TTY: pmac_zilog, check existence of ports in pmz_console_init()
[pandora-kernel.git] / drivers / tty / serial / ifx6x60.c
1 /****************************************************************************
2  *
3  * Driver for the IFX 6x60 spi modem.
4  *
5  * Copyright (C) 2008 Option International
6  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7  *                    Denis Joseph Barrow <d.barow@option.com>
8  *                    Jan Dumon <j.dumon@option.com>
9  *
10  * Copyright (C) 2009, 2010 Intel Corp
11  * Russ Gorby <russ.gorby@intel.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
25  * USA
26  *
27  * Driver modified by Intel from Option gtm501l_spi.c
28  *
29  * Notes
30  * o    The driver currently assumes a single device only. If you need to
31  *      change this then look for saved_ifx_dev and add a device lookup
32  * o    The driver is intended to be big-endian safe but has never been
33  *      tested that way (no suitable hardware). There are a couple of FIXME
34  *      notes by areas that may need addressing
35  * o    Some of the GPIO naming/setup assumptions may need revisiting if
36  *      you need to use this driver for another platform.
37  *
38  *****************************************************************************/
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/termios.h>
42 #include <linux/tty.h>
43 #include <linux/device.h>
44 #include <linux/spi/spi.h>
45 #include <linux/kfifo.h>
46 #include <linux/tty_flip.h>
47 #include <linux/timer.h>
48 #include <linux/serial.h>
49 #include <linux/interrupt.h>
50 #include <linux/irq.h>
51 #include <linux/rfkill.h>
52 #include <linux/fs.h>
53 #include <linux/ip.h>
54 #include <linux/dmapool.h>
55 #include <linux/gpio.h>
56 #include <linux/sched.h>
57 #include <linux/time.h>
58 #include <linux/wait.h>
59 #include <linux/pm.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spi/ifx_modem.h>
62 #include <linux/delay.h>
63
64 #include "ifx6x60.h"
65
66 #define IFX_SPI_MORE_MASK               0x10
67 #define IFX_SPI_MORE_BIT                12      /* bit position in u16 */
68 #define IFX_SPI_CTS_BIT                 13      /* bit position in u16 */
69 #define IFX_SPI_MODE                    SPI_MODE_1
70 #define IFX_SPI_TTY_ID                  0
71 #define IFX_SPI_TIMEOUT_SEC             2
72 #define IFX_SPI_HEADER_0                (-1)
73 #define IFX_SPI_HEADER_F                (-2)
74
75 /* forward reference */
76 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
77
78 /* local variables */
79 static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
80 static struct tty_driver *tty_drv;
81 static struct ifx_spi_device *saved_ifx_dev;
82 static struct lock_class_key ifx_spi_key;
83
84 /* GPIO/GPE settings */
85
86 /**
87  *      mrdy_set_high           -       set MRDY GPIO
88  *      @ifx: device we are controlling
89  *
90  */
91 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
92 {
93         gpio_set_value(ifx->gpio.mrdy, 1);
94 }
95
96 /**
97  *      mrdy_set_low            -       clear MRDY GPIO
98  *      @ifx: device we are controlling
99  *
100  */
101 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
102 {
103         gpio_set_value(ifx->gpio.mrdy, 0);
104 }
105
106 /**
107  *      ifx_spi_power_state_set
108  *      @ifx_dev: our SPI device
109  *      @val: bits to set
110  *
111  *      Set bit in power status and signal power system if status becomes non-0
112  */
113 static void
114 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
115 {
116         unsigned long flags;
117
118         spin_lock_irqsave(&ifx_dev->power_lock, flags);
119
120         /*
121          * if power status is already non-0, just update, else
122          * tell power system
123          */
124         if (!ifx_dev->power_status)
125                 pm_runtime_get(&ifx_dev->spi_dev->dev);
126         ifx_dev->power_status |= val;
127
128         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
129 }
130
131 /**
132  *      ifx_spi_power_state_clear       -       clear power bit
133  *      @ifx_dev: our SPI device
134  *      @val: bits to clear
135  *
136  *      clear bit in power status and signal power system if status becomes 0
137  */
138 static void
139 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
140 {
141         unsigned long flags;
142
143         spin_lock_irqsave(&ifx_dev->power_lock, flags);
144
145         if (ifx_dev->power_status) {
146                 ifx_dev->power_status &= ~val;
147                 if (!ifx_dev->power_status)
148                         pm_runtime_put(&ifx_dev->spi_dev->dev);
149         }
150
151         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
152 }
153
154 /**
155  *      swap_buf
156  *      @buf: our buffer
157  *      @len : number of bytes (not words) in the buffer
158  *      @end: end of buffer
159  *
160  *      Swap the contents of a buffer into big endian format
161  */
162 static inline void swap_buf(u16 *buf, int len, void *end)
163 {
164         int n;
165
166         len = ((len + 1) >> 1);
167         if ((void *)&buf[len] > end) {
168                 pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
169                        &buf[len], end);
170                 return;
171         }
172         for (n = 0; n < len; n++) {
173                 *buf = cpu_to_be16(*buf);
174                 buf++;
175         }
176 }
177
178 /**
179  *      mrdy_assert             -       assert MRDY line
180  *      @ifx_dev: our SPI device
181  *
182  *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
183  *      now.
184  *
185  *      FIXME: Can SRDY even go high as we are running this code ?
