Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[pandora-kernel.git] / Documentation / keys.txt
1                          ============================
2                          KERNEL KEY RETENTION SERVICE
3                          ============================
4
5 This service allows cryptographic keys, authentication tokens, cross-domain
6 user mappings, and similar to be cached in the kernel for the use of
7 filesystems other kernel services.
8
9 Keyrings are permitted; these are a special type of key that can hold links to
10 other keys. Processes each have three standard keyring subscriptions that a
11 kernel service can search for relevant keys.
12
13 The key service can be configured on by enabling:
14
15         "Security options"/"Enable access key retention support" (CONFIG_KEYS)
16
17 This document has the following sections:
18
19         - Key overview
20         - Key service overview
21         - Key access permissions
22         - SELinux support
23         - New procfs files
24         - Userspace system call interface
25         - Kernel services
26         - Notes on accessing payload contents
27         - Defining a key type
28         - Request-key callback service
29         - Key access filesystem
30
31
32 ============
33 KEY OVERVIEW
34 ============
35
36 In this context, keys represent units of cryptographic data, authentication
37 tokens, keyrings, etc.. These are represented in the kernel by struct key.
38
39 Each key has a number of attributes:
40
41         - A serial number.
42         - A type.
43         - A description (for matching a key in a search).
44         - Access control information.
45         - An expiry time.
46         - A payload.
47         - State.
48
49
50  (*) Each key is issued a serial number of type key_serial_t that is unique for
51      the lifetime of that key. All serial numbers are positive non-zero 32-bit
52      integers.
53
54      Userspace programs can use a key's serial numbers as a way to gain access
55      to it, subject to permission checking.
56
57  (*) Each key is of a defined "type". Types must be registered inside the
58      kernel by a kernel service (such as a filesystem) before keys of that type
59      can be added or used. Userspace programs cannot define new types directly.
60
61      Key types are represented in the kernel by struct key_type. This defines a
62      number of operations that can be performed on a key of that type.
63
64      Should a type be removed from the system, all the keys of that type will
65      be invalidated.
66
67  (*) Each key has a description. This should be a printable string. The key
68      type provides an operation to perform a match between the description on a
69      key and a criterion string.
70
71  (*) Each key has an owner user ID, a group ID and a permissions mask. These
72      are used to control what a process may do to a key from userspace, and
73      whether a kernel service will be able to find the key.
74
75  (*) Each key can be set to expire at a specific time by the key type's
76      instantiation function. Keys can also be immortal.
77
78  (*) Each key can have a payload. This is a quantity of data that represent the
79      actual "key". In the case of a keyring, this is a list of keys to which
80      the keyring links; in the case of a user-defined key, it's an arbitrary
81      blob of data.
82
83      Having a payload is not required; and the payload can, in fact, just be a
84      value stored in the struct key itself.
85
86      When a key is instantiated, the key type's instantiation function is
87      called with a blob of data, and that then creates the key's payload in
88      some way.
89
90      Similarly, when userspace wants to read back the contents of the key, if
91      permitted, another key type operation will be called to convert the key's
92      attached payload back into a blob of data.
93
94  (*) Each key can be in one of a number of basic states:
95
96      (*) Uninstantiated. The key exists, but does not have any data attached.
97          Keys being requested from userspace will be in this state.
98
99      (*) Instantiated. This is the normal state. The key is fully formed, and
100          has data attached.
101
102      (*) Negative. This is a relatively short-lived state. The key acts as a
103          note saying that a previous call out to userspace failed, and acts as
104          a throttle on key lookups. A negative key can be updated to a normal
105          state.
106
107      (*) Expired. Keys can have lifetimes set. If their lifetime is exceeded,
108          they traverse to this state. An expired key can be updated back to a
109          normal state.
110
111      (*) Revoked. A key is put in this state by userspace action. It can't be
112          found or operated upon (apart from by unlinking it).
113
114      (*) Dead. The key's type was unregistered, and so the key is now useless.
115
116
117 ====================
118 KEY SERVICE OVERVIEW
119 ====================
120
121 The key service provides a number of features besides keys:
122
123  (*) The key service defines two special key types:
124
125      (+) "keyring"
126
127          Keyrings are special keys that contain a list of other keys. Keyring
128          lists can be modified using various system calls. Keyrings should not
129          be given a payload when created.
130
131      (+) "user"
132
133          A key of this type has a description and a payload that are arbitrary
134          blobs of data. These can be created, updated and read by userspace,
135          and aren't intended for use by kernel services.
136
137  (*) Each process subscribes to three keyrings: a thread-specific keyring, a
138      process-specific keyring, and a session-specific keyring.
139
140      The thread-specific keyring is discarded from the child when any sort of
141      clone, fork, vfork or execve occurs. A new keyring is created only when
142      required.
