[PATCH] forcedeth config: ring sizes
[pandora-kernel.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *
112  * Known bugs:
113  * We suspect that on some hardware no TX done interrupts are generated.
114  * This means recovery from netif_stop_queue only happens if the hw timer
115  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
116  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
117  * If your hardware reliably generates tx done interrupts, then you can remove
118  * DEV_NEED_TIMERIRQ from the driver_data flags.
119  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
120  * superfluous timer interrupts from the nic.
121  */
122 #define FORCEDETH_VERSION               "0.55"
123 #define DRV_NAME                        "forcedeth"
124
125 #include <linux/module.h>
126 #include <linux/types.h>
127 #include <linux/pci.h>
128 #include <linux/interrupt.h>
129 #include <linux/netdevice.h>
130 #include <linux/etherdevice.h>
131 #include <linux/delay.h>
132 #include <linux/spinlock.h>
133 #include <linux/ethtool.h>
134 #include <linux/timer.h>
135 #include <linux/skbuff.h>
136 #include <linux/mii.h>
137 #include <linux/random.h>
138 #include <linux/init.h>
139 #include <linux/if_vlan.h>
140 #include <linux/dma-mapping.h>
141
142 #include <asm/irq.h>
143 #include <asm/io.h>
144 #include <asm/uaccess.h>
145 #include <asm/system.h>
146
147 #if 0
148 #define dprintk                 printk
149 #else
150 #define dprintk(x...)           do { } while (0)
151 #endif
152
153
154 /*
155  * Hardware access:
156  */
157
158 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
159 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
160 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
161 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
162 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
163 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
164 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
165 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
166 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
167 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
168
169 enum {
170         NvRegIrqStatus = 0x000,
171 #define NVREG_IRQSTAT_MIIEVENT  0x040
172 #define NVREG_IRQSTAT_MASK              0x1ff
173         NvRegIrqMask = 0x004,
174 #define NVREG_IRQ_RX_ERROR              0x0001
175 #define NVREG_IRQ_RX                    0x0002
176 #define NVREG_IRQ_RX_NOBUF              0x0004
177 #define NVREG_IRQ_TX_ERR                0x0008
178 #define NVREG_IRQ_TX_OK                 0x0010
179 #define NVREG_IRQ_TIMER                 0x0020
180 #define NVREG_IRQ_LINK                  0x0040
181 #define NVREG_IRQ_RX_FORCED             0x0080
182 #define NVREG_IRQ_TX_FORCED             0x0100
183 #define NVREG_IRQMASK_THROUGHPUT        0x00df
184 #define NVREG_IRQMASK_CPU               0x0040
185 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
186 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
187 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
188
189 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
190                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
191                                         NVREG_IRQ_TX_FORCED))
192
193         NvRegUnknownSetupReg6 = 0x008,
194 #define NVREG_UNKSETUP6_VAL             3
195
196 /*
197  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
198  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
199  */
200         NvRegPollingInterval = 0x00c,
201 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
202 #define NVREG_POLL_DEFAULT_CPU  13
203         NvRegMSIMap0 = 0x020,
204         NvRegMSIMap1 = 0x024,
205         NvRegMSIIrqMask = 0x030,
206 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
207         NvRegMisc1 = 0x080,
208 #define NVREG_MISC1_PAUSE_TX    0x01
209 #define NVREG_MISC1_HD          0x02
210 #define NVREG_MISC1_FORCE       0x3b0f3c
211
212         NvRegMacReset = 0x3c,
213 #define NVREG_MAC_RESET_ASSERT  0x0F3
214         NvRegTransmitterControl = 0x084,
215 #define NVREG_XMITCTL_START     0x01
216         NvRegTransmitterStatus = 0x088,
217 #define NVREG_XMITSTAT_BUSY     0x01
218
219         NvRegPacketFilterFlags = 0x8c,
220 #define NVREG_PFF_PAUSE_RX      0x08
221 #define NVREG_PFF_ALWAYS        0x7F0000
222 #define NVREG_PFF_PROMISC       0x80
223 #define NVREG_PFF_MYADDR        0x20
224
225         NvRegOffloadConfig = 0x90,
226 #define NVREG_OFFLOAD_HOMEPHY   0x601
227 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
228         NvRegReceiverControl = 0x094,
229 #define NVREG_RCVCTL_START      0x01
230         NvRegReceiverStatus = 0x98,
231 #define NVREG_RCVSTAT_BUSY      0x01
232
233         NvRegRandomSeed = 0x9c,
234 #define NVREG_RNDSEED_MASK      0x00ff
235 #define NVREG_RNDSEED_FORCE     0x7f00
236 #define NVREG_RNDSEED_FORCE2    0x2d00
237 #define NVREG_RNDSEED_FORCE3    0x7400
238
239         NvRegUnknownSetupReg1 = 0xA0,
240 #define NVREG_UNKSETUP1_VAL     0x16070f
241         NvRegUnknownSetupReg2 = 0xA4,
242 #define NVREG_UNKSETUP2_VAL     0x16
243         NvRegMacAddrA = 0xA8,
244         NvRegMacAddrB = 0xAC,
245         NvRegMulticastAddrA = 0xB0,
246 #define NVREG_MCASTADDRA_FORCE  0x01
247         NvRegMulticastAddrB = 0xB4,
248         NvRegMulticastMaskA = 0xB8,
249         NvRegMulticastMaskB = 0xBC,
250
251         NvRegPhyInterface = 0xC0,
252 #define PHY_RGMII               0x10000000
253
254         NvRegTxRingPhysAddr = 0x100,
255         NvRegRxRingPhysAddr = 0x104,
256         NvRegRingSizes = 0x108,
257 #define NVREG_RINGSZ_TXSHIFT 0
258 #define NVREG_RINGSZ_RXSHIFT 16
259         NvRegUnknownTransmitterReg = 0x10c,
260         NvRegLinkSpeed = 0x110,
261 #define NVREG_LINKSPEED_FORCE 0x10000
262 #define NVREG_LINKSPEED_10      1000
263 #define NVREG_LINKSPEED_100     100
264 #define NVREG_LINKSPEED_1000    50
265 #define NVREG_LINKSPEED_MASK    (0xFFF)
266         NvRegUnknownSetupReg5 = 0x130,
267 #define NVREG_UNKSETUP5_BIT31   (1<<31)
268         NvRegUnknownSetupReg3 = 0x13c,
269 #define NVREG_UNKSETUP3_VAL1    0x200010
270         NvRegTxRxControl = 0x144,
271 #define NVREG_TXRXCTL_KICK      0x0001
272 #define NVREG_TXRXCTL_BIT1      0x0002
273 #define NVREG_TXRXCTL_BIT2      0x0004
274 #define NVREG_TXRXCTL_IDLE      0x0008
275 #define NVREG_TXRXCTL_RESET     0x0010
276 #define NVREG_TXRXCTL_RXCHECK   0x0400
277 #define NVREG_TXRXCTL_DESC_1    0
278 #define NVREG_TXRXCTL_DESC_2    0x02100
279 #define NVREG_TXRXCTL_DESC_3    0x02200
280 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
281 #define NVREG_TXRXCTL_VLANINS   0x00080
282         NvRegTxRingPhysAddrHigh = 0x148,
283         NvRegRxRingPhysAddrHigh = 0x14C,
284         NvRegTxPauseFrame = 0x170,
285 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
286 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
287         NvRegMIIStatus = 0x180,
288 #define NVREG_MIISTAT_ERROR             0x0001
289 #define NVREG_MIISTAT_LINKCHANGE        0x0008
290 #define NVREG_MIISTAT_MASK              0x000f
291 #define NVREG_MIISTAT_MASK2             0x000f
292         NvRegUnknownSetupReg4 = 0x184,
293 #define NVREG_UNKSETUP4_VAL     8
294
295         NvRegAdapterControl = 0x188,
296 #define NVREG_ADAPTCTL_START    0x02
297 #define NVREG_ADAPTCTL_LINKUP   0x04