186  */
187 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
188 {
189         int val = gpio_get_value(ifx_dev->gpio.srdy);
190         if (!val) {
191                 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
192                                       &ifx_dev->flags)) {
193                         ifx_dev->spi_timer.expires =
194                                 jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
195                         add_timer(&ifx_dev->spi_timer);
196
197                 }
198         }
199         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
200         mrdy_set_high(ifx_dev);
201 }
202
203 /**
204  *      ifx_spi_hangup          -       hang up an IFX device
205  *      @ifx_dev: our SPI device
206  *
207  *      Hang up the tty attached to the IFX device if one is currently
208  *      open. If not take no action
209  */
210 static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
211 {
212         struct tty_port *pport = &ifx_dev->tty_port;
213         struct tty_struct *tty = tty_port_tty_get(pport);
214         if (tty) {
215                 tty_hangup(tty);
216                 tty_kref_put(tty);
217         }
218 }
219
220 /**
221  *      ifx_spi_timeout         -       SPI timeout
222  *      @arg: our SPI device
223  *
224  *      The SPI has timed out: hang up the tty. Users will then see a hangup
225  *      and error events.
226  */
227 static void ifx_spi_timeout(unsigned long arg)
228 {
229         struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
230
231         dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
232         ifx_spi_ttyhangup(ifx_dev);
233         mrdy_set_low(ifx_dev);
234         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
235 }
236
237 /* char/tty operations */
238
239 /**
240  *      ifx_spi_tiocmget        -       get modem lines
241  *      @tty: our tty device
242  *      @filp: file handle issuing the request
243  *
244  *      Map the signal state into Linux modem flags and report the value
245  *      in Linux terms
246  */
247 static int ifx_spi_tiocmget(struct tty_struct *tty)
248 {
249         unsigned int value;
250         struct ifx_spi_device *ifx_dev = tty->driver_data;
251
252         value =
253         (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
254         (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
255         (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
256         (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
257         (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
258         (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
259         return value;
260 }
261
262 /**
263  *      ifx_spi_tiocmset        -       set modem bits
264  *      @tty: the tty structure
265  *      @set: bits to set
266  *      @clear: bits to clear
267  *
268  *      The IFX6x60 only supports DTR and RTS. Set them accordingly
269  *      and flag that an update to the modem is needed.
270  *
271  *      FIXME: do we need to kick the tranfers when we do this ?
272  */
273 static int ifx_spi_tiocmset(struct tty_struct *tty,
274                             unsigned int set, unsigned int clear)
275 {
276         struct ifx_spi_device *ifx_dev = tty->driver_data;
277
278         if (set & TIOCM_RTS)
279                 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
280         if (set & TIOCM_DTR)
281                 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
282         if (clear & TIOCM_RTS)
283                 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
284         if (clear & TIOCM_DTR)
285                 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
286
287         set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
288         return 0;
289 }
290
291 /**
292  *      ifx_spi_open    -       called on tty open
293  *      @tty: our tty device
294  *      @filp: file handle being associated with the tty
295  *
296  *      Open the tty interface. We let the tty_port layer do all the work
297  *      for us.
298  *
299  *      FIXME: Remove single device assumption and saved_ifx_dev
300  */
301 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
302 {
303         return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
304 }
305
306 /**
307  *      ifx_spi_close   -       called when our tty closes
308  *      @tty: the tty being closed
309  *      @filp: the file handle being closed
310  *
311  *      Perform the close of the tty. We use the tty_port layer to do all
312  *      our hard work.
313  */
314 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
315 {
316         struct ifx_spi_device *ifx_dev = tty->driver_data;
317         tty_port_close(&ifx_dev->tty_port, tty, filp);
318         /* FIXME: should we do an ifx_spi_reset here ? */
319 }
320
321 /**
322  *      ifx_decode_spi_header   -       decode received header
323  *      @buffer: the received data
324  *      @length: decoded length
325  *      @more: decoded more flag
326  *      @received_cts: status of cts we received
327  *
328  *      Note how received_cts is handled -- if header is all F it is left
329  *      the same as it was, if header is all 0 it is set to 0 otherwise it is
330  *      taken from the incoming header.
331  *
332  *      FIXME: endianness
333  */
334 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
335                         unsigned char *more, unsigned char *received_cts)
336 {
337         u16 h1;
338         u16 h2;
339         u16 *in_buffer = (u16 *)buffer;
340
341         h1 = *in_buffer;
342         h2 = *(in_buffer+1);
343
344         if (h1 == 0 && h2 == 0) {
345                 *received_cts = 0;
346                 return IFX_SPI_HEADER_0;
347         } else if (h1 == 0xffff && h2 == 0xffff) {
348                 /* spi_slave_cts remains as it was */
349                 return IFX_SPI_HEADER_F;
350         }
351
352         *length = h1 & 0xfff;   /* upper bits of byte are flags */
353         *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
354         *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
355         return 0;
356 }
357
358 /**
359  *      ifx_setup_spi_header    -       set header fields
360  *      @txbuffer: pointer to start of SPI buffer
361  *      @tx_count: bytes
362  *      @more: indicate if more to follow
363  *
364  *      Format up an SPI header for a transfer
365  *
366  *      FIXME: endianness?