143
144      The process-specific keyring is replaced with an empty one in the child on
145      clone, fork, vfork unless CLONE_THREAD is supplied, in which case it is
146      shared. execve also discards the process's process keyring and creates a
147      new one.
148
149      The session-specific keyring is persistent across clone, fork, vfork and
150      execve, even when the latter executes a set-UID or set-GID binary. A
151      process can, however, replace its current session keyring with a new one
152      by using PR_JOIN_SESSION_KEYRING. It is permitted to request an anonymous
153      new one, or to attempt to create or join one of a specific name.
154
155      The ownership of the thread keyring changes when the real UID and GID of
156      the thread changes.
157
158  (*) Each user ID resident in the system holds two special keyrings: a user
159      specific keyring and a default user session keyring. The default session
160      keyring is initialised with a link to the user-specific keyring.
161
162      When a process changes its real UID, if it used to have no session key, it
163      will be subscribed to the default session key for the new UID.
164
165      If a process attempts to access its session key when it doesn't have one,
166      it will be subscribed to the default for its current UID.
167
168  (*) Each user has two quotas against which the keys they own are tracked. One
169      limits the total number of keys and keyrings, the other limits the total
170      amount of description and payload space that can be consumed.
171
172      The user can view information on this and other statistics through procfs
173      files.
174
175      Process-specific and thread-specific keyrings are not counted towards a
176      user's quota.
177
178      If a system call that modifies a key or keyring in some way would put the
179      user over quota, the operation is refused and error EDQUOT is returned.
180
181  (*) There's a system call interface by which userspace programs can create and
182      manipulate keys and keyrings.
183
184  (*) There's a kernel interface by which services can register types and search
185      for keys.
186
187  (*) There's a way for the a search done from the kernel to call back to
188      userspace to request a key that can't be found in a process's keyrings.
189
190  (*) An optional filesystem is available through which the key database can be
191      viewed and manipulated.
192
193
194 ======================
195 KEY ACCESS PERMISSIONS
196 ======================
197
198 Keys have an owner user ID, a group access ID, and a permissions mask. The mask
199 has up to eight bits each for possessor, user, group and other access. Only
200 six of each set of eight bits are defined. These permissions granted are:
201
202  (*) View
203
204      This permits a key or keyring's attributes to be viewed - including key
205      type and description.
206
207  (*) Read
208
209      This permits a key's payload to be viewed or a keyring's list of linked
210      keys.
211
212  (*) Write
213
214      This permits a key's payload to be instantiated or updated, or it allows a
215      link to be added to or removed from a keyring.
216
217  (*) Search
218
219      This permits keyrings to be searched and keys to be found. Searches can
220      only recurse into nested keyrings that have search permission set.
221
222  (*) Link
223
224      This permits a key or keyring to be linked to. To create a link from a
225      keyring to a key, a process must have Write permission on the keyring and
226      Link permission on the key.
227
228  (*) Set Attribute
229
230      This permits a key's UID, GID and permissions mask to be changed.
231
232 For changing the ownership, group ID or permissions mask, being the owner of
233 the key or having the sysadmin capability is sufficient.
234
235
236 ===============
237 SELINUX SUPPORT
238 ===============
239
240 The security class "key" has been added to SELinux so that mandatory access
241 controls can be applied to keys created within various contexts.  This support
242 is preliminary, and is likely to change quite significantly in the near future.
243 Currently, all of the basic permissions explained above are provided in SELinux
244 as well; SELinux is simply invoked after all basic permission checks have been
245 performed.
246
247 The value of the file /proc/self/attr/keycreate influences the labeling of
248 newly-created keys.  If the contents of that file correspond to an SELinux
249 security context, then the key will be assigned that context.  Otherwise, the
250 key will be assigned the current context of the task that invoked the key
251 creation request.  Tasks must be granted explicit permission to assign a
252 particular context to newly-created keys, using the "create" permission in the
253 key security class.
254
255 The default keyrings associated with users will be labeled with the default
256 context of the user if and only if the login programs have been instrumented to
257 properly initialize keycreate during the login process.  Otherwise, they will
258 be labeled with the context of the login program itself.
259
260 Note, however, that the default keyrings associated with the root user are
261 labeled with the default kernel context, since they are created early in the
262 boot process, before root has a chance to log in.
263
264 The keyrings associated with new threads are each labeled with the context of
265 their associated thread, and both session and process keyrings are handled
266 similarly.
267
268
269 ================
270 NEW PROCFS FILES
271 ================
272
273 Two files have been added to procfs by which an administrator can find out
274 about the status of the key service:
275
276  (*) /proc/keys
277
278      This lists the keys that are currently viewable by the task reading the
279      file, giving information about their type, description and permissions.
280      It is not possible to view the payload of the key this way, though some
281      information about it may be given.
282
283      The only keys included in the list are those that grant View permission to
284      the reading process whether or not it possesses them.  Note that LSM
285      security checks are still performed, and may further filter out keys that
286      the current process is not authorised to view.