298 #define NVREG_ADAPTCTL_PHYVALID 0x40000
299 #define NVREG_ADAPTCTL_RUNNING  0x100000
300 #define NVREG_ADAPTCTL_PHYSHIFT 24
301         NvRegMIISpeed = 0x18c,
302 #define NVREG_MIISPEED_BIT8     (1<<8)
303 #define NVREG_MIIDELAY  5
304         NvRegMIIControl = 0x190,
305 #define NVREG_MIICTL_INUSE      0x08000
306 #define NVREG_MIICTL_WRITE      0x00400
307 #define NVREG_MIICTL_ADDRSHIFT  5
308         NvRegMIIData = 0x194,
309         NvRegWakeUpFlags = 0x200,
310 #define NVREG_WAKEUPFLAGS_VAL           0x7770
311 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
312 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
313 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
314 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
315 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
316 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
317 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
318 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
319 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
320 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
321
322         NvRegPatternCRC = 0x204,
323         NvRegPatternMask = 0x208,
324         NvRegPowerCap = 0x268,
325 #define NVREG_POWERCAP_D3SUPP   (1<<30)
326 #define NVREG_POWERCAP_D2SUPP   (1<<26)
327 #define NVREG_POWERCAP_D1SUPP   (1<<25)
328         NvRegPowerState = 0x26c,
329 #define NVREG_POWERSTATE_POWEREDUP      0x8000
330 #define NVREG_POWERSTATE_VALID          0x0100
331 #define NVREG_POWERSTATE_MASK           0x0003
332 #define NVREG_POWERSTATE_D0             0x0000
333 #define NVREG_POWERSTATE_D1             0x0001
334 #define NVREG_POWERSTATE_D2             0x0002
335 #define NVREG_POWERSTATE_D3             0x0003
336         NvRegVlanControl = 0x300,
337 #define NVREG_VLANCONTROL_ENABLE        0x2000
338         NvRegMSIXMap0 = 0x3e0,
339         NvRegMSIXMap1 = 0x3e4,
340         NvRegMSIXIrqStatus = 0x3f0,
341
342         NvRegPowerState2 = 0x600,
343 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
344 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
345 };
346
347 /* Big endian: should work, but is untested */
348 struct ring_desc {
349         u32 PacketBuffer;
350         u32 FlagLen;
351 };
352
353 struct ring_desc_ex {
354         u32 PacketBufferHigh;
355         u32 PacketBufferLow;
356         u32 TxVlan;
357         u32 FlagLen;
358 };
359
360 typedef union _ring_type {
361         struct ring_desc* orig;
362         struct ring_desc_ex* ex;
363 } ring_type;
364
365 #define FLAG_MASK_V1 0xffff0000
366 #define FLAG_MASK_V2 0xffffc000
367 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
368 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
369
370 #define NV_TX_LASTPACKET        (1<<16)
371 #define NV_TX_RETRYERROR        (1<<19)
372 #define NV_TX_FORCED_INTERRUPT  (1<<24)
373 #define NV_TX_DEFERRED          (1<<26)
374 #define NV_TX_CARRIERLOST       (1<<27)
375 #define NV_TX_LATECOLLISION     (1<<28)
376 #define NV_TX_UNDERFLOW         (1<<29)
377 #define NV_TX_ERROR             (1<<30)
378 #define NV_TX_VALID             (1<<31)
379
380 #define NV_TX2_LASTPACKET       (1<<29)
381 #define NV_TX2_RETRYERROR       (1<<18)
382 #define NV_TX2_FORCED_INTERRUPT (1<<30)
383 #define NV_TX2_DEFERRED         (1<<25)
384 #define NV_TX2_CARRIERLOST      (1<<26)
385 #define NV_TX2_LATECOLLISION    (1<<27)
386 #define NV_TX2_UNDERFLOW        (1<<28)
387 /* error and valid are the same for both */
388 #define NV_TX2_ERROR            (1<<30)
389 #define NV_TX2_VALID            (1<<31)
390 #define NV_TX2_TSO              (1<<28)
391 #define NV_TX2_TSO_SHIFT        14
392 #define NV_TX2_TSO_MAX_SHIFT    14
393 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
394 #define NV_TX2_CHECKSUM_L3      (1<<27)
395 #define NV_TX2_CHECKSUM_L4      (1<<26)
396
397 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
398
399 #define NV_RX_DESCRIPTORVALID   (1<<16)
400 #define NV_RX_MISSEDFRAME       (1<<17)
401 #define NV_RX_SUBSTRACT1        (1<<18)
402 #define NV_RX_ERROR1            (1<<23)
403 #define NV_RX_ERROR2            (1<<24)
404 #define NV_RX_ERROR3            (1<<25)
405 #define NV_RX_ERROR4            (1<<26)
406 #define NV_RX_CRCERR            (1<<27)
407 #define NV_RX_OVERFLOW          (1<<28)
408 #define NV_RX_FRAMINGERR        (1<<29)
409 #define NV_RX_ERROR             (1<<30)
410 #define NV_RX_AVAIL             (1<<31)
411
412 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
413 #define NV_RX2_CHECKSUMOK1      (0x10000000)
414 #define NV_RX2_CHECKSUMOK2      (0x14000000)
415 #define NV_RX2_CHECKSUMOK3      (0x18000000)
416 #define NV_RX2_DESCRIPTORVALID  (1<<29)
417 #define NV_RX2_SUBSTRACT1       (1<<25)
418 #define NV_RX2_ERROR1           (1<<18)
419 #define NV_RX2_ERROR2           (1<<19)
420 #define NV_RX2_ERROR3           (1<<20)
421 #define NV_RX2_ERROR4           (1<<21)
422 #define NV_RX2_CRCERR           (1<<22)
423 #define NV_RX2_OVERFLOW         (1<<23)
424 #define NV_RX2_FRAMINGERR       (1<<24)
425 /* error and avail are the same for both */
426 #define NV_RX2_ERROR            (1<<30)
427 #define NV_RX2_AVAIL            (1<<31)
428
429 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
430 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
431
432 /* Miscelaneous hardware related defines: */
433 #define NV_PCI_REGSZ_VER1       0x270
434 #define NV_PCI_REGSZ_VER2       0x604
435
436 /* various timeout delays: all in usec */
437 #define NV_TXRX_RESET_DELAY     4
438 #define NV_TXSTOP_DELAY1        10
439 #define NV_TXSTOP_DELAY1MAX     500000
440 #define NV_TXSTOP_DELAY2        100
441 #define NV_RXSTOP_DELAY1        10
442 #define NV_RXSTOP_DELAY1MAX     500000
443 #define NV_RXSTOP_DELAY2        100
444 #define NV_SETUP5_DELAY         5
445 #define NV_SETUP5_DELAYMAX      50000
446 #define NV_POWERUP_DELAY        5
447 #define NV_POWERUP_DELAYMAX     5000
448 #define NV_MIIBUSY_DELAY        50
449 #define NV_MIIPHY_DELAY 10
450 #define NV_MIIPHY_DELAYMAX      10000
451 #define NV_MAC_RESET_DELAY      64
452
453 #define NV_WAKEUPPATTERNS       5
454 #define NV_WAKEUPMASKENTRIES    4
455
456 /* General driver defaults */
457 #define NV_WATCHDOG_TIMEO       (5*HZ)
458
459 #define RX_RING_DEFAULT         128
460 #define TX_RING_DEFAULT         256
461 #define RX_RING_MIN             128
462 #define TX_RING_MIN             64
463 #define RING_MAX_DESC_VER_1     1024
464 #define RING_MAX_DESC_VER_2_3   16384
465 /*
466  * Difference between the get and put pointers for the tx ring.
467  * This is used to throttle the amount of data outstanding in the
468  * tx ring.
469  */
470 #define TX_LIMIT_DIFFERENCE     1
471
472 /* rx/tx mac addr + type + vlan + align + slack*/
473 #define NV_RX_HEADERS           (64)
474 /* even more slack. */
475 #define NV_RX_ALLOC_PAD         (64)
476
477 /* maximum mtu size */
478 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
479 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
480
481 #define OOM_REFILL      (1+HZ/20)
482 #define POLL_WAIT       (1+HZ/100)
483 #define LINK_TIMEOUT    (3*HZ)
484
485 /*
486  * desc_ver values:
487  * The nic supports three different descriptor types:
488  * - DESC_VER_1: Original
489  * - DESC_VER_2: support for jumbo frames.
490  * - DESC_VER_3: 64-bit format.