367  */
368 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
369                                         unsigned char more)
370 {
371         *(u16 *)(txbuffer) = tx_count;
372         *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
373         txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
374 }
375
376 /**
377  *      ifx_spi_wakeup_serial   -       SPI space made
378  *      @port_data: our SPI device
379  *
380  *      We have emptied the FIFO enough that we want to get more data
381  *      queued into it. Poke the line discipline via tty_wakeup so that
382  *      it will feed us more bits
383  */
384 static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
385 {
386         struct tty_struct *tty;
387
388         tty = tty_port_tty_get(&ifx_dev->tty_port);
389         if (!tty)
390                 return;
391         tty_wakeup(tty);
392         tty_kref_put(tty);
393 }
394
395 /**
396  *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
397  *      @ifx_dev: our SPI device
398  *
399  *      The transmit buffr needs a header and various other bits of
400  *      information followed by as much data as we can pull from the FIFO
401  *      and transfer. This function formats up a suitable buffer in the
402  *      ifx_dev->tx_buffer
403  *
404  *      FIXME: performance - should we wake the tty when the queue is half
405  *                           empty ?
406  */
407 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
408 {
409         int temp_count;
410         int queue_length;
411         int tx_count;
412         unsigned char *tx_buffer;
413
414         tx_buffer = ifx_dev->tx_buffer;
415         memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
416
417         /* make room for required SPI header */
418         tx_buffer += IFX_SPI_HEADER_OVERHEAD;
419         tx_count = IFX_SPI_HEADER_OVERHEAD;
420
421         /* clear to signal no more data if this turns out to be the
422          * last buffer sent in a sequence */
423         ifx_dev->spi_more = 0;
424
425         /* if modem cts is set, just send empty buffer */
426         if (!ifx_dev->spi_slave_cts) {
427                 /* see if there's tx data */
428                 queue_length = kfifo_len(&ifx_dev->tx_fifo);
429                 if (queue_length != 0) {
430                         /* data to mux -- see if there's room for it */
431                         temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
432                         temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
433                                         tx_buffer, temp_count,
434                                         &ifx_dev->fifo_lock);
435
436                         /* update buffer pointer and data count in message */
437                         tx_buffer += temp_count;
438                         tx_count += temp_count;
439                         if (temp_count == queue_length)
440                                 /* poke port to get more data */
441                                 ifx_spi_wakeup_serial(ifx_dev);
442                         else /* more data in port, use next SPI message */
443                                 ifx_dev->spi_more = 1;
444                 }
445         }
446         /* have data and info for header -- set up SPI header in buffer */
447         /* spi header needs payload size, not entire buffer size */
448         ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
449                                         tx_count-IFX_SPI_HEADER_OVERHEAD,
450                                         ifx_dev->spi_more);
451         /* swap actual data in the buffer */
452         swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
453                 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
454         return tx_count;
455 }
456
457 /**
458  *      ifx_spi_write           -       line discipline write
459  *      @tty: our tty device
460  *      @buf: pointer to buffer to write (kernel space)
461  *      @count: size of buffer
462  *
463  *      Write the characters we have been given into the FIFO. If the device
464  *      is not active then activate it, when the SRDY line is asserted back
465  *      this will commence I/O
466  */
467 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
468                          int count)
469 {
470         struct ifx_spi_device *ifx_dev = tty->driver_data;
471         unsigned char *tmp_buf = (unsigned char *)buf;
472         int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
473                                    &ifx_dev->fifo_lock);
474         mrdy_assert(ifx_dev);
475         return tx_count;
476 }
477
478 /**
479  *      ifx_spi_chars_in_buffer -       line discipline helper
480  *      @tty: our tty device
481  *
482  *      Report how much data we can accept before we drop bytes. As we use
483  *      a simple FIFO this is nice and easy.
484  */
485 static int ifx_spi_write_room(struct tty_struct *tty)
486 {
487         struct ifx_spi_device *ifx_dev = tty->driver_data;
488         return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
489 }
490
491 /**
492  *      ifx_spi_chars_in_buffer -       line discipline helper
493  *      @tty: our tty device
494  *
495  *      Report how many characters we have buffered. In our case this is the
496  *      number of bytes sitting in our transmit FIFO.
497  */
498 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
499 {
500         struct ifx_spi_device *ifx_dev = tty->driver_data;
501         return kfifo_len(&ifx_dev->tx_fifo);
502 }
503
504 /**
505  *      ifx_port_hangup
506  *      @port: our tty port
507  *
508  *      tty port hang up. Called when tty_hangup processing is invoked either
509  *      by loss of carrier, or by software (eg vhangup). Serialized against
510  *      activate/shutdown by the tty layer.
511  */
512 static void ifx_spi_hangup(struct tty_struct *tty)
513 {
514         struct ifx_spi_device *ifx_dev = tty->driver_data;
515         tty_port_hangup(&ifx_dev->tty_port);
516 }
517
518 /**
519  *      ifx_port_activate
520  *      @port: our tty port
521  *
522  *      tty port activate method - called for first open. Serialized
523  *      with hangup and shutdown by the tty layer.
524  */
525 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
526 {
527         struct ifx_spi_device *ifx_dev =
528                 container_of(port, struct ifx_spi_device, tty_port);
529
530         /* clear any old data; can't do this in 'close' */
531         kfifo_reset(&ifx_dev->tx_fifo);
532
533         /* put port data into this tty */
534         tty->driver_data = ifx_dev;
535
536         /* allows flip string push from int context */
537         tty->low_latency = 1;
538
539         return 0;
540 }
541
542 /**
543  *      ifx_port_shutdown
544  *      @port: our tty port
545  *
546  *      tty port shutdown method - called for last port close. Serialized
547  *      with hangup and activate by the tty layer.