287
288      The contents of the file look like this:
289
290         SERIAL   FLAGS  USAGE EXPY PERM     UID   GID   TYPE      DESCRIPTION: SUMMARY
291         00000001 I-----    39 perm 1f3f0000     0     0 keyring   _uid_ses.0: 1/4
292         00000002 I-----     2 perm 1f3f0000     0     0 keyring   _uid.0: empty
293         00000007 I-----     1 perm 1f3f0000     0     0 keyring   _pid.1: empty
294         0000018d I-----     1 perm 1f3f0000     0     0 keyring   _pid.412: empty
295         000004d2 I--Q--     1 perm 1f3f0000    32    -1 keyring   _uid.32: 1/4
296         000004d3 I--Q--     3 perm 1f3f0000    32    -1 keyring   _uid_ses.32: empty
297         00000892 I--QU-     1 perm 1f000000     0     0 user      metal:copper: 0
298         00000893 I--Q-N     1  35s 1f3f0000     0     0 user      metal:silver: 0
299         00000894 I--Q--     1  10h 003f0000     0     0 user      metal:gold: 0
300
301      The flags are:
302
303         I       Instantiated
304         R       Revoked
305         D       Dead
306         Q       Contributes to user's quota
307         U       Under contruction by callback to userspace
308         N       Negative key
309
310      This file must be enabled at kernel configuration time as it allows anyone
311      to list the keys database.
312
313  (*) /proc/key-users
314
315      This file lists the tracking data for each user that has at least one key
316      on the system.  Such data includes quota information and statistics:
317
318         [root@andromeda root]# cat /proc/key-users
319         0:     46 45/45 1/100 13/10000
320         29:     2 2/2 2/100 40/10000
321         32:     2 2/2 2/100 40/10000
322         38:     2 2/2 2/100 40/10000
323
324      The format of each line is
325         <UID>:                  User ID to which this applies
326         <usage>                 Structure refcount
327         <inst>/<keys>           Total number of keys and number instantiated
328         <keys>/<max>            Key count quota
329         <bytes>/<max>           Key size quota
330
331
332 ===============================
333 USERSPACE SYSTEM CALL INTERFACE
334 ===============================
335
336 Userspace can manipulate keys directly through three new syscalls: add_key,
337 request_key and keyctl. The latter provides a number of functions for
338 manipulating keys.
339
340 When referring to a key directly, userspace programs should use the key's
341 serial number (a positive 32-bit integer). However, there are some special
342 values available for referring to special keys and keyrings that relate to the
343 process making the call:
344
345         CONSTANT                        VALUE   KEY REFERENCED
346         ==============================  ======  ===========================
347         KEY_SPEC_THREAD_KEYRING         -1      thread-specific keyring
348         KEY_SPEC_PROCESS_KEYRING        -2      process-specific keyring
349         KEY_SPEC_SESSION_KEYRING        -3      session-specific keyring
350         KEY_SPEC_USER_KEYRING           -4      UID-specific keyring
351         KEY_SPEC_USER_SESSION_KEYRING   -5      UID-session keyring
352         KEY_SPEC_GROUP_KEYRING          -6      GID-specific keyring
353         KEY_SPEC_REQKEY_AUTH_KEY        -7      assumed request_key()
354                                                   authorisation key
355
356
357 The main syscalls are:
358
359  (*) Create a new key of given type, description and payload and add it to the
360      nominated keyring:
361
362         key_serial_t add_key(const char *type, const char *desc,
363                              const void *payload, size_t plen,
364                              key_serial_t keyring);
365
366      If a key of the same type and description as that proposed already exists
367      in the keyring, this will try to update it with the given payload, or it
368      will return error EEXIST if that function is not supported by the key
369      type. The process must also have permission to write to the key to be able
370      to update it. The new key will have all user permissions granted and no
371      group or third party permissions.
372
373      Otherwise, this will attempt to create a new key of the specified type and
374      description, and to instantiate it with the supplied payload and attach it
375      to the keyring. In this case, an error will be generated if the process
376      does not have permission to write to the keyring.
377
378      The payload is optional, and the pointer can be NULL if not required by
379      the type. The payload is plen in size, and plen can be zero for an empty
380      payload.
381
382      A new keyring can be generated by setting type "keyring", the keyring name
383      as the description (or NULL) and setting the payload to NULL.
384
385      User defined keys can be created by specifying type "user". It is
386      recommended that a user defined key's description by prefixed with a type
387      ID and a colon, such as "krb5tgt:" for a Kerberos 5 ticket granting
388      ticket.
389
390      Any other type must have been registered with the kernel in advance by a
391      kernel service such as a filesystem.
392
393      The ID of the new or updated key is returned if successful.
394
395
396  (*) Search the process's keyrings for a key, potentially calling out to
397      userspace to create it.
