170
171         list_add(&buf->node, &device_info->safe_buffers);
172
173         write_unlock_irqrestore(&device_info->lock, flags);
174
175         return buf;
176 }
177
178 /* determine if a buffer is from our "safe" pool */
179 static inline struct safe_buffer *
180 find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
181 {
182         struct safe_buffer *b = NULL;
183         unsigned long flags;
184
185         read_lock_irqsave(&device_info->lock, flags);
186
187         list_for_each_entry(b, &device_info->safe_buffers, node)
188                 if (b->safe_dma_addr == safe_dma_addr)
189                         break;
190
191         read_unlock_irqrestore(&device_info->lock, flags);
192         return b;
193 }
194
195 static inline void
196 free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
197 {
198         unsigned long flags;
199
200         dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
201
202         write_lock_irqsave(&device_info->lock, flags);
203
204         list_del(&buf->node);
205
206         write_unlock_irqrestore(&device_info->lock, flags);
207
208         if (buf->pool)
209                 dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
210         else
211                 dma_free_coherent(device_info->dev, buf->size, buf->safe,
212                                     buf->safe_dma_addr);
213
214         kfree(buf);
215 }
216
217 /* ************************************************** */
218
219 #ifdef STATS
220 static void print_map_stats(struct dmabounce_device_info *device_info)
221 {
222         dev_info(device_info->dev,
223                 "dmabounce: map_op_count=%lu, bounce_count=%lu\n",
224                 device_info->map_op_count, device_info->bounce_count);
225 }
226 #endif
227
228 static inline dma_addr_t
229 map_single(struct device *dev, void *ptr, size_t size,
230                 enum dma_data_direction dir)
231 {
232         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
233         dma_addr_t dma_addr;
234         int needs_bounce = 0;
235
236         if (device_info)
237                 DO_STATS ( device_info->map_op_count++ );
238
239         dma_addr = virt_to_dma(dev, ptr);
240
241         if (dev->dma_mask) {
242                 unsigned long mask = *dev->dma_mask;
243                 unsigned long limit;
244
245                 limit = (mask + 1) & ~mask;
246                 if (limit && size > limit) {
247                         dev_err(dev, "DMA mapping too big (requested %#x "
248                                 "mask %#Lx)\n", size, *dev->dma_mask);
249                         return ~0;
250                 }
251
252                 /*
253                  * Figure out if we need to bounce from the DMA mask.
254                  */
255                 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
256         }
257
258         if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
259                 struct safe_buffer *buf;
260
261                 buf = alloc_safe_buffer(device_info, ptr, size, dir);
262                 if (buf == 0) {
263                         dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
264                                __func__, ptr);
265                         return 0;
266                 }
267
268                 dev_dbg(dev,
269                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
270                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
271                         buf->safe, (void *) buf->safe_dma_addr);
272
273                 if ((dir == DMA_TO_DEVICE) ||
274                     (dir == DMA_BIDIRECTIONAL)) {
275                         dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
276                                 __func__, ptr, buf->safe, size);
277                         memcpy(buf->safe, ptr, size);
278                 }
279                 ptr = buf->safe;
280
281                 dma_addr = buf->safe_dma_addr;
282         }
283
284         consistent_sync(ptr, size, dir);
285
286         return dma_addr;
287 }
288
289 static inline void
290 unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
291                 enum dma_data_direction dir)
292 {
293         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
294         struct safe_buffer *buf = NULL;
295
296         /*
297          * Trying to unmap an invalid mapping
298          */
299         if (dma_mapping_error(dma_addr)) {
300                 dev_err(dev, "Trying to unmap invalid mapping\n");
301                 return;
302         }
303
304         if (device_info)
305                 buf = find_safe_buffer(device_info, dma_addr);
306
307         if (buf) {
308                 BUG_ON(buf->size != size);
309
310                 dev_dbg(dev,
311                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
312                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
313                         buf->safe, (void *) buf->safe_dma_addr);
314
315                 DO_STATS ( device_info->bounce_count++ );
316
317                 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
318                         unsigned long ptr;
319
320                         dev_dbg(dev,
321                                 "%s: copy back safe %p to unsafe %p size %d\n",
322                                 __func__, buf->safe, buf->ptr, size);
323                         memcpy(buf->ptr, buf->safe, size);
324
325                         /*
326                          * DMA buffers must have the same cache properties
327                          * as if they were really used for DMA - which means
328                          * data must be written back to RAM.  Note that
329                          * we don't use dmac_flush_range() here for the
330                          * bidirectional case because we know the cache
331                          * lines will be coherent with the data written.