548  */
549 static void ifx_port_shutdown(struct tty_port *port)
550 {
551         struct ifx_spi_device *ifx_dev =
552                 container_of(port, struct ifx_spi_device, tty_port);
553
554         mrdy_set_low(ifx_dev);
555         del_timer(&ifx_dev->spi_timer);
556         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
557         tasklet_kill(&ifx_dev->io_work_tasklet);
558 }
559
560 static const struct tty_port_operations ifx_tty_port_ops = {
561         .activate = ifx_port_activate,
562         .shutdown = ifx_port_shutdown,
563 };
564
565 static const struct tty_operations ifx_spi_serial_ops = {
566         .open = ifx_spi_open,
567         .close = ifx_spi_close,
568         .write = ifx_spi_write,
569         .hangup = ifx_spi_hangup,
570         .write_room = ifx_spi_write_room,
571         .chars_in_buffer = ifx_spi_chars_in_buffer,
572         .tiocmget = ifx_spi_tiocmget,
573         .tiocmset = ifx_spi_tiocmset,
574 };
575
576 /**
577  *      ifx_spi_insert_fip_string       -       queue received data
578  *      @ifx_ser: our SPI device
579  *      @chars: buffer we have received
580  *      @size: number of chars reeived
581  *
582  *      Queue bytes to the tty assuming the tty side is currently open. If
583  *      not the discard the data.
584  */
585 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
586                                     unsigned char *chars, size_t size)
587 {
588         struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
589         if (!tty)
590                 return;
591         tty_insert_flip_string(tty, chars, size);
592         tty_flip_buffer_push(tty);
593         tty_kref_put(tty);
594 }
595
596 /**
597  *      ifx_spi_complete        -       SPI transfer completed
598  *      @ctx: our SPI device
599  *
600  *      An SPI transfer has completed. Process any received data and kick off
601  *      any further transmits we can commence.
602  */
603 static void ifx_spi_complete(void *ctx)
604 {
605         struct ifx_spi_device *ifx_dev = ctx;
606         struct tty_struct *tty;
607         struct tty_ldisc *ldisc = NULL;
608         int length;
609         int actual_length;
610         unsigned char more;
611         unsigned char cts;
612         int local_write_pending = 0;
613         int queue_length;
614         int srdy;
615         int decode_result;
616
617         mrdy_set_low(ifx_dev);
618
619         if (!ifx_dev->spi_msg.status) {
620                 /* check header validity, get comm flags */
621                 swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
622                         &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
623                 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
624                                 &length, &more, &cts);
625                 if (decode_result == IFX_SPI_HEADER_0) {
626                         dev_dbg(&ifx_dev->spi_dev->dev,
627                                 "ignore input: invalid header 0");
628                         ifx_dev->spi_slave_cts = 0;
629                         goto complete_exit;
630                 } else if (decode_result == IFX_SPI_HEADER_F) {
631                         dev_dbg(&ifx_dev->spi_dev->dev,
632                                 "ignore input: invalid header F");
633                         goto complete_exit;
634                 }
635
636                 ifx_dev->spi_slave_cts = cts;
637
638                 actual_length = min((unsigned int)length,
639                                         ifx_dev->spi_msg.actual_length);
640                 swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
641                          actual_length,
642                          &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
643                 ifx_spi_insert_flip_string(
644                         ifx_dev,
645                         ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
646                         (size_t)actual_length);
647         } else {
648                 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
649                        ifx_dev->spi_msg.status);
650         }
651
652 complete_exit:
653         if (ifx_dev->write_pending) {
654                 ifx_dev->write_pending = 0;
655                 local_write_pending = 1;
656         }
657
658         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
659
660         queue_length = kfifo_len(&ifx_dev->tx_fifo);
661         srdy = gpio_get_value(ifx_dev->gpio.srdy);
662         if (!srdy)
663                 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
664
665         /* schedule output if there is more to do */
666         if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
667                 tasklet_schedule(&ifx_dev->io_work_tasklet);
668         else {
669                 if (more || ifx_dev->spi_more || queue_length > 0 ||
670                         local_write_pending) {
671                         if (ifx_dev->spi_slave_cts) {
672                                 if (more)
673                                         mrdy_assert(ifx_dev);
674                         } else
675                                 mrdy_assert(ifx_dev);
676                 } else {
677                         /*
678                          * poke line discipline driver if any for more data
679                          * may or may not get more data to write
680                          * for now, say not busy
681                          */
682                         ifx_spi_power_state_clear(ifx_dev,
683                                                   IFX_SPI_POWER_DATA_PENDING);
684                         tty = tty_port_tty_get(&ifx_dev->tty_port);
685                         if (tty) {
686                                 ldisc = tty_ldisc_ref(tty);
687                                 if (ldisc) {
688                                         ldisc->ops->write_wakeup(tty);
689                                         tty_ldisc_deref(ldisc);
690                                 }
691                                 tty_kref_put(tty);
692                         }
693                 }
694         }
695 }
696
697 /**
698  *      ifx_spio_io             -       I/O tasklet
699  *      @data: our SPI device
700  *
701  *      Queue data for transmission if possible and then kick off the
702  *      transfer.