398
399         key_serial_t request_key(const char *type, const char *description,
400                                  const char *callout_info,
401                                  key_serial_t dest_keyring);
402
403      This function searches all the process's keyrings in the order thread,
404      process, session for a matching key. This works very much like
405      KEYCTL_SEARCH, including the optional attachment of the discovered key to
406      a keyring.
407
408      If a key cannot be found, and if callout_info is not NULL, then
409      /sbin/request-key will be invoked in an attempt to obtain a key. The
410      callout_info string will be passed as an argument to the program.
411
412      See also Documentation/keys-request-key.txt.
413
414
415 The keyctl syscall functions are:
416
417  (*) Map a special key ID to a real key ID for this process:
418
419         key_serial_t keyctl(KEYCTL_GET_KEYRING_ID, key_serial_t id,
420                             int create);
421
422      The special key specified by "id" is looked up (with the key being created
423      if necessary) and the ID of the key or keyring thus found is returned if
424      it exists.
425
426      If the key does not yet exist, the key will be created if "create" is
427      non-zero; and the error ENOKEY will be returned if "create" is zero.
428
429
430  (*) Replace the session keyring this process subscribes to with a new one:
431
432         key_serial_t keyctl(KEYCTL_JOIN_SESSION_KEYRING, const char *name);
433
434      If name is NULL, an anonymous keyring is created attached to the process
435      as its session keyring, displacing the old session keyring.
436
437      If name is not NULL, if a keyring of that name exists, the process
438      attempts to attach it as the session keyring, returning an error if that
439      is not permitted; otherwise a new keyring of that name is created and
440      attached as the session keyring.
441
442      To attach to a named keyring, the keyring must have search permission for
443      the process's ownership.
444
445      The ID of the new session keyring is returned if successful.
446
447
448  (*) Update the specified key:
449
450         long keyctl(KEYCTL_UPDATE, key_serial_t key, const void *payload,
451                     size_t plen);
452
453      This will try to update the specified key with the given payload, or it
454      will return error EOPNOTSUPP if that function is not supported by the key
455      type. The process must also have permission to write to the key to be able
456      to update it.
457
458      The payload is of length plen, and may be absent or empty as for
459      add_key().
460
461
462  (*) Revoke a key:
463
464         long keyctl(KEYCTL_REVOKE, key_serial_t key);
465
466      This makes a key unavailable for further operations. Further attempts to
467      use the key will be met with error EKEYREVOKED, and the key will no longer
468      be findable.
469
470
471  (*) Change the ownership of a key:
472
473         long keyctl(KEYCTL_CHOWN, key_serial_t key, uid_t uid, gid_t gid);
474
475      This function permits a key's owner and group ID to be changed. Either one
476      of uid or gid can be set to -1 to suppress that change.
477
478      Only the superuser can change a key's owner to something other than the
479      key's current owner. Similarly, only the superuser can change a key's
480      group ID to something other than the calling process's group ID or one of
481      its group list members.
482
483
484  (*) Change the permissions mask on a key:
485
486         long keyctl(KEYCTL_SETPERM, key_serial_t key, key_perm_t perm);
487
488      This function permits the owner of a key or the superuser to change the
489      permissions mask on a key.
490
491      Only bits the available bits are permitted; if any other bits are set,
492      error EINVAL will be returned.
493
494
495  (*) Describe a key:
496
497         long keyctl(KEYCTL_DESCRIBE, key_serial_t key, char *buffer,
498                     size_t buflen);
499
500      This function returns a summary of the key's attributes (but not its
501      payload data) as a string in the buffer provided.
502
503      Unless there's an error, it always returns the amount of data it could
504      produce, even if that's too big for the buffer, but it won't copy more
505      than requested to userspace. If the buffer pointer is NULL then no copy
506      will take place.
507
508      A process must have view permission on the key for this function to be
509      successful.
510
511      If successful, a string is placed in the buffer in the following format:
512
513         <type>;<uid>;<gid>;<perm>;<description>
514
515      Where type and description are strings, uid and gid are decimal, and perm
516      is hexadecimal. A NUL character is included at the end of the string if
517      the buffer is sufficiently big.
518
519      This can be parsed with
520
521         sscanf(buffer, "%[^;];%d;%d;%o;%s", type, &uid, &gid, &mode, desc);
522
523
524  (*) Clear out a keyring:
525
526         long keyctl(KEYCTL_CLEAR, key_serial_t keyring);
527
528      This function clears the list of keys attached to a keyring. The calling
529      process must have write permission on the keyring, and it must be a
530      keyring (or else error ENOTDIR will result).
531
532
533  (*) Link a key into a keyring:
534
535         long keyctl(KEYCTL_LINK, key_serial_t keyring, key_serial_t key);
536
537      This function creates a link from the keyring to the key. The process must
538      have write permission on the keyring and must have link permission on the
539      key.