491  */
492 #define DESC_VER_1      1
493 #define DESC_VER_2      2
494 #define DESC_VER_3      3
495
496 /* PHY defines */
497 #define PHY_OUI_MARVELL 0x5043
498 #define PHY_OUI_CICADA  0x03f1
499 #define PHYID1_OUI_MASK 0x03ff
500 #define PHYID1_OUI_SHFT 6
501 #define PHYID2_OUI_MASK 0xfc00
502 #define PHYID2_OUI_SHFT 10
503 #define PHY_INIT1       0x0f000
504 #define PHY_INIT2       0x0e00
505 #define PHY_INIT3       0x01000
506 #define PHY_INIT4       0x0200
507 #define PHY_INIT5       0x0004
508 #define PHY_INIT6       0x02000
509 #define PHY_GIGABIT     0x0100
510
511 #define PHY_TIMEOUT     0x1
512 #define PHY_ERROR       0x2
513
514 #define PHY_100 0x1
515 #define PHY_1000        0x2
516 #define PHY_HALF        0x100
517
518 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
519 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
520 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
521 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
522
523 /* MSI/MSI-X defines */
524 #define NV_MSI_X_MAX_VECTORS  8
525 #define NV_MSI_X_VECTORS_MASK 0x000f
526 #define NV_MSI_CAPABLE        0x0010
527 #define NV_MSI_X_CAPABLE      0x0020
528 #define NV_MSI_ENABLED        0x0040
529 #define NV_MSI_X_ENABLED      0x0080
530
531 #define NV_MSI_X_VECTOR_ALL   0x0
532 #define NV_MSI_X_VECTOR_RX    0x0
533 #define NV_MSI_X_VECTOR_TX    0x1
534 #define NV_MSI_X_VECTOR_OTHER 0x2
535
536 /*
537  * SMP locking:
538  * All hardware access under dev->priv->lock, except the performance
539  * critical parts:
540  * - rx is (pseudo-) lockless: it relies on the single-threading provided
541  *      by the arch code for interrupts.
542  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
543  *      needs dev->priv->lock :-(
544  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
545  */
546
547 /* in dev: base, irq */
548 struct fe_priv {
549         spinlock_t lock;
550
551         /* General data:
552          * Locking: spin_lock(&np->lock); */
553         struct net_device_stats stats;
554         int in_shutdown;
555         u32 linkspeed;
556         int duplex;
557         int autoneg;
558         int fixed_mode;
559         int phyaddr;
560         int wolenabled;
561         unsigned int phy_oui;
562         u16 gigabit;
563
564         /* General data: RO fields */
565         dma_addr_t ring_addr;
566         struct pci_dev *pci_dev;
567         u32 orig_mac[2];
568         u32 irqmask;
569         u32 desc_ver;
570         u32 txrxctl_bits;
571         u32 vlanctl_bits;
572         u32 driver_data;
573         u32 register_size;
574
575         void __iomem *base;
576
577         /* rx specific fields.
578          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
579          */
580         ring_type rx_ring;
581         unsigned int cur_rx, refill_rx;
582         struct sk_buff **rx_skbuff;
583         dma_addr_t *rx_dma;
584         unsigned int rx_buf_sz;
585         unsigned int pkt_limit;
586         struct timer_list oom_kick;
587         struct timer_list nic_poll;
588         u32 nic_poll_irq;
589         int rx_ring_size;
590
591         /* media detection workaround.
592          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
593          */
594         int need_linktimer;
595         unsigned long link_timeout;
596         /*
597          * tx specific fields.
598          */
599         ring_type tx_ring;
600         unsigned int next_tx, nic_tx;
601         struct sk_buff **tx_skbuff;
602         dma_addr_t *tx_dma;
603         unsigned int *tx_dma_len;
604         u32 tx_flags;
605         int tx_ring_size;
606         int tx_limit_start;
607         int tx_limit_stop;
608
609         /* vlan fields */
610         struct vlan_group *vlangrp;
611
612         /* msi/msi-x fields */
613         u32 msi_flags;
614         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
615
616         /* flow control */
617         u32 pause_flags;
618 };
619
620 /*
621  * Maximum number of loops until we assume that a bit in the irq mask
622  * is stuck. Overridable with module param.
623  */
624 static int max_interrupt_work = 5;
625
626 /*
627  * Optimization can be either throuput mode or cpu mode
628  *
629  * Throughput Mode: Every tx and rx packet will generate an interrupt.
630  * CPU Mode: Interrupts are controlled by a timer.
631  */
632 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
633 #define NV_OPTIMIZATION_MODE_CPU        1
634 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
635
636 /*
637  * Poll interval for timer irq
638  *
639  * This interval determines how frequent an interrupt is generated.
640  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
641  * Min = 0, and Max = 65535
642  */
643 static int poll_interval = -1;
644
645 /*
646  * Disable MSI interrupts
647  */
648 static int disable_msi = 0;
649
650 /*
651  * Disable MSIX interrupts
652  */
653 static int disable_msix = 0;
654
655 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
656 {
657         return netdev_priv(dev);
658 }
659
660 static inline u8 __iomem *get_hwbase(struct net_device *dev)
661 {
662         return ((struct fe_priv *)netdev_priv(dev))->base;
663 }
664
665 static inline void pci_push(u8 __iomem *base)
666 {
667         /* force out pending posted writes */
668         readl(base);
669 }
670
671 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
672 {
673         return le32_to_cpu(prd->FlagLen)
674                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
675 }
676
677 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
678 {
679         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
680 }
681
682 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
683                                 int delay, int delaymax, const char *msg)
684 {
685         u8 __iomem *base = get_hwbase(dev);
686
687         pci_push(base);
688         do {
689                 udelay(delay);
690                 delaymax -= delay;
691                 if (delaymax < 0) {
692                         if (msg)
693                                 printk(msg);
694                         return 1;
695                 }
696         } while ((readl(base + offset) & mask) != target);
697         return 0;
698 }
699
700 #define NV_SETUP_RX_RING 0x01
701 #define NV_SETUP_TX_RING 0x02
702
703 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
704 {
705         struct fe_priv *np = get_nvpriv(dev);
706         u8 __iomem *base = get_hwbase(dev);
707
708         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
709                 if (rxtx_flags & NV_SETUP_RX_RING) {
710                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
711                 }
712                 if (rxtx_flags & NV_SETUP_TX_RING) {
713                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
714                 }
715         } else {
716                 if (rxtx_flags & NV_SETUP_RX_RING) {
717                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
718                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
719                 }
720                 if (rxtx_flags & NV_SETUP_TX_RING) {
721                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
722                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
723                 }
724         }
725 }
726
727 static void free_rings(struct net_device *dev)
728 {
729         struct fe_priv *np = get_nvpriv(dev);
730
731         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
732                 if(np->rx_ring.orig)
733                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
734                                             np->rx_ring.orig, np->ring_addr);
735         } else {
736                 if (np->rx_ring.ex)
737                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
738                                             np->rx_ring.ex, np->ring_addr);
739         }
740         if (np->rx_skbuff)
741                 kfree(np->rx_skbuff);
742         if (np->rx_dma)
743                 kfree(np->rx_dma);
744         if (np->tx_skbuff)
745                 kfree(np->tx_skbuff);
746         if (np->tx_dma)
747                 kfree(np->tx_dma);
748         if (np->tx_dma_len)
749                 kfree(np->tx_dma_len);
750 }
751
752 static int using_multi_irqs(struct net_device *dev)
753 {
754         struct fe_priv *np = get_nvpriv(dev);
755
756         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
757             ((np->msi_flags & NV_MSI_X_ENABLED) &&
758              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
759                 return 0;
760         else
761                 return 1;
762 }
763
764 static void nv_enable_irq(struct net_device *dev)
765 {
766         struct fe_priv *np = get_nvpriv(dev);
767
768         if (!using_multi_irqs(dev)) {
769                 if (np->msi_flags & NV_MSI_X_ENABLED)
770                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
771                 else
772                         enable_irq(dev->irq);
773         } else {
774                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
775                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
776                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
777         }
778 }
779
780 static void nv_disable_irq(struct net_device *dev)
781 {
782         struct fe_priv *np = get_nvpriv(dev);
783
784         if (!using_multi_irqs(dev)) {
785                 if (np->msi_flags & NV_MSI_X_ENABLED)
786                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
787                 else
788                         disable_irq(dev->irq);
789         } else {
790                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
791                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
792                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
793         }
794 }
795
796 /* In MSIX mode, a write to irqmask behaves as XOR */
797 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
798 {
799         u8 __iomem *base = get_hwbase(dev);
800
801         writel(mask, base + NvRegIrqMask);
802 }
803
804 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
805 {
806         struct fe_priv *np = get_nvpriv(dev);
807         u8 __iomem *base = get_hwbase(dev);
808
809         if (np->msi_flags & NV_MSI_X_ENABLED) {
810                 writel(mask, base + NvRegIrqMask);
811         } else {
812                 if (np->msi_flags & NV_MSI_ENABLED)
813                         writel(0, base + NvRegMSIIrqMask);
814                 writel(0, base + NvRegIrqMask);
815         }
816 }
817
818 #define MII_READ        (-1)
819 /* mii_rw: read/write a register on the PHY.