332                          */
333                         ptr = (unsigned long)buf->ptr;
334                         dmac_clean_range(ptr, ptr + size);
335                 }
336                 free_safe_buffer(device_info, buf);
337         }
338 }
339
340 static inline void
341 sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
342                 enum dma_data_direction dir)
343 {
344         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
345         struct safe_buffer *buf = NULL;
346
347         if (device_info)
348                 buf = find_safe_buffer(device_info, dma_addr);
349
350         if (buf) {
351                 /*
352                  * Both of these checks from original code need to be
353                  * commented out b/c some drivers rely on the following:
354                  *
355                  * 1) Drivers may map a large chunk of memory into DMA space
356                  *    but only sync a small portion of it. Good example is
357                  *    allocating a large buffer, mapping it, and then
358                  *    breaking it up into small descriptors. No point
359                  *    in syncing the whole buffer if you only have to
360                  *    touch one descriptor.
361                  *
362                  * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
363                  *    usually only synced in one dir at a time.
364                  *
365                  * See drivers/net/eepro100.c for examples of both cases.
366                  *
367                  * -ds
368                  *
369                  * BUG_ON(buf->size != size);
370                  * BUG_ON(buf->direction != dir);
371                  */
372
373                 dev_dbg(dev,
374                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
375                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
376                         buf->safe, (void *) buf->safe_dma_addr);
377
378                 DO_STATS ( device_info->bounce_count++ );
379
380                 switch (dir) {
381                 case DMA_FROM_DEVICE:
382                         dev_dbg(dev,
383                                 "%s: copy back safe %p to unsafe %p size %d\n",
384                                 __func__, buf->safe, buf->ptr, size);
385                         memcpy(buf->ptr, buf->safe, size);
386                         break;
387                 case DMA_TO_DEVICE:
388                         dev_dbg(dev,
389                                 "%s: copy out unsafe %p to safe %p, size %d\n",
390                                 __func__,buf->ptr, buf->safe, size);
391                         memcpy(buf->safe, buf->ptr, size);
392                         break;
393                 case DMA_BIDIRECTIONAL:
394                         BUG();  /* is this allowed?  what does it mean? */
395                 default:
396                         BUG();
397                 }
398                 consistent_sync(buf->safe, size, dir);
399         } else {
400                 consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
401         }
402 }
403
404 /* ************************************************** */
405
406 /*
407  * see if a buffer address is in an 'unsafe' range.  if it is
408  * allocate a 'safe' buffer and copy the unsafe buffer into it.
409  * substitute the safe buffer for the unsafe one.
410  * (basically move the buffer from an unsafe area to a safe one)
411  */
412 dma_addr_t
413 dma_map_single(struct device *dev, void *ptr, size_t size,
414                 enum dma_data_direction dir)
415 {
416         dma_addr_t dma_addr;
417
418         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
419                 __func__, ptr, size, dir);
420
421         BUG_ON(dir == DMA_NONE);
422
423         dma_addr = map_single(dev, ptr, size, dir);
424
425         return dma_addr;
426 }
427
428 /*
429  * see if a mapped address was really a "safe" buffer and if so, copy
430  * the data from the safe buffer back to the unsafe buffer and free up
431  * the safe buffer.  (basically return things back to the way they
432  * should be)
433  */
434
435 void
436 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
437                         enum dma_data_direction dir)
438 {
439         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
440                 __func__, (void *) dma_addr, size, dir);
441
442         BUG_ON(dir == DMA_NONE);
443
444         unmap_single(dev, dma_addr, size, dir);
445 }
446
447 int
448 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
449                 enum dma_data_direction dir)
450 {
451         int i;
452
453         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
454                 __func__, sg, nents, dir);
455
456         BUG_ON(dir == DMA_NONE);
457
458         for (i = 0; i < nents; i++, sg++) {
459                 struct page *page = sg->page;
460                 unsigned int offset = sg->offset;
461                 unsigned int length = sg->length;
462                 void *ptr = page_address(page) + offset;
463
464                 sg->dma_address =
465                         map_single(dev, ptr, length, dir);
466         }
467
468         return nents;
469 }
470
471 void
472 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
473                 enum dma_data_direction dir)
474 {
475         int i;
476
477         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
478                 __func__, sg, nents, dir);
479
480         BUG_ON(dir == DMA_NONE);
481
482         for (i = 0; i < nents; i++, sg++) {
483                 dma_addr_t dma_addr = sg->dma_address;
484                 unsigned int length = sg->length;
485
486                 unmap_single(dev, dma_addr, length, dir);
487         }
488 }
489
490 void
491 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
492                                 enum dma_data_direction dir)