540
541      Should the keyring not be a keyring, error ENOTDIR will result; and if the
542      keyring is full, error ENFILE will result.
543
544      The link procedure checks the nesting of the keyrings, returning ELOOP if
545      it appears too deep or EDEADLK if the link would introduce a cycle.
546
547      Any links within the keyring to keys that match the new key in terms of
548      type and description will be discarded from the keyring as the new one is
549      added.
550
551
552  (*) Unlink a key or keyring from another keyring:
553
554         long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key);
555
556      This function looks through the keyring for the first link to the
557      specified key, and removes it if found. Subsequent links to that key are
558      ignored. The process must have write permission on the keyring.
559
560      If the keyring is not a keyring, error ENOTDIR will result; and if the key
561      is not present, error ENOENT will be the result.
562
563
564  (*) Search a keyring tree for a key:
565
566         key_serial_t keyctl(KEYCTL_SEARCH, key_serial_t keyring,
567                             const char *type, const char *description,
568                             key_serial_t dest_keyring);
569
570      This searches the keyring tree headed by the specified keyring until a key
571      is found that matches the type and description criteria. Each keyring is
572      checked for keys before recursion into its children occurs.
573
574      The process must have search permission on the top level keyring, or else
575      error EACCES will result. Only keyrings that the process has search
576      permission on will be recursed into, and only keys and keyrings for which
577      a process has search permission can be matched. If the specified keyring
578      is not a keyring, ENOTDIR will result.
579
580      If the search succeeds, the function will attempt to link the found key
581      into the destination keyring if one is supplied (non-zero ID). All the
582      constraints applicable to KEYCTL_LINK apply in this case too.
583
584      Error ENOKEY, EKEYREVOKED or EKEYEXPIRED will be returned if the search
585      fails. On success, the resulting key ID will be returned.
586
587
588  (*) Read the payload data from a key:
589
590         long keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer,
591                     size_t buflen);
592
593      This function attempts to read the payload data from the specified key
594      into the buffer. The process must have read permission on the key to
595      succeed.
596
597      The returned data will be processed for presentation by the key type. For
598      instance, a keyring will return an array of key_serial_t entries
599      representing the IDs of all the keys to which it is subscribed. The user
600      defined key type will return its data as is. If a key type does not
601      implement this function, error EOPNOTSUPP will result.
602
603      As much of the data as can be fitted into the buffer will be copied to
604      userspace if the buffer pointer is not NULL.
605
606      On a successful return, the function will always return the amount of data
607      available rather than the amount copied.
608
609
610  (*) Instantiate a partially constructed key.
611
612         long keyctl(KEYCTL_INSTANTIATE, key_serial_t key,
613                     const void *payload, size_t plen,
614                     key_serial_t keyring);
615
616      If the kernel calls back to userspace to complete the instantiation of a
617      key, userspace should use this call to supply data for the key before the
618      invoked process returns, or else the key will be marked negative
619      automatically.
620
621      The process must have write access on the key to be able to instantiate
622      it, and the key must be uninstantiated.
623
624      If a keyring is specified (non-zero), the key will also be linked into
625      that keyring, however all the constraints applying in KEYCTL_LINK apply in
626      this case too.
627
628      The payload and plen arguments describe the payload data as for add_key().
629
630
631  (*) Negatively instantiate a partially constructed key.
632
633         long keyctl(KEYCTL_NEGATE, key_serial_t key,
634                     unsigned timeout, key_serial_t keyring);
635
636      If the kernel calls back to userspace to complete the instantiation of a
637      key, userspace should use this call mark the key as negative before the
638      invoked process returns if it is unable to fulfil the request.
639
640      The process must have write access on the key to be able to instantiate
641      it, and the key must be uninstantiated.
642
643      If a keyring is specified (non-zero), the key will also be linked into
644      that keyring, however all the constraints applying in KEYCTL_LINK apply in
645      this case too.
646
647
648  (*) Set the default request-key destination keyring.
649
650         long keyctl(KEYCTL_SET_REQKEY_KEYRING, int reqkey_defl);
651
652      This sets the default keyring to which implicitly requested keys will be
653      attached for this thread. reqkey_defl should be one of these constants:
654
655         CONSTANT                                VALUE   NEW DEFAULT KEYRING
656         ======================================  ======  =======================
657         KEY_REQKEY_DEFL_NO_CHANGE               -1      No change
658         KEY_REQKEY_DEFL_DEFAULT                 0       Default[1]
659         KEY_REQKEY_DEFL_THREAD_KEYRING          1       Thread keyring
660         KEY_REQKEY_DEFL_PROCESS_KEYRING         2       Process keyring
661         KEY_REQKEY_DEFL_SESSION_KEYRING         3       Session keyring
662         KEY_REQKEY_DEFL_USER_KEYRING            4       User keyring
663         KEY_REQKEY_DEFL_USER_SESSION_KEYRING    5       User session keyring
664         KEY_REQKEY_DEFL_GROUP_KEYRING           6       Group keyring
665
666      The old default will be returned if successful and error EINVAL will be
667      returned if reqkey_defl is not one of the above values.