820  *
821  * Caller must guarantee serialization
822  */
823 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
824 {
825         u8 __iomem *base = get_hwbase(dev);
826         u32 reg;
827         int retval;
828
829         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
830
831         reg = readl(base + NvRegMIIControl);
832         if (reg & NVREG_MIICTL_INUSE) {
833                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
834                 udelay(NV_MIIBUSY_DELAY);
835         }
836
837         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
838         if (value != MII_READ) {
839                 writel(value, base + NvRegMIIData);
840                 reg |= NVREG_MIICTL_WRITE;
841         }
842         writel(reg, base + NvRegMIIControl);
843
844         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
845                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
846                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
847                                 dev->name, miireg, addr);
848                 retval = -1;
849         } else if (value != MII_READ) {
850                 /* it was a write operation - fewer failures are detectable */
851                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
852                                 dev->name, value, miireg, addr);
853                 retval = 0;
854         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
855                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
856                                 dev->name, miireg, addr);
857                 retval = -1;
858         } else {
859                 retval = readl(base + NvRegMIIData);
860                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
861                                 dev->name, miireg, addr, retval);
862         }
863
864         return retval;
865 }
866
867 static int phy_reset(struct net_device *dev)
868 {
869         struct fe_priv *np = netdev_priv(dev);
870         u32 miicontrol;
871         unsigned int tries = 0;
872
873         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
874         miicontrol |= BMCR_RESET;
875         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
876                 return -1;
877         }
878
879         /* wait for 500ms */
880         msleep(500);
881
882         /* must wait till reset is deasserted */
883         while (miicontrol & BMCR_RESET) {
884                 msleep(10);
885                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
886                 /* FIXME: 100 tries seem excessive */
887                 if (tries++ > 100)
888                         return -1;
889         }
890         return 0;
891 }
892
893 static int phy_init(struct net_device *dev)
894 {
895         struct fe_priv *np = get_nvpriv(dev);
896         u8 __iomem *base = get_hwbase(dev);
897         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
898
899         /* set advertise register */
900         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
901         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
902         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
903                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
904                 return PHY_ERROR;
905         }
906
907         /* get phy interface type */
908         phyinterface = readl(base + NvRegPhyInterface);
909
910         /* see if gigabit phy */
911         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
912         if (mii_status & PHY_GIGABIT) {
913                 np->gigabit = PHY_GIGABIT;
914                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
915                 mii_control_1000 &= ~ADVERTISE_1000HALF;
916                 if (phyinterface & PHY_RGMII)
917                         mii_control_1000 |= ADVERTISE_1000FULL;
918                 else
919                         mii_control_1000 &= ~ADVERTISE_1000FULL;
920
921                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
922                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
923                         return PHY_ERROR;
924                 }
925         }
926         else
927                 np->gigabit = 0;
928
929         /* reset the phy */
930         if (phy_reset(dev)) {
931                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
932                 return PHY_ERROR;
933         }
934
935         /* phy vendor specific configuration */
936         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
937                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
938                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
939                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
940                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
941                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
942                         return PHY_ERROR;
943                 }
944                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
945                 phy_reserved |= PHY_INIT5;
946                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
947                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
948                         return PHY_ERROR;
949                 }
950         }
951         if (np->phy_oui == PHY_OUI_CICADA) {
952                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
953                 phy_reserved |= PHY_INIT6;
954                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
955                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
956                         return PHY_ERROR;
957                 }
958         }
959         /* some phys clear out pause advertisment on reset, set it back */
960         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
961
962         /* restart auto negotiation */
963         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
964         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
965         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
966                 return PHY_ERROR;
967         }
968
969         return 0;
970 }
971
972 static void nv_start_rx(struct net_device *dev)
973 {
974         struct fe_priv *np = netdev_priv(dev);
975         u8 __iomem *base = get_hwbase(dev);
976
977         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
978         /* Already running? Stop it. */
979         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
980                 writel(0, base + NvRegReceiverControl);
981                 pci_push(base);
982         }
983         writel(np->linkspeed, base + NvRegLinkSpeed);
984         pci_push(base);
985         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
986         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
987                                 dev->name, np->duplex, np->linkspeed);
988         pci_push(base);
989 }
990
991 static void nv_stop_rx(struct net_device *dev)
992 {
993         u8 __iomem *base = get_hwbase(dev);
994
995         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
996         writel(0, base + NvRegReceiverControl);
997         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
998                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
999                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1000
1001         udelay(NV_RXSTOP_DELAY2);
1002         writel(0, base + NvRegLinkSpeed);
1003 }
1004
1005 static void nv_start_tx(struct net_device *dev)
1006 {
1007         u8 __iomem *base = get_hwbase(dev);
1008
1009         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1010         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1011         pci_push(base);
1012 }
1013
1014 static void nv_stop_tx(struct net_device *dev)
1015 {
1016         u8 __iomem *base = get_hwbase(dev);
1017
1018         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1019         writel(0, base + NvRegTransmitterControl);
1020         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1021                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1022                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1023
1024         udelay(NV_TXSTOP_DELAY2);
1025         writel(0, base + NvRegUnknownTransmitterReg);
1026 }
1027
1028 static void nv_txrx_reset(struct net_device *dev)
1029 {
1030         struct fe_priv *np = netdev_priv(dev);
1031         u8 __iomem *base = get_hwbase(dev);
1032
1033         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1034         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1035         pci_push(base);
1036         udelay(NV_TXRX_RESET_DELAY);
1037         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1038         pci_push(base);
1039 }
1040
1041 static void nv_mac_reset(struct net_device *dev)
1042 {
1043         struct fe_priv *np = netdev_priv(dev);
1044         u8 __iomem *base = get_hwbase(dev);
1045
1046         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1047         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1048         pci_push(base);
1049         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1050         pci_push(base);
1051         udelay(NV_MAC_RESET_DELAY);
1052         writel(0, base + NvRegMacReset);
1053         pci_push(base);
1054         udelay(NV_MAC_RESET_DELAY);
1055         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1056         pci_push(base);
1057 }
1058
1059 /*
1060  * nv_get_stats: dev->get_stats function
1061  * Get latest stats value from the nic.
1062  * Called with read_lock(&dev_base_lock) held for read -
1063  * only synchronized against unregister_netdevice.
1064  */
1065 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1066 {
1067         struct fe_priv *np = netdev_priv(dev);
1068
1069         /* It seems that the nic always generates interrupts and doesn't
1070          * accumulate errors internally. Thus the current values in np->stats
1071          * are already up to date.
1072          */
1073         return &np->stats;
1074 }
1075
1076 /*
1077  * nv_alloc_rx: fill rx ring entries.