703  */
704 static void ifx_spi_io(unsigned long data)
705 {
706         int retval;
707         struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
708
709         if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
710                 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
711                         ifx_dev->gpio.unack_srdy_int_nb--;
712
713                 ifx_spi_prepare_tx_buffer(ifx_dev);
714
715                 spi_message_init(&ifx_dev->spi_msg);
716                 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
717
718                 ifx_dev->spi_msg.context = ifx_dev;
719                 ifx_dev->spi_msg.complete = ifx_spi_complete;
720
721                 /* set up our spi transfer */
722                 /* note len is BYTES, not transfers */
723                 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
724                 ifx_dev->spi_xfer.cs_change = 0;
725                 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
726                 /* ifx_dev->spi_xfer.speed_hz = 390625; */
727                 ifx_dev->spi_xfer.bits_per_word = spi_bpw;
728
729                 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
730                 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
731
732                 /*
733                  * setup dma pointers
734                  */
735                 if (ifx_dev->use_dma) {
736                         ifx_dev->spi_msg.is_dma_mapped = 1;
737                         ifx_dev->tx_dma = ifx_dev->tx_bus;
738                         ifx_dev->rx_dma = ifx_dev->rx_bus;
739                         ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
740                         ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
741                 } else {
742                         ifx_dev->spi_msg.is_dma_mapped = 0;
743                         ifx_dev->tx_dma = (dma_addr_t)0;
744                         ifx_dev->rx_dma = (dma_addr_t)0;
745                         ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
746                         ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
747                 }
748
749                 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
750
751                 /* Assert MRDY. This may have already been done by the write
752                  * routine.
753                  */
754                 mrdy_assert(ifx_dev);
755
756                 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
757                 if (retval) {
758                         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
759                                   &ifx_dev->flags);
760                         tasklet_schedule(&ifx_dev->io_work_tasklet);
761                         return;
762                 }
763         } else
764                 ifx_dev->write_pending = 1;
765 }
766
767 /**
768  *      ifx_spi_free_port       -       free up the tty side
769  *      @ifx_dev: IFX device going away
770  *
771  *      Unregister and free up a port when the device goes away
772  */
773 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
774 {
775         if (ifx_dev->tty_dev)
776                 tty_unregister_device(tty_drv, ifx_dev->minor);
777         kfifo_free(&ifx_dev->tx_fifo);
778 }
779
780 /**
781  *      ifx_spi_create_port     -       create a new port
782  *      @ifx_dev: our spi device
783  *
784  *      Allocate and initialise the tty port that goes with this interface
785  *      and add it to the tty layer so that it can be opened.
786  */
787 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
788 {
789         int ret = 0;
790         struct tty_port *pport = &ifx_dev->tty_port;
791
792         spin_lock_init(&ifx_dev->fifo_lock);
793         lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
794                 &ifx_spi_key, 0);
795
796         if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
797                 ret = -ENOMEM;
798                 goto error_ret;
799         }
800
801         tty_port_init(pport);
802         pport->ops = &ifx_tty_port_ops;
803         ifx_dev->minor = IFX_SPI_TTY_ID;
804         ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
805                                                &ifx_dev->spi_dev->dev);
806         if (IS_ERR(ifx_dev->tty_dev)) {
807                 dev_dbg(&ifx_dev->spi_dev->dev,
808                         "%s: registering tty device failed", __func__);
809                 ret = PTR_ERR(ifx_dev->tty_dev);
810                 goto error_ret;
811         }
812         return 0;
813
814 error_ret:
815         ifx_spi_free_port(ifx_dev);
816         return ret;
817 }
818
819 /**
820  *      ifx_spi_handle_srdy             -       handle SRDY
821  *      @ifx_dev: device asserting SRDY
822  *
823  *      Check our device state and see what we need to kick off when SRDY
824  *      is asserted. This usually means killing the timer and firing off the
825  *      I/O processing.
826  */
827 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
828 {
829         if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
830                 del_timer_sync(&ifx_dev->spi_timer);
831                 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
832         }
833
834         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
835
836         if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
837                 tasklet_schedule(&ifx_dev->io_work_tasklet);
838         else
839                 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
840 }
841
842 /**
843  *      ifx_spi_srdy_interrupt  -       SRDY asserted
844  *      @irq: our IRQ number
845  *      @dev: our ifx device
846  *
847  *      The modem asserted SRDY. Handle the srdy event
848  */
849 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
850 {
851         struct ifx_spi_device *ifx_dev = dev;
852         ifx_dev->gpio.unack_srdy_int_nb++;
853         ifx_spi_handle_srdy(ifx_dev);
854         return IRQ_HANDLED;
855 }
856
857 /**
858  *      ifx_spi_reset_interrupt -       Modem has changed reset state
859  *      @irq: interrupt number
860  *      @dev: our device pointer
861  *
862  *      The modem has either entered or left reset state. Check the GPIO
863  *      line to see which.