668
669      The default keyring can be overridden by the keyring indicated to the
670      request_key() system call.
671
672      Note that this setting is inherited across fork/exec.
673
674      [1] The default default is: the thread keyring if there is one, otherwise
675      the process keyring if there is one, otherwise the session keyring if
676      there is one, otherwise the user default session keyring.
677
678
679  (*) Set the timeout on a key.
680
681         long keyctl(KEYCTL_SET_TIMEOUT, key_serial_t key, unsigned timeout);
682
683      This sets or clears the timeout on a key. The timeout can be 0 to clear
684      the timeout or a number of seconds to set the expiry time that far into
685      the future.
686
687      The process must have attribute modification access on a key to set its
688      timeout. Timeouts may not be set with this function on negative, revoked
689      or expired keys.
690
691
692  (*) Assume the authority granted to instantiate a key
693
694         long keyctl(KEYCTL_ASSUME_AUTHORITY, key_serial_t key);
695
696      This assumes or divests the authority required to instantiate the
697      specified key. Authority can only be assumed if the thread has the
698      authorisation key associated with the specified key in its keyrings
699      somewhere.
700
701      Once authority is assumed, searches for keys will also search the
702      requester's keyrings using the requester's security label, UID, GID and
703      groups.
704
705      If the requested authority is unavailable, error EPERM will be returned,
706      likewise if the authority has been revoked because the target key is
707      already instantiated.
708
709      If the specified key is 0, then any assumed authority will be divested.
710
711      The assumed authorititive key is inherited across fork and exec.
712
713
714 ===============
715 KERNEL SERVICES
716 ===============
717
718 The kernel services for key managment are fairly simple to deal with. They can
719 be broken down into two areas: keys and key types.
720
721 Dealing with keys is fairly straightforward. Firstly, the kernel service
722 registers its type, then it searches for a key of that type. It should retain
723 the key as long as it has need of it, and then it should release it. For a
724 filesystem or device file, a search would probably be performed during the open
725 call, and the key released upon close. How to deal with conflicting keys due to
726 two different users opening the same file is left to the filesystem author to
727 solve.
728
729 Note that there are two different types of pointers to keys that may be
730 encountered:
731
732  (*) struct key *
733
734      This simply points to the key structure itself. Key structures will be at
735      least four-byte aligned.
736
737  (*) key_ref_t
738
739      This is equivalent to a struct key *, but the least significant bit is set
740      if the caller "possesses" the key. By "possession" it is meant that the
741      calling processes has a searchable link to the key from one of its
742      keyrings. There are three functions for dealing with these:
743
744         key_ref_t make_key_ref(const struct key *key,
745                                unsigned long possession);
746
747         struct key *key_ref_to_ptr(const key_ref_t key_ref);
748
749         unsigned long is_key_possessed(const key_ref_t key_ref);
750
751      The first function constructs a key reference from a key pointer and
752      possession information (which must be 0 or 1 and not any other value).
753
754      The second function retrieves the key pointer from a reference and the
755      third retrieves the possession flag.
756
757 When accessing a key's payload contents, certain precautions must be taken to
758 prevent access vs modification races. See the section "Notes on accessing
759 payload contents" for more information.
760
761 (*) To search for a key, call:
762
763         struct key *request_key(const struct key_type *type,
764                                 const char *description,
765                                 const char *callout_string);
766
767     This is used to request a key or keyring with a description that matches
768     the description specified according to the key type's match function. This
769     permits approximate matching to occur. If callout_string is not NULL, then
770     /sbin/request-key will be invoked in an attempt to obtain the key from
771     userspace. In that case, callout_string will be passed as an argument to
772     the program.
773
774     Should the function fail error ENOKEY, EKEYEXPIRED or EKEYREVOKED will be
775     returned.
776
777     If successful, the key will have been attached to the default keyring for
778     implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING.
779
780     See also Documentation/keys-request-key.txt.
781
782
783 (*) When it is no longer required, the key should be released using:
784
785         void key_put(struct key *key);
786
787     Or:
788
789         void key_ref_put(key_ref_t key_ref);
790
791     These can be called from interrupt context. If CONFIG_KEYS is not set then
792     the argument will not be parsed.
793
794
795 (*) Extra references can be made to a key by calling the following function:
796
797         struct key *key_get(struct key *key);
798
799     These need to be disposed of by calling key_put() when they've been
800     finished with. The key pointer passed in will be returned. If the pointer
801     is NULL or CONFIG_KEYS is not set then the key will not be dereferenced and
802     no increment will take place.