1078  * Return 1 if the allocations for the skbs failed and the
1079  * rx engine is without Available descriptors
1080  */
1081 static int nv_alloc_rx(struct net_device *dev)
1082 {
1083         struct fe_priv *np = netdev_priv(dev);
1084         unsigned int refill_rx = np->refill_rx;
1085         int nr;
1086
1087         while (np->cur_rx != refill_rx) {
1088                 struct sk_buff *skb;
1089
1090                 nr = refill_rx % np->rx_ring_size;
1091                 if (np->rx_skbuff[nr] == NULL) {
1092
1093                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1094                         if (!skb)
1095                                 break;
1096
1097                         skb->dev = dev;
1098                         np->rx_skbuff[nr] = skb;
1099                 } else {
1100                         skb = np->rx_skbuff[nr];
1101                 }
1102                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1103                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1104                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1105                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1106                         wmb();
1107                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1108                 } else {
1109                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1110                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1111                         wmb();
1112                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1113                 }
1114                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1115                                         dev->name, refill_rx);
1116                 refill_rx++;
1117         }
1118         np->refill_rx = refill_rx;
1119         if (np->cur_rx - refill_rx == np->rx_ring_size)
1120                 return 1;
1121         return 0;
1122 }
1123
1124 static void nv_do_rx_refill(unsigned long data)
1125 {
1126         struct net_device *dev = (struct net_device *) data;
1127         struct fe_priv *np = netdev_priv(dev);
1128
1129         if (!using_multi_irqs(dev)) {
1130                 if (np->msi_flags & NV_MSI_X_ENABLED)
1131                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1132                 else
1133                         disable_irq(dev->irq);
1134         } else {
1135                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1136         }
1137         if (nv_alloc_rx(dev)) {
1138                 spin_lock_irq(&np->lock);
1139                 if (!np->in_shutdown)
1140                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1141                 spin_unlock_irq(&np->lock);
1142         }
1143         if (!using_multi_irqs(dev)) {
1144                 if (np->msi_flags & NV_MSI_X_ENABLED)
1145                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1146                 else
1147                         enable_irq(dev->irq);
1148         } else {
1149                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1150         }
1151 }
1152
1153 static void nv_init_rx(struct net_device *dev)
1154 {
1155         struct fe_priv *np = netdev_priv(dev);
1156         int i;
1157
1158         np->cur_rx = np->rx_ring_size;
1159         np->refill_rx = 0;
1160         for (i = 0; i < np->rx_ring_size; i++)
1161                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1162                         np->rx_ring.orig[i].FlagLen = 0;
1163                 else
1164                         np->rx_ring.ex[i].FlagLen = 0;
1165 }
1166
1167 static void nv_init_tx(struct net_device *dev)
1168 {
1169         struct fe_priv *np = netdev_priv(dev);
1170         int i;
1171
1172         np->next_tx = np->nic_tx = 0;
1173         for (i = 0; i < np->tx_ring_size; i++) {
1174                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1175                         np->tx_ring.orig[i].FlagLen = 0;
1176                 else
1177                         np->tx_ring.ex[i].FlagLen = 0;
1178                 np->tx_skbuff[i] = NULL;
1179                 np->tx_dma[i] = 0;
1180         }
1181 }
1182
1183 static int nv_init_ring(struct net_device *dev)
1184 {
1185         nv_init_tx(dev);
1186         nv_init_rx(dev);
1187         return nv_alloc_rx(dev);
1188 }
1189
1190 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1191 {
1192         struct fe_priv *np = netdev_priv(dev);
1193
1194         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1195                 dev->name, skbnr);
1196
1197         if (np->tx_dma[skbnr]) {
1198                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1199                                np->tx_dma_len[skbnr],
1200                                PCI_DMA_TODEVICE);
1201                 np->tx_dma[skbnr] = 0;
1202         }
1203
1204         if (np->tx_skbuff[skbnr]) {
1205                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1206                 np->tx_skbuff[skbnr] = NULL;
1207                 return 1;
1208         } else {
1209                 return 0;
1210         }
1211 }
1212
1213 static void nv_drain_tx(struct net_device *dev)
1214 {
1215         struct fe_priv *np = netdev_priv(dev);
1216         unsigned int i;
1217
1218         for (i = 0; i < np->tx_ring_size; i++) {
1219                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1220                         np->tx_ring.orig[i].FlagLen = 0;
1221                 else
1222                         np->tx_ring.ex[i].FlagLen = 0;
1223                 if (nv_release_txskb(dev, i))
1224                         np->stats.tx_dropped++;
1225         }
1226 }
1227
1228 static void nv_drain_rx(struct net_device *dev)
1229 {
1230         struct fe_priv *np = netdev_priv(dev);
1231         int i;
1232         for (i = 0; i < np->rx_ring_size; i++) {
1233                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1234                         np->rx_ring.orig[i].FlagLen = 0;
1235                 else
1236                         np->rx_ring.ex[i].FlagLen = 0;
1237                 wmb();
1238                 if (np->rx_skbuff[i]) {
1239                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1240                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1241                                                 PCI_DMA_FROMDEVICE);
1242                         dev_kfree_skb(np->rx_skbuff[i]);
1243                         np->rx_skbuff[i] = NULL;
1244                 }
1245         }
1246 }
1247
1248 static void drain_ring(struct net_device *dev)
1249 {
1250         nv_drain_tx(dev);
1251         nv_drain_rx(dev);
1252 }
1253
1254 /*
1255  * nv_start_xmit: dev->hard_start_xmit function
1256  * Called with dev->xmit_lock held.
1257  */
1258 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1259 {
1260         struct fe_priv *np = netdev_priv(dev);
1261         u32 tx_flags = 0;
1262         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1263         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1264         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1265         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1266         unsigned int i;
1267         u32 offset = 0;
1268         u32 bcnt;
1269         u32 size = skb->len-skb->data_len;
1270         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1271         u32 tx_flags_vlan = 0;
1272
1273         /* add fragments to entries count */
1274         for (i = 0; i < fragments; i++) {
1275                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1276                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1277         }
1278
1279         spin_lock_irq(&np->lock);
1280
1281         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1282                 spin_unlock_irq(&np->lock);
1283                 netif_stop_queue(dev);
1284                 return NETDEV_TX_BUSY;
1285         }
1286
1287         /* setup the header buffer */
1288         do {
1289                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1290                 nr = (nr + 1) % np->tx_ring_size;
1291
1292                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1293                                                 PCI_DMA_TODEVICE);
1294                 np->tx_dma_len[nr] = bcnt;
1295
1296                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1297                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1298                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1299                 } else {
1300                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1301                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1302                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1303                 }
1304                 tx_flags = np->tx_flags;
1305                 offset += bcnt;
1306                 size -= bcnt;
1307         } while(size);
1308
1309         /* setup the fragments */
1310         for (i = 0; i < fragments; i++) {
1311                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1312                 u32 size = frag->size;
1313                 offset = 0;
1314
1315                 do {
1316                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1317                         nr = (nr + 1) % np->tx_ring_size;
1318
1319                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1320                                                       PCI_DMA_TODEVICE);
1321                         np->tx_dma_len[nr] = bcnt;
1322
1323                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1324                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1325                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1326                         } else {
1327                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1328                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1329                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1330                         }
1331                         offset += bcnt;
1332                         size -= bcnt;
1333                 } while (size);
1334         }
1335
1336         /* set last fragment flag  */
1337         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1338                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1339         } else {
1340                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1341         }
1342
1343         np->tx_skbuff[nr] = skb;
1344
1345 #ifdef NETIF_F_TSO
1346         if (skb_shinfo(skb)->tso_size)
1347                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1348         else
1349 #endif
1350         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1351
1352         /* vlan tag */
1353         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1354                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1355         }
1356
1357         /* set tx flags */
1358         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1359                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1360         } else {
1361                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1362                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1363         }
1364
1365         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1366                 dev->name, np->next_tx, entries, tx_flags_extra);
1367         {
1368                 int j;
1369                 for (j=0; j<64; j++) {
1370                         if ((j%16) == 0)
1371                                 dprintk("\n%03x:", j);
1372                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1373                 }
1374                 dprintk("\n");
1375         }
1376
1377         np->next_tx += entries;
1378
1379         dev->trans_start = jiffies;
1380         spin_unlock_irq(&np->lock);
1381         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1382         pci_push(get_hwbase(dev));
1383         return NETDEV_TX_OK;
1384 }
1385
1386 /*
1387  * nv_tx_done: check for completed packets, release the skbs.
1388  *
1389  * Caller must own np->lock.