864  *
865  *      FIXME: review locking on MR_INPROGRESS versus
866  *      parallel unsolicited reset/solicited reset
867  */
868 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
869 {
870         struct ifx_spi_device *ifx_dev = dev;
871         int val = gpio_get_value(ifx_dev->gpio.reset_out);
872         int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
873
874         if (val == 0) {
875                 /* entered reset */
876                 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
877                 if (!solreset) {
878                         /* unsolicited reset  */
879                         ifx_spi_ttyhangup(ifx_dev);
880                 }
881         } else {
882                 /* exited reset */
883                 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
884                 if (solreset) {
885                         set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
886                         wake_up(&ifx_dev->mdm_reset_wait);
887                 }
888         }
889         return IRQ_HANDLED;
890 }
891
892 /**
893  *      ifx_spi_free_device - free device
894  *      @ifx_dev: device to free
895  *
896  *      Free the IFX device
897  */
898 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
899 {
900         ifx_spi_free_port(ifx_dev);
901         dma_free_coherent(&ifx_dev->spi_dev->dev,
902                                 IFX_SPI_TRANSFER_SIZE,
903                                 ifx_dev->tx_buffer,
904                                 ifx_dev->tx_bus);
905         dma_free_coherent(&ifx_dev->spi_dev->dev,
906                                 IFX_SPI_TRANSFER_SIZE,
907                                 ifx_dev->rx_buffer,
908                                 ifx_dev->rx_bus);
909 }
910
911 /**
912  *      ifx_spi_reset   -       reset modem
913  *      @ifx_dev: modem to reset
914  *
915  *      Perform a reset on the modem
916  */
917 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
918 {
919         int ret;
920         /*
921          * set up modem power, reset
922          *
923          * delays are required on some platforms for the modem
924          * to reset properly
925          */
926         set_bit(MR_START, &ifx_dev->mdm_reset_state);
927         gpio_set_value(ifx_dev->gpio.po, 0);
928         gpio_set_value(ifx_dev->gpio.reset, 0);
929         msleep(25);
930         gpio_set_value(ifx_dev->gpio.reset, 1);
931         msleep(1);
932         gpio_set_value(ifx_dev->gpio.po, 1);
933         msleep(1);
934         gpio_set_value(ifx_dev->gpio.po, 0);
935         ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
936                                  test_bit(MR_COMPLETE,
937                                           &ifx_dev->mdm_reset_state),
938                                  IFX_RESET_TIMEOUT);
939         if (!ret)
940                 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
941                          ifx_dev->mdm_reset_state);
942
943         ifx_dev->mdm_reset_state = 0;
944         return ret;
945 }
946
947 /**
948  *      ifx_spi_spi_probe       -       probe callback
949  *      @spi: our possible matching SPI device
950  *
951  *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
952  *      GPIO setup.
953  *
954  *      FIXME:
955  *      -       Support for multiple devices
956  *      -       Split out MID specific GPIO handling eventually
957  */
958
959 static int ifx_spi_spi_probe(struct spi_device *spi)
960 {
961         int ret;
962         int srdy;
963         struct ifx_modem_platform_data *pl_data;
964         struct ifx_spi_device *ifx_dev;
965
966         if (saved_ifx_dev) {
967                 dev_dbg(&spi->dev, "ignoring subsequent detection");
968                 return -ENODEV;
969         }
970
971         pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
972         if (!pl_data) {
973                 dev_err(&spi->dev, "missing platform data!");
974                 return -ENODEV;
975         }
976
977         /* initialize structure to hold our device variables */
978         ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
979         if (!ifx_dev) {
980                 dev_err(&spi->dev, "spi device allocation failed");
981                 return -ENOMEM;
982         }
983         saved_ifx_dev = ifx_dev;
984         ifx_dev->spi_dev = spi;
985         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
986         spin_lock_init(&ifx_dev->write_lock);
987         spin_lock_init(&ifx_dev->power_lock);
988         ifx_dev->power_status = 0;
989         init_timer(&ifx_dev->spi_timer);
990         ifx_dev->spi_timer.function = ifx_spi_timeout;
991         ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
992         ifx_dev->modem = pl_data->modem_type;
993         ifx_dev->use_dma = pl_data->use_dma;
994         ifx_dev->max_hz = pl_data->max_hz;
995         /* initialize spi mode, etc */
996         spi->max_speed_hz = ifx_dev->max_hz;
997         spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
998         spi->bits_per_word = spi_bpw;
999         ret = spi_setup(spi);
1000         if (ret) {
1001                 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1002                 return -ENODEV;
1003         }
1004
1005         /* ensure SPI protocol flags are initialized to enable transfer */
1006         ifx_dev->spi_more = 0;
1007         ifx_dev->spi_slave_cts = 0;
1008
1009         /*initialize transfer and dma buffers */
1010         ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1011                                 IFX_SPI_TRANSFER_SIZE,
1012                                 &ifx_dev->tx_bus,
1013                                 GFP_KERNEL);
1014         if (!ifx_dev->tx_buffer) {
1015                 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1016                 ret = -ENOMEM;
1017                 goto error_ret;
1018         }
1019         ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1020                                 IFX_SPI_TRANSFER_SIZE,
1021                                 &ifx_dev->rx_bus,
1022                                 GFP_KERNEL);
1023         if (!ifx_dev->rx_buffer) {
1024                 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1025                 ret = -ENOMEM;
1026                 goto error_ret;
1027         }
1028
1029         /* initialize waitq for modem reset */
1030         init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1031
1032         spi_set_drvdata(spi, ifx_dev);
1033         tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1034                                                 (unsigned long)ifx_dev);
1035
1036         set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1037
1038         /* create our tty port */
1039         ret = ifx_spi_create_port(ifx_dev);
1040         if (ret != 0) {
1041                 dev_err(&spi->dev, "create default tty port failed");
1042                 goto error_ret;
1043         }
1044
1045         ifx_dev->gpio.reset = pl_data->rst_pmu;
1046         ifx_dev->gpio.po = pl_data->pwr_on;
1047         ifx_dev->gpio.mrdy = pl_data->mrdy;
1048         ifx_dev->gpio.srdy = pl_data->srdy;
1049         ifx_dev->gpio.reset_out = pl_data->rst_out;
1050