803
804
805 (*) A key's serial number can be obtained by calling:
806
807         key_serial_t key_serial(struct key *key);
808
809     If key is NULL or if CONFIG_KEYS is not set then 0 will be returned (in the
810     latter case without parsing the argument).
811
812
813 (*) If a keyring was found in the search, this can be further searched by:
814
815         key_ref_t keyring_search(key_ref_t keyring_ref,
816                                  const struct key_type *type,
817                                  const char *description)
818
819     This searches the keyring tree specified for a matching key. Error ENOKEY
820     is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful,
821     the returned key will need to be released.
822
823     The possession attribute from the keyring reference is used to control
824     access through the permissions mask and is propagated to the returned key
825     reference pointer if successful.
826
827
828 (*) To check the validity of a key, this function can be called:
829
830         int validate_key(struct key *key);
831
832     This checks that the key in question hasn't expired or and hasn't been
833     revoked. Should the key be invalid, error EKEYEXPIRED or EKEYREVOKED will
834     be returned. If the key is NULL or if CONFIG_KEYS is not set then 0 will be
835     returned (in the latter case without parsing the argument).
836
837
838 (*) To register a key type, the following function should be called:
839
840         int register_key_type(struct key_type *type);
841
842     This will return error EEXIST if a type of the same name is already
843     present.
844
845
846 (*) To unregister a key type, call:
847
848         void unregister_key_type(struct key_type *type);
849
850
851 ===================================
852 NOTES ON ACCESSING PAYLOAD CONTENTS
853 ===================================
854
855 The simplest payload is just a number in key->payload.value. In this case,
856 there's no need to indulge in RCU or locking when accessing the payload.
857
858 More complex payload contents must be allocated and a pointer to them set in
859 key->payload.data. One of the following ways must be selected to access the
860 data:
861
862  (1) Unmodifiable key type.
863
864      If the key type does not have a modify method, then the key's payload can
865      be accessed without any form of locking, provided that it's known to be
866      instantiated (uninstantiated keys cannot be "found").
867
868  (2) The key's semaphore.
869
870      The semaphore could be used to govern access to the payload and to control
871      the payload pointer. It must be write-locked for modifications and would
872      have to be read-locked for general access. The disadvantage of doing this
873      is that the accessor may be required to sleep.
874
875  (3) RCU.
876
877      RCU must be used when the semaphore isn't already held; if the semaphore
878      is held then the contents can't change under you unexpectedly as the
879      semaphore must still be used to serialise modifications to the key. The
880      key management code takes care of this for the key type.
881
882      However, this means using:
883
884         rcu_read_lock() ... rcu_dereference() ... rcu_read_unlock()
885
886      to read the pointer, and:
887
888         rcu_dereference() ... rcu_assign_pointer() ... call_rcu()
889
890      to set the pointer and dispose of the old contents after a grace period.
891      Note that only the key type should ever modify a key's payload.
892
893      Furthermore, an RCU controlled payload must hold a struct rcu_head for the
894      use of call_rcu() and, if the payload is of variable size, the length of
895      the payload. key->datalen cannot be relied upon to be consistent with the
896      payload just dereferenced if the key's semaphore is not held.
897
898
899 ===================
900 DEFINING A KEY TYPE
901 ===================
902
903 A kernel service may want to define its own key type. For instance, an AFS
904 filesystem might want to define a Kerberos 5 ticket key type. To do this, it
905 author fills in a struct key_type and registers it with the system.
906
907 The structure has a number of fields, some of which are mandatory:
908
909  (*) const char *name
910
911      The name of the key type. This is used to translate a key type name
912      supplied by userspace into a pointer to the structure.
913
914
915  (*) size_t def_datalen
916
917      This is optional - it supplies the default payload data length as
918      contributed to the quota. If the key type's payload is always or almost
919      always the same size, then this is a more efficient way to do things.
920
921      The data length (and quota) on a particular key can always be changed
922      during instantiation or update by calling:
923
924         int key_payload_reserve(struct key *key, size_t datalen);
925
926      With the revised data length. Error EDQUOT will be returned if this is not
927      viable.
928
929
930  (*) int (*instantiate)(struct key *key, const void *data, size_t datalen);
931
932      This method is called to attach a payload to a key during construction.
933      The payload attached need not bear any relation to the data passed to this
934      function.
935
936      If the amount of data attached to the key differs from the size in
937      keytype->def_datalen, then key_payload_reserve() should be called.
938
939      This method does not have to lock the key in order to attach a payload.
940      The fact that KEY_FLAG_INSTANTIATED is not set in key->flags prevents
941      anything else from gaining access to the key.
942
943      It is safe to sleep in this method.
944
945
946  (*) int (*update)(struct key *key, const void *data, size_t datalen);
947
948      If this type of key can be updated, then this method should be provided.
949      It is called to update a key's payload from the blob of data provided.
950
951      key_payload_reserve() should be called if the data length might change
952      before any changes are actually made. Note that if this succeeds, the type
953      is committed to changing the key because it's already been altered, so all
954      memory allocation must be done first.