1390  */
1391 static void nv_tx_done(struct net_device *dev)
1392 {
1393         struct fe_priv *np = netdev_priv(dev);
1394         u32 Flags;
1395         unsigned int i;
1396         struct sk_buff *skb;
1397
1398         while (np->nic_tx != np->next_tx) {
1399                 i = np->nic_tx % np->tx_ring_size;
1400
1401                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1402                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1403                 else
1404                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1405
1406                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1407                                         dev->name, np->nic_tx, Flags);
1408                 if (Flags & NV_TX_VALID)
1409                         break;
1410                 if (np->desc_ver == DESC_VER_1) {
1411                         if (Flags & NV_TX_LASTPACKET) {
1412                                 skb = np->tx_skbuff[i];
1413                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1414                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1415                                         if (Flags & NV_TX_UNDERFLOW)
1416                                                 np->stats.tx_fifo_errors++;
1417                                         if (Flags & NV_TX_CARRIERLOST)
1418                                                 np->stats.tx_carrier_errors++;
1419                                         np->stats.tx_errors++;
1420                                 } else {
1421                                         np->stats.tx_packets++;
1422                                         np->stats.tx_bytes += skb->len;
1423                                 }
1424                         }
1425                 } else {
1426                         if (Flags & NV_TX2_LASTPACKET) {
1427                                 skb = np->tx_skbuff[i];
1428                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1429                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1430                                         if (Flags & NV_TX2_UNDERFLOW)
1431                                                 np->stats.tx_fifo_errors++;
1432                                         if (Flags & NV_TX2_CARRIERLOST)
1433                                                 np->stats.tx_carrier_errors++;
1434                                         np->stats.tx_errors++;
1435                                 } else {
1436                                         np->stats.tx_packets++;
1437                                         np->stats.tx_bytes += skb->len;
1438                                 }
1439                         }
1440                 }
1441                 nv_release_txskb(dev, i);
1442                 np->nic_tx++;
1443         }
1444         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1445                 netif_wake_queue(dev);
1446 }
1447
1448 /*
1449  * nv_tx_timeout: dev->tx_timeout function
1450  * Called with dev->xmit_lock held.
1451  */
1452 static void nv_tx_timeout(struct net_device *dev)
1453 {
1454         struct fe_priv *np = netdev_priv(dev);
1455         u8 __iomem *base = get_hwbase(dev);
1456         u32 status;
1457
1458         if (np->msi_flags & NV_MSI_X_ENABLED)
1459                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1460         else
1461                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1462
1463         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1464
1465         {
1466                 int i;
1467
1468                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1469                                 dev->name, (unsigned long)np->ring_addr,
1470                                 np->next_tx, np->nic_tx);
1471                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1472                 for (i=0;i<=np->register_size;i+= 32) {
1473                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1474                                         i,
1475                                         readl(base + i + 0), readl(base + i + 4),
1476                                         readl(base + i + 8), readl(base + i + 12),
1477                                         readl(base + i + 16), readl(base + i + 20),
1478                                         readl(base + i + 24), readl(base + i + 28));
1479                 }
1480                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1481                 for (i=0;i<np->tx_ring_size;i+= 4) {
1482                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1483                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1484                                        i,
1485                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1486                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1487                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1488                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1489                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1490                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1491                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1492                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1493                         } else {
1494                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1495                                        i,
1496                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1497                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1498                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1499                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1500                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1501                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1502                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1503                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1504                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1505                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1506                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1507                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1508                         }
1509                 }
1510         }
1511
1512         spin_lock_irq(&np->lock);
1513
1514         /* 1) stop tx engine */
1515         nv_stop_tx(dev);
1516
1517         /* 2) check that the packets were not sent already: */
1518         nv_tx_done(dev);
1519
1520         /* 3) if there are dead entries: clear everything */
1521         if (np->next_tx != np->nic_tx) {
1522                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1523                 nv_drain_tx(dev);
1524                 np->next_tx = np->nic_tx = 0;
1525                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1526                 netif_wake_queue(dev);
1527         }
1528
1529         /* 4) restart tx engine */
1530         nv_start_tx(dev);
1531         spin_unlock_irq(&np->lock);
1532 }
1533
1534 /*
1535  * Called when the nic notices a mismatch between the actual data len on the
1536  * wire and the len indicated in the 802 header
1537  */
1538 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1539 {
1540         int hdrlen;     /* length of the 802 header */
1541         int protolen;   /* length as stored in the proto field */
1542
1543         /* 1) calculate len according to header */
1544         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1545                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1546                 hdrlen = VLAN_HLEN;
1547         } else {
1548                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1549                 hdrlen = ETH_HLEN;
1550         }
1551         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1552                                 dev->name, datalen, protolen, hdrlen);
1553         if (protolen > ETH_DATA_LEN)
1554                 return datalen; /* Value in proto field not a len, no checks possible */
1555
1556         protolen += hdrlen;
1557         /* consistency checks: */
1558         if (datalen > ETH_ZLEN) {
1559                 if (datalen >= protolen) {
1560                         /* more data on wire than in 802 header, trim of
1561                          * additional data.
1562                          */
1563                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1564                                         dev->name, protolen);
1565                         return protolen;
1566                 } else {
1567                         /* less data on wire than mentioned in header.
1568                          * Discard the packet.
1569                          */
1570                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1571                                         dev->name);
1572                         return -1;
1573                 }
1574         } else {
1575                 /* short packet. Accept only if 802 values are also short */
1576                 if (protolen > ETH_ZLEN) {
1577                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1578                                         dev->name);
1579                         return -1;
1580                 }
1581                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1582                                 dev->name, datalen);
1583                 return datalen;
1584         }
1585 }
1586
1587 static void nv_rx_process(struct net_device *dev)
1588 {
1589         struct fe_priv *np = netdev_priv(dev);
1590         u32 Flags;
1591         u32 vlanflags = 0;
1592
1593         for (;;) {
1594                 struct sk_buff *skb;
1595                 int len;
1596                 int i;
1597                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1598                         break;  /* we scanned the whole ring - do not continue */
1599
1600                 i = np->cur_rx % np->rx_ring_size;
1601                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1602                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1603                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1604                 } else {
1605                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1606                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1607                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1608                 }
1609
1610                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1611                                         dev->name, np->cur_rx, Flags);
1612
1613                 if (Flags & NV_RX_AVAIL)
1614                         break;  /* still owned by hardware, */
1615
1616                 /*
1617                  * the packet is for us - immediately tear down the pci mapping.
1618                  * TODO: check if a prefetch of the first cacheline improves
1619                  * the performance.
1620                  */
1621                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1622                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1623                                 PCI_DMA_FROMDEVICE);
1624
1625                 {
1626                         int j;
1627                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1628                         for (j=0; j<64; j++) {
1629                                 if ((j%16) == 0)
1630                                         dprintk("\n%03x:", j);
1631                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1632                         }
1633                         dprintk("\n");
1634                 }
1635                 /* look at what we actually got: */
1636                 if (np->desc_ver == DESC_VER_1) {
1637                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1638                                 goto next_pkt;
1639
1640                         if (Flags & NV_RX_ERROR) {
1641                                 if (Flags & NV_RX_MISSEDFRAME) {
1642                                         np->stats.rx_missed_errors++;
1643                                         np->stats.rx_errors++;
1644                                         goto next_pkt;
1645                                 }
1646                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1647                                         np->stats.rx_errors++;
1648                                         goto next_pkt;
1649                                 }
1650                                 if (Flags & NV_RX_CRCERR) {
1651                                         np->stats.rx_crc_errors++;
1652                                         np->stats.rx_errors++;
1653                                         goto next_pkt;
1654                                 }
1655                                 if (Flags & NV_RX_OVERFLOW) {
1656                                         np->stats.rx_over_errors++;
1657                                         np->stats.rx_errors++;
1658                                         goto next_pkt;
1659                                 }
1660                                 if (Flags & NV_RX_ERROR4) {
1661                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1662                                         if (len < 0) {
1663                                                 np->stats.rx_errors++;
1664                                                 goto next_pkt;
1665                                         }
1666                                 }
1667                                 /* framing errors are soft errors. */
1668                                 if (Flags & NV_RX_FRAMINGERR) {
1669                                         if (Flags & NV_RX_SUBSTRACT1) {
1670                                                 len--;
1671                                         }
1672                                 }
1673                         }
1674                 } else {
1675                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1676                                 goto next_pkt;
1677
1678                         if (Flags & NV_RX2_ERROR) {
1679                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1680                                         np->stats.rx_errors++;
1681                                         goto next_pkt;
1682                                 }
1683                                 if (Flags & NV_RX2_CRCERR) {
1684                                         np->stats.rx_crc_errors++;
1685                                         np->stats.rx_errors++;
1686                                         goto next_pkt;
1687                                 }
1688                                 if (Flags & NV_RX2_OVERFLOW) {
1689                                         np->stats.rx_over_errors++;
1690                                         np->stats.rx_errors++;
1691                                         goto next_pkt;
1692                                 }
1693                                 if (Flags & NV_RX2_ERROR4) {
1694                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1695                                         if (len < 0) {
1696                                                 np->stats.rx_errors++;
1697                                                 goto next_pkt;
1698                                         }
1699                                 }
1700                                 /* framing errors are soft errors */
1701                                 if (Flags & NV_RX2_FRAMINGERR) {
1702                                         if (Flags & NV_RX2_SUBSTRACT1) {
1703                                                 len--;
1704                                         }
1705                                 }
1706                         }
1707                         Flags &= NV_RX2_CHECKSUMMASK;
1708                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1709                                         Flags == NV_RX2_CHECKSUMOK2 ||
1710                                         Flags == NV_RX2_CHECKSUMOK3) {
1711                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1712                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1713                         } else {
1714                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1715                         }
1716                 }
1717                 /* got a valid packet - forward it to the network core */
1718                 skb = np->rx_skbuff[i];
1719                 np->rx_skbuff[i] = NULL;
1720
1721                 skb_put(skb, len);
1722                 skb->protocol = eth_type_trans(skb, dev);
1723                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1724                                         dev->name, np->cur_rx, len, skb->protocol);
1725                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1726                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1727                 } else {
1728                         netif_rx(skb);
1729                 }
1730                 dev->last_rx = jiffies;
1731                 np->stats.rx_packets++;
1732                 np->stats.rx_bytes += len;
1733 next_pkt:
1734                 np->cur_rx++;
1735         }
1736 }
1737
1738 static void set_bufsize(struct net_device *dev)
1739 {
1740         struct fe_priv *np = netdev_priv(dev);
1741
1742         if (dev->mtu <= ETH_DATA_LEN)
1743                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1744         else
1745                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1746 }
1747
1748 /*
1749  * nv_change_mtu: dev->change_mtu function
1750  * Called with dev_base_lock held for read.