493 {
494         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
495                 __func__, (void *) dma_addr, size, dir);
496
497         sync_single(dev, dma_addr, size, dir);
498 }
499
500 void
501 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
502                                 enum dma_data_direction dir)
503 {
504         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
505                 __func__, (void *) dma_addr, size, dir);
506
507         sync_single(dev, dma_addr, size, dir);
508 }
509
510 void
511 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
512                         enum dma_data_direction dir)
513 {
514         int i;
515
516         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
517                 __func__, sg, nents, dir);
518
519         BUG_ON(dir == DMA_NONE);
520
521         for (i = 0; i < nents; i++, sg++) {
522                 dma_addr_t dma_addr = sg->dma_address;
523                 unsigned int length = sg->length;
524
525                 sync_single(dev, dma_addr, length, dir);
526         }
527 }
528
529 void
530 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
531                         enum dma_data_direction dir)
532 {
533         int i;
534
535         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
536                 __func__, sg, nents, dir);
537
538         BUG_ON(dir == DMA_NONE);
539
540         for (i = 0; i < nents; i++, sg++) {
541                 dma_addr_t dma_addr = sg->dma_address;
542                 unsigned int length = sg->length;
543
544                 sync_single(dev, dma_addr, length, dir);
545         }
546 }
547
548 static int
549 dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
550                     unsigned long size)
551 {
552         pool->size = size;
553         DO_STATS(pool->allocs = 0);
554         pool->pool = dma_pool_create(name, dev, size,
555                                      0 /* byte alignment */,
556                                      0 /* no page-crossing issues */);
557
558         return pool->pool ? 0 : -ENOMEM;
559 }
560
561 int
562 dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
563                         unsigned long large_buffer_size)
564 {
565         struct dmabounce_device_info *device_info;
566         int ret;
567
568         device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
569         if (!device_info) {
570                 printk(KERN_ERR
571                         "Could not allocated dmabounce_device_info for %s",
572                         dev->bus_id);
573                 return -ENOMEM;
574         }
575
576         ret = dmabounce_init_pool(&device_info->small, dev,
577                                   "small_dmabounce_pool", small_buffer_size);
578         if (ret) {
579                 dev_err(dev,
580                         "dmabounce: could not allocate DMA pool for %ld byte objects\n",
581                         small_buffer_size);
582                 goto err_free;
583         }
584
585         if (large_buffer_size) {
586                 ret = dmabounce_init_pool(&device_info->large, dev,
587                                           "large_dmabounce_pool",
588                                           large_buffer_size);
589                 if (ret) {
590                         dev_err(dev,
591                                 "dmabounce: could not allocate DMA pool for %ld byte objects\n",
592                                 large_buffer_size);
593                         goto err_destroy;
594                 }
595         }
596
597         device_info->dev = dev;
598         INIT_LIST_HEAD(&device_info->safe_buffers);
599         rwlock_init(&device_info->lock);
600
601 #ifdef STATS
602         device_info->total_allocs = 0;
603         device_info->map_op_count = 0;
604         device_info->bounce_count = 0;
605 #endif
606
607         list_add(&device_info->node, &dmabounce_devs);
608
609         printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
610                 dev->bus_id, dev->bus->name);
611
612         return 0;
613
614  err_destroy:
615         dma_pool_destroy(device_info->small.pool);
616  err_free:
617         kfree(device_info);
618         return ret;
619 }
620
621 void
622 dmabounce_unregister_dev(struct device *dev)
623 {
624         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
625
626         if (!device_info) {
627                 printk(KERN_WARNING
628                         "%s: Never registered with dmabounce but attempting" \
629                         "to unregister!\n", dev->bus_id);
630                 return;
631         }
632
633         if (!list_empty(&device_info->safe_buffers)) {
634                 printk(KERN_ERR
635                         "%s: Removing from dmabounce with pending buffers!\n",
636                         dev->bus_id);
637                 BUG();
638         }
639
640         if (device_info->small.pool)
641                 dma_pool_destroy(device_info->small.pool);
642         if (device_info->large.pool)
643                 dma_pool_destroy(device_info->large.pool);
644
645 #ifdef STATS
646         print_alloc_stats(device_info);
647         print_map_stats(device_info);
648 #endif
649
650         list_del(&device_info->node);
651
652         kfree(device_info);
653
654         printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
655                 dev->bus_id, dev->bus->name);
656 }
657
658
659 EXPORT_SYMBOL(dma_map_single);
660 EXPORT_SYMBOL(dma_unmap_single);
661 EXPORT_SYMBOL(dma_map_sg);
662 EXPORT_SYMBOL(dma_unmap_sg);
663 EXPORT_SYMBOL(dma_sync_single);
664 EXPORT_SYMBOL(dma_sync_sg);
665 EXPORT_SYMBOL(dmabounce_register_dev);
666 EXPORT_SYMBOL(dmabounce_unregister_dev);
667
668 MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
669 MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
670 MODULE_LICENSE("GPL");