1051         dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1052                  ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1053                  ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1054
1055         /* Configure gpios */
1056         ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1057         if (ret < 0) {
1058                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1059                         ifx_dev->gpio.reset);
1060                 goto error_ret;
1061         }
1062         ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1063         ret += gpio_export(ifx_dev->gpio.reset, 1);
1064         if (ret) {
1065                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1066                         ifx_dev->gpio.reset);
1067                 ret = -EBUSY;
1068                 goto error_ret2;
1069         }
1070
1071         ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1072         ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1073         ret += gpio_export(ifx_dev->gpio.po, 1);
1074         if (ret) {
1075                 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1076                         ifx_dev->gpio.po);
1077                 ret = -EBUSY;
1078                 goto error_ret3;
1079         }
1080
1081         ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1082         if (ret < 0) {
1083                 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1084                         ifx_dev->gpio.mrdy);
1085                 goto error_ret3;
1086         }
1087         ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1088         ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1089         if (ret) {
1090                 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1091                         ifx_dev->gpio.mrdy);
1092                 ret = -EBUSY;
1093                 goto error_ret4;
1094         }
1095
1096         ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1097         if (ret < 0) {
1098                 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1099                         ifx_dev->gpio.srdy);
1100                 ret = -EBUSY;
1101                 goto error_ret4;
1102         }
1103         ret += gpio_export(ifx_dev->gpio.srdy, 1);
1104         ret += gpio_direction_input(ifx_dev->gpio.srdy);
1105         if (ret) {
1106                 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1107                         ifx_dev->gpio.srdy);
1108                 ret = -EBUSY;
1109                 goto error_ret5;
1110         }
1111
1112         ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1113         if (ret < 0) {
1114                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1115                         ifx_dev->gpio.reset_out);
1116                 goto error_ret5;
1117         }
1118         ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1119         ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1120         if (ret) {
1121                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1122                         ifx_dev->gpio.reset_out);
1123                 ret = -EBUSY;
1124                 goto error_ret6;
1125         }
1126
1127         ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1128                           ifx_spi_reset_interrupt,
1129                           IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1130                 (void *)ifx_dev);
1131         if (ret) {
1132                 dev_err(&spi->dev, "Unable to get irq %x\n",
1133                         gpio_to_irq(ifx_dev->gpio.reset_out));
1134                 goto error_ret6;
1135         }
1136
1137         ret = ifx_spi_reset(ifx_dev);
1138
1139         ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1140                           ifx_spi_srdy_interrupt,
1141                           IRQF_TRIGGER_RISING, DRVNAME,
1142                           (void *)ifx_dev);
1143         if (ret) {
1144                 dev_err(&spi->dev, "Unable to get irq %x",
1145                         gpio_to_irq(ifx_dev->gpio.srdy));
1146                 goto error_ret7;
1147         }
1148
1149         /* set pm runtime power state and register with power system */
1150         pm_runtime_set_active(&spi->dev);
1151         pm_runtime_enable(&spi->dev);
1152
1153         /* handle case that modem is already signaling SRDY */
1154         /* no outgoing tty open at this point, this just satisfies the
1155          * modem's read and should reset communication properly
1156          */
1157         srdy = gpio_get_value(ifx_dev->gpio.srdy);
1158
1159         if (srdy) {
1160                 mrdy_assert(ifx_dev);
1161                 ifx_spi_handle_srdy(ifx_dev);
1162         } else
1163                 mrdy_set_low(ifx_dev);
1164         return 0;
1165
1166 error_ret7:
1167         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1168 error_ret6:
1169         gpio_free(ifx_dev->gpio.srdy);
1170 error_ret5:
1171         gpio_free(ifx_dev->gpio.mrdy);
1172 error_ret4:
1173         gpio_free(ifx_dev->gpio.reset);
1174 error_ret3:
1175         gpio_free(ifx_dev->gpio.po);
1176 error_ret2:
1177         gpio_free(ifx_dev->gpio.reset_out);
1178 error_ret:
1179         ifx_spi_free_device(ifx_dev);
1180         saved_ifx_dev = NULL;
1181         return ret;
1182 }
1183
1184 /**
1185  *      ifx_spi_spi_remove      -       SPI device was removed
1186  *      @spi: SPI device
1187  *
1188  *      FIXME: We should be shutting the device down here not in
1189  *      the module unload path.
1190  */
1191
1192 static int ifx_spi_spi_remove(struct spi_device *spi)
1193 {
1194         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1195         /* stop activity */
1196         tasklet_kill(&ifx_dev->io_work_tasklet);
1197         /* free irq */
1198         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1199         free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1200
1201         gpio_free(ifx_dev->gpio.srdy);
1202         gpio_free(ifx_dev->gpio.mrdy);
1203         gpio_free(ifx_dev->gpio.reset);
1204         gpio_free(ifx_dev->gpio.po);
1205         gpio_free(ifx_dev->gpio.reset_out);
1206
1207         /* free allocations */
1208         ifx_spi_free_device(ifx_dev);
1209
1210         saved_ifx_dev = NULL;
1211         return 0;
1212 }
1213
1214 /**
1215  *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1216  *      @spi: SPI device
1217  *
1218  *      No action needs to be taken here
1219  */
1220
1221 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1222 {
1223 }
1224
1225 /*
1226  * various suspends and resumes have nothing to do
1227  * no hardware to save state for
1228  */
1229
1230 /**
1231  *      ifx_spi_spi_suspend     -       suspend SPI on system suspend
1232  *      @dev: device being suspended
1233  *
1234  *      Suspend the SPI side. No action needed on Intel MID platforms, may
1235  *      need extending for other systems.
1236  */
1237 static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1238 {
1239         return 0;
1240 }
1241
1242 /**
1243  *      ifx_spi_spi_resume      -       resume SPI side on system resume
1244  *      @dev: device being suspended
1245  *
1246  *      Suspend the SPI side. No action needed on Intel MID platforms, may
1247  *      need extending for other systems.