1751  */
1752 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1753 {
1754         struct fe_priv *np = netdev_priv(dev);
1755         int old_mtu;
1756
1757         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1758                 return -EINVAL;
1759
1760         old_mtu = dev->mtu;
1761         dev->mtu = new_mtu;
1762
1763         /* return early if the buffer sizes will not change */
1764         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1765                 return 0;
1766         if (old_mtu == new_mtu)
1767                 return 0;
1768
1769         /* synchronized against open : rtnl_lock() held by caller */
1770         if (netif_running(dev)) {
1771                 u8 __iomem *base = get_hwbase(dev);
1772                 /*
1773                  * It seems that the nic preloads valid ring entries into an
1774                  * internal buffer. The procedure for flushing everything is
1775                  * guessed, there is probably a simpler approach.
1776                  * Changing the MTU is a rare event, it shouldn't matter.
1777                  */
1778                 nv_disable_irq(dev);
1779                 spin_lock_bh(&dev->xmit_lock);
1780                 spin_lock(&np->lock);
1781                 /* stop engines */
1782                 nv_stop_rx(dev);
1783                 nv_stop_tx(dev);
1784                 nv_txrx_reset(dev);
1785                 /* drain rx queue */
1786                 nv_drain_rx(dev);
1787                 nv_drain_tx(dev);
1788                 /* reinit driver view of the rx queue */
1789                 set_bufsize(dev);
1790                 if (nv_init_ring(dev)) {
1791                         if (!np->in_shutdown)
1792                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1793                 }
1794                 /* reinit nic view of the rx queue */
1795                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1796                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1797                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1798                         base + NvRegRingSizes);
1799                 pci_push(base);
1800                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1801                 pci_push(base);
1802
1803                 /* restart rx engine */
1804                 nv_start_rx(dev);
1805                 nv_start_tx(dev);
1806                 spin_unlock(&np->lock);
1807                 spin_unlock_bh(&dev->xmit_lock);
1808                 nv_enable_irq(dev);
1809         }
1810         return 0;
1811 }
1812
1813 static void nv_copy_mac_to_hw(struct net_device *dev)
1814 {
1815         u8 __iomem *base = get_hwbase(dev);
1816         u32 mac[2];
1817
1818         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1819                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1820         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1821
1822         writel(mac[0], base + NvRegMacAddrA);
1823         writel(mac[1], base + NvRegMacAddrB);
1824 }
1825
1826 /*
1827  * nv_set_mac_address: dev->set_mac_address function
1828  * Called with rtnl_lock() held.
1829  */
1830 static int nv_set_mac_address(struct net_device *dev, void *addr)
1831 {
1832         struct fe_priv *np = netdev_priv(dev);
1833         struct sockaddr *macaddr = (struct sockaddr*)addr;
1834
1835         if(!is_valid_ether_addr(macaddr->sa_data))
1836                 return -EADDRNOTAVAIL;
1837
1838         /* synchronized against open : rtnl_lock() held by caller */
1839         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1840
1841         if (netif_running(dev)) {
1842                 spin_lock_bh(&dev->xmit_lock);
1843                 spin_lock_irq(&np->lock);
1844
1845                 /* stop rx engine */
1846                 nv_stop_rx(dev);
1847
1848                 /* set mac address */
1849                 nv_copy_mac_to_hw(dev);
1850
1851                 /* restart rx engine */
1852                 nv_start_rx(dev);
1853                 spin_unlock_irq(&np->lock);
1854                 spin_unlock_bh(&dev->xmit_lock);
1855         } else {
1856                 nv_copy_mac_to_hw(dev);
1857         }
1858         return 0;
1859 }
1860
1861 /*
1862  * nv_set_multicast: dev->set_multicast function
1863  * Called with dev->xmit_lock held.
1864  */
1865 static void nv_set_multicast(struct net_device *dev)
1866 {
1867         struct fe_priv *np = netdev_priv(dev);
1868         u8 __iomem *base = get_hwbase(dev);
1869         u32 addr[2];
1870         u32 mask[2];
1871         u32 pff;
1872
1873         memset(addr, 0, sizeof(addr));
1874         memset(mask, 0, sizeof(mask));
1875
1876         if (dev->flags & IFF_PROMISC) {
1877                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1878                 pff = NVREG_PFF_PROMISC;
1879         } else {
1880                 pff = NVREG_PFF_MYADDR;
1881
1882                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1883                         u32 alwaysOff[2];
1884                         u32 alwaysOn[2];
1885
1886                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1887                         if (dev->flags & IFF_ALLMULTI) {
1888                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1889                         } else {
1890                                 struct dev_mc_list *walk;
1891
1892                                 walk = dev->mc_list;
1893                                 while (walk != NULL) {
1894                                         u32 a, b;
1895                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1896                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1897                                         alwaysOn[0] &= a;
1898                                         alwaysOff[0] &= ~a;
1899                                         alwaysOn[1] &= b;
1900                                         alwaysOff[1] &= ~b;
1901                                         walk = walk->next;
1902                                 }
1903                         }
1904                         addr[0] = alwaysOn[0];
1905                         addr[1] = alwaysOn[1];
1906                         mask[0] = alwaysOn[0] | alwaysOff[0];
1907                         mask[1] = alwaysOn[1] | alwaysOff[1];
1908                 }
1909         }
1910         addr[0] |= NVREG_MCASTADDRA_FORCE;
1911         pff |= NVREG_PFF_ALWAYS;
1912         spin_lock_irq(&np->lock);
1913         nv_stop_rx(dev);
1914         writel(addr[0], base + NvRegMulticastAddrA);
1915         writel(addr[1], base + NvRegMulticastAddrB);
1916         writel(mask[0], base + NvRegMulticastMaskA);
1917         writel(mask[1], base + NvRegMulticastMaskB);
1918         writel(pff, base + NvRegPacketFilterFlags);
1919         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1920                 dev->name);
1921         nv_start_rx(dev);
1922         spin_unlock_irq(&np->lock);
1923 }
1924
1925 /**
1926  * nv_update_linkspeed: Setup the MAC according to the link partner
1927  * @dev: Network device to be configured
1928  *
1929  * The function queries the PHY and checks if there is a link partner.
1930  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1931  * set to 10 MBit HD.
1932  *
1933  * The function returns 0 if there is no link partner and 1 if there is
1934  * a good link partner.