955
956      The key will have its semaphore write-locked before this method is called,
957      but this only deters other writers; any changes to the key's payload must
958      be made under RCU conditions, and call_rcu() must be used to dispose of
959      the old payload.
960
961      key_payload_reserve() should be called before the changes are made, but
962      after all allocations and other potentially failing function calls are
963      made.
964
965      It is safe to sleep in this method.
966
967
968  (*) int (*match)(const struct key *key, const void *desc);
969
970      This method is called to match a key against a description. It should
971      return non-zero if the two match, zero if they don't.
972
973      This method should not need to lock the key in any way. The type and
974      description can be considered invariant, and the payload should not be
975      accessed (the key may not yet be instantiated).
976
977      It is not safe to sleep in this method; the caller may hold spinlocks.
978
979
980  (*) void (*revoke)(struct key *key);
981
982      This method is optional.  It is called to discard part of the payload
983      data upon a key being revoked.  The caller will have the key semaphore
984      write-locked.
985
986      It is safe to sleep in this method, though care should be taken to avoid
987      a deadlock against the key semaphore.
988
989
990  (*) void (*destroy)(struct key *key);
991
992      This method is optional. It is called to discard the payload data on a key
993      when it is being destroyed.
994
995      This method does not need to lock the key to access the payload; it can
996      consider the key as being inaccessible at this time. Note that the key's
997      type may have been changed before this function is called.
998
999      It is not safe to sleep in this method; the caller may hold spinlocks.
1000
1001
1002  (*) void (*describe)(const struct key *key, struct seq_file *p);
1003
1004      This method is optional. It is called during /proc/keys reading to
1005      summarise a key's description and payload in text form.
1006
1007      This method will be called with the RCU read lock held. rcu_dereference()
1008      should be used to read the payload pointer if the payload is to be
1009      accessed. key->datalen cannot be trusted to stay consistent with the
1010      contents of the payload.
1011
1012      The description will not change, though the key's state may.
1013
1014      It is not safe to sleep in this method; the RCU read lock is held by the
1015      caller.
1016
1017
1018  (*) long (*read)(const struct key *key, char __user *buffer, size_t buflen);
1019
1020      This method is optional. It is called by KEYCTL_READ to translate the
1021      key's payload into something a blob of data for userspace to deal with.
1022      Ideally, the blob should be in the same format as that passed in to the
1023      instantiate and update methods.
1024
1025      If successful, the blob size that could be produced should be returned
1026      rather than the size copied.
1027
1028      This method will be called with the key's semaphore read-locked. This will
1029      prevent the key's payload changing. It is not necessary to use RCU locking
1030      when accessing the key's payload. It is safe to sleep in this method, such
1031      as might happen when the userspace buffer is accessed.
1032
1033
1034 ============================
1035 REQUEST-KEY CALLBACK SERVICE
1036 ============================
1037
1038 To create a new key, the kernel will attempt to execute the following command
1039 line:
1040
1041         /sbin/request-key create <key> <uid> <gid> \
1042                 <threadring> <processring> <sessionring> <callout_info>
1043
1044 <key> is the key being constructed, and the three keyrings are the process
1045 keyrings from the process that caused the search to be issued. These are
1046 included for two reasons:
1047
1048   (1) There may be an authentication token in one of the keyrings that is
1049       required to obtain the key, eg: a Kerberos Ticket-Granting Ticket.
1050
1051   (2) The new key should probably be cached in one of these rings.
1052
1053 This program should set it UID and GID to those specified before attempting to
1054 access any more keys. It may then look around for a user specific process to
1055 hand the request off to (perhaps a path held in placed in another key by, for
1056 example, the KDE desktop manager).
1057
1058 The program (or whatever it calls) should finish construction of the key by
1059 calling KEYCTL_INSTANTIATE, which also permits it to cache the key in one of
1060 the keyrings (probably the session ring) before returning. Alternatively, the
1061 key can be marked as negative with KEYCTL_NEGATE; this also permits the key to
1062 be cached in one of the keyrings.
1063
1064 If it returns with the key remaining in the unconstructed state, the key will
1065 be marked as being negative, it will be added to the session keyring, and an
1066 error will be returned to the key requestor.
1067
1068 Supplementary information may be provided from whoever or whatever invoked this
1069 service. This will be passed as the <callout_info> parameter. If no such
1070 information was made available, then "-" will be passed as this parameter
1071 instead.
1072
1073
1074 Similarly, the kernel may attempt to update an expired or a soon to expire key
1075 by executing:
1076
1077         /sbin/request-key update <key> <uid> <gid> \
1078                 <threadring> <processring> <sessionring>
1079
1080 In this case, the program isn't required to actually attach the key to a ring;
1081 the rings are provided for reference.