1248  */
1249 static int ifx_spi_spi_resume(struct spi_device *spi)
1250 {
1251         return 0;
1252 }
1253
1254 /**
1255  *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1256  *      @dev: device being suspended
1257  *
1258  *      Suspend the modem. No action needed on Intel MID platforms, may
1259  *      need extending for other systems.
1260  */
1261 static int ifx_spi_pm_suspend(struct device *dev)
1262 {
1263         return 0;
1264 }
1265
1266 /**
1267  *      ifx_spi_pm_resume       -       resume modem on system resume
1268  *      @dev: device being suspended
1269  *
1270  *      Allow the modem to resume. No action needed.
1271  *
1272  *      FIXME: do we need to reset anything here ?
1273  */
1274 static int ifx_spi_pm_resume(struct device *dev)
1275 {
1276         return 0;
1277 }
1278
1279 /**
1280  *      ifx_spi_pm_runtime_resume       -       suspend modem
1281  *      @dev: device being suspended
1282  *
1283  *      Allow the modem to resume. No action needed.
1284  */
1285 static int ifx_spi_pm_runtime_resume(struct device *dev)
1286 {
1287         return 0;
1288 }
1289
1290 /**
1291  *      ifx_spi_pm_runtime_suspend      -       suspend modem
1292  *      @dev: device being suspended
1293  *
1294  *      Allow the modem to suspend and thus suspend to continue up the
1295  *      device tree.
1296  */
1297 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1298 {
1299         return 0;
1300 }
1301
1302 /**
1303  *      ifx_spi_pm_runtime_idle         -       check if modem idle
1304  *      @dev: our device
1305  *
1306  *      Check conditions and queue runtime suspend if idle.
1307  */
1308 static int ifx_spi_pm_runtime_idle(struct device *dev)
1309 {
1310         struct spi_device *spi = to_spi_device(dev);
1311         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1312
1313         if (!ifx_dev->power_status)
1314                 pm_runtime_suspend(dev);
1315
1316         return 0;
1317 }
1318
1319 static const struct dev_pm_ops ifx_spi_pm = {
1320         .resume = ifx_spi_pm_resume,
1321         .suspend = ifx_spi_pm_suspend,
1322         .runtime_resume = ifx_spi_pm_runtime_resume,
1323         .runtime_suspend = ifx_spi_pm_runtime_suspend,
1324         .runtime_idle = ifx_spi_pm_runtime_idle
1325 };
1326
1327 static const struct spi_device_id ifx_id_table[] = {
1328         {"ifx6160", 0},
1329         {"ifx6260", 0},
1330         { }
1331 };
1332 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1333
1334 /* spi operations */
1335 static const struct spi_driver ifx_spi_driver = {
1336         .driver = {
1337                 .name = DRVNAME,
1338                 .bus = &spi_bus_type,
1339                 .pm = &ifx_spi_pm,
1340                 .owner = THIS_MODULE},
1341         .probe = ifx_spi_spi_probe,
1342         .shutdown = ifx_spi_spi_shutdown,
1343         .remove = __devexit_p(ifx_spi_spi_remove),
1344         .suspend = ifx_spi_spi_suspend,
1345         .resume = ifx_spi_spi_resume,
1346         .id_table = ifx_id_table
1347 };
1348
1349 /**
1350  *      ifx_spi_exit    -       module exit
1351  *
1352  *      Unload the module.
1353  */
1354
1355 static void __exit ifx_spi_exit(void)
1356 {
1357         /* unregister */
1358         tty_unregister_driver(tty_drv);
1359         spi_unregister_driver((void *)&ifx_spi_driver);
1360 }
1361
1362 /**
1363  *      ifx_spi_init            -       module entry point
1364  *
1365  *      Initialise the SPI and tty interfaces for the IFX SPI driver
1366  *      We need to initialize upper-edge spi driver after the tty
1367  *      driver because otherwise the spi probe will race
1368  */
1369
1370 static int __init ifx_spi_init(void)
1371 {
1372         int result;
1373
1374         tty_drv = alloc_tty_driver(1);
1375         if (!tty_drv) {
1376                 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1377                 return -ENOMEM;
1378         }
1379
1380         tty_drv->magic = TTY_DRIVER_MAGIC;
1381         tty_drv->owner = THIS_MODULE;
1382         tty_drv->driver_name = DRVNAME;
1383         tty_drv->name = TTYNAME;
1384         tty_drv->minor_start = IFX_SPI_TTY_ID;
1385         tty_drv->num = 1;
1386         tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1387         tty_drv->subtype = SERIAL_TYPE_NORMAL;
1388         tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1389         tty_drv->init_termios = tty_std_termios;
1390
1391         tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1392
1393         result = tty_register_driver(tty_drv);
1394         if (result) {
1395                 pr_err("%s: tty_register_driver failed(%d)",
1396                         DRVNAME, result);
1397                 put_tty_driver(tty_drv);
1398                 return result;
1399         }
1400
1401         result = spi_register_driver((void *)&ifx_spi_driver);
1402         if (result) {
1403                 pr_err("%s: spi_register_driver failed(%d)",
1404                         DRVNAME, result);
1405                 tty_unregister_driver(tty_drv);
1406         }
1407         return result;
1408 }
1409
1410 module_init(ifx_spi_init);
1411 module_exit(ifx_spi_exit);
1412
1413 MODULE_AUTHOR("Intel");
1414 MODULE_DESCRIPTION("IFX6x60 spi driver");
1415 MODULE_LICENSE("GPL");
1416 MODULE_INFO(Version, "0.1-IFX6x60");