1935  */
1936 static int nv_update_linkspeed(struct net_device *dev)
1937 {
1938         struct fe_priv *np = netdev_priv(dev);
1939         u8 __iomem *base = get_hwbase(dev);
1940         int adv = 0;
1941         int lpa = 0;
1942         int adv_lpa, adv_pause, lpa_pause;
1943         int newls = np->linkspeed;
1944         int newdup = np->duplex;
1945         int mii_status;
1946         int retval = 0;
1947         u32 control_1000, status_1000, phyreg;
1948
1949         /* BMSR_LSTATUS is latched, read it twice:
1950          * we want the current value.
1951          */
1952         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1953         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1954
1955         if (!(mii_status & BMSR_LSTATUS)) {
1956                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1957                                 dev->name);
1958                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1959                 newdup = 0;
1960                 retval = 0;
1961                 goto set_speed;
1962         }
1963
1964         if (np->autoneg == 0) {
1965                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1966                                 dev->name, np->fixed_mode);
1967                 if (np->fixed_mode & LPA_100FULL) {
1968                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1969                         newdup = 1;
1970                 } else if (np->fixed_mode & LPA_100HALF) {
1971                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1972                         newdup = 0;
1973                 } else if (np->fixed_mode & LPA_10FULL) {
1974                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1975                         newdup = 1;
1976                 } else {
1977                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1978                         newdup = 0;
1979                 }
1980                 retval = 1;
1981                 goto set_speed;
1982         }
1983         /* check auto negotiation is complete */
1984         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1985                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1986                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1987                 newdup = 0;
1988                 retval = 0;
1989                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1990                 goto set_speed;
1991         }
1992
1993         retval = 1;
1994         if (np->gigabit == PHY_GIGABIT) {
1995                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1996                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
1997
1998                 if ((control_1000 & ADVERTISE_1000FULL) &&
1999                         (status_1000 & LPA_1000FULL)) {
2000                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2001                                 dev->name);
2002                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2003                         newdup = 1;
2004                         goto set_speed;
2005                 }
2006         }
2007
2008         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2009         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2010         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2011                                 dev->name, adv, lpa);
2012
2013         /* FIXME: handle parallel detection properly */
2014         adv_lpa = lpa & adv;
2015         if (adv_lpa & LPA_100FULL) {
2016                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2017                 newdup = 1;
2018         } else if (adv_lpa & LPA_100HALF) {
2019                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2020                 newdup = 0;
2021         } else if (adv_lpa & LPA_10FULL) {
2022                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2023                 newdup = 1;
2024         } else if (adv_lpa & LPA_10HALF) {
2025                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2026                 newdup = 0;
2027         } else {
2028                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2029                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2030                 newdup = 0;
2031         }
2032
2033 set_speed:
2034         if (np->duplex == newdup && np->linkspeed == newls)
2035                 return retval;
2036
2037         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2038                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2039
2040         np->duplex = newdup;
2041         np->linkspeed = newls;
2042
2043         if (np->gigabit == PHY_GIGABIT) {
2044                 phyreg = readl(base + NvRegRandomSeed);
2045                 phyreg &= ~(0x3FF00);
2046                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2047                         phyreg |= NVREG_RNDSEED_FORCE3;
2048                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2049                         phyreg |= NVREG_RNDSEED_FORCE2;
2050                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2051                         phyreg |= NVREG_RNDSEED_FORCE;
2052                 writel(phyreg, base + NvRegRandomSeed);
2053         }
2054
2055         phyreg = readl(base + NvRegPhyInterface);
2056         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2057         if (np->duplex == 0)
2058                 phyreg |= PHY_HALF;
2059         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2060                 phyreg |= PHY_100;
2061         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2062                 phyreg |= PHY_1000;
2063         writel(phyreg, base + NvRegPhyInterface);
2064
2065         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2066                 base + NvRegMisc1);
2067         pci_push(base);
2068         writel(np->linkspeed, base + NvRegLinkSpeed);
2069         pci_push(base);
2070
2071         /* setup pause frame based on advertisement and link partner */
2072         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2073
2074         if (np->duplex != 0) {
2075                 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2076                 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2077
2078                 switch (adv_pause) {
2079                 case (ADVERTISE_PAUSE_CAP):
2080                         if (lpa_pause & LPA_PAUSE_CAP) {
2081                                 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE;
2082                         }
2083                         break;
2084                 case (ADVERTISE_PAUSE_ASYM):
2085                         if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2086                         {
2087                                 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2088                         }
2089                         break;
2090                 case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2091                         if (lpa_pause & LPA_PAUSE_CAP)
2092                         {
2093                                 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE;
2094                         }
2095                         if (lpa_pause == LPA_PAUSE_ASYM)
2096                         {
2097                                 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2098                         }
2099                         break;
2100                 }
2101         }
2102
2103         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2104                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2105                 if (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE)
2106                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2107                 else
2108                         writel(pff, base + NvRegPacketFilterFlags);
2109         }
2110         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2111                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2112                 if (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2113                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2114                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2115                 } else {
2116                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2117                         writel(regmisc, base + NvRegMisc1);
2118                 }
2119         }
2120
2121         return retval;
2122 }
2123
2124 static void nv_linkchange(struct net_device *dev)
2125 {
2126         if (nv_update_linkspeed(dev)) {
2127                 if (!netif_carrier_ok(dev)) {
2128                         netif_carrier_on(dev);
2129                         printk(KERN_INFO "%s: link up.\n", dev->name);
2130                         nv_start_rx(dev);
2131                 }
2132         } else {
2133                 if (netif_carrier_ok(dev)) {
2134                         netif_carrier_off(dev);
2135                         printk(KERN_INFO "%s: link down.\n", dev->name);
2136                         nv_stop_rx(dev);
2137                 }
2138         }
2139 }
2140
2141 static void nv_link_irq(struct net_device *dev)
2142 {
2143         u8 __iomem *base = get_hwbase(dev);
2144         u32 miistat;
2145
2146         miistat = readl(base + NvRegMIIStatus);
2147         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2148         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2149
2150         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2151                 nv_linkchange(dev);
2152         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2153 }
2154
2155 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2156 {
2157         struct net_device *dev = (struct net_device *) data;
2158         struct fe_priv *np = netdev_priv(dev);
2159         u8 __iomem *base = get_hwbase(dev);
2160         u32 events;
2161         int i;
2162
2163         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2164
2165         for (i=0; ; i++) {
2166                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2167                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2168                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2169                 } else {
2170                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2171                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2172                 }
2173                 pci_push(base);
2174                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2175                 if (!(events & np->irqmask))
2176                         break;
2177
2178                 spin_lock(&np->lock);
2179                 nv_tx_done(dev);
2180                 spin_unlock(&np->lock);
2181
2182                 nv_rx_process(dev);
2183                 if (nv_alloc_rx(dev)) {
2184                         spin_lock(&np->lock);
2185                         if (!np->in_shutdown)
2186                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2187                         spin_unlock(&np->lock);
2188                 }
2189
2190                 if (events & NVREG_IRQ_LINK) {
2191                         spin_lock(&np->lock);
2192                         nv_link_irq(dev);
2193                         spin_unlock(&np->lock);
2194                 }
2195                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2196                         spin_lock(&np->lock);
2197                         nv_linkchange(dev);
2198                         spin_unlock(&np->lock);
2199                         np->link_timeout = jiffies + LINK_TIMEOUT;
2200                 }
2201                 if (events & (NVREG_IRQ_TX_ERR)) {
2202                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2203                                                 dev->name, events);
2204                 }
2205                 if (events & (NVREG_IRQ_UNKNOWN)) {
2206                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2207                                                 dev->name, events);
2208                 }
2209                 if (i > max_interrupt_work) {
2210                         spin_lock(&np->lock);
2211                         /* disable interrupts on the nic */
2212                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2213                                 writel(0, base + NvRegIrqMask);
2214                         else
2215                                 writel(np->irqmask, base + NvRegIrqMask);
2216                         pci_push(base);
2217
2218                         if (!np->in_shutdown) {
2219                                 np->nic_poll_irq = np->irqmask;
2220                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2221                         }
2222                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2223                         spin_unlock(&np->lock);
2224                         break;
2225                 }
2226
2227         }
2228         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2229
2230         return IRQ_RETVAL(i);
2231 }
2232
2233 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2234 {
2235         struct net_device *dev = (struct net_device *) data;
2236         struct fe_priv *np = netdev_priv(dev);
2237         u8 __iomem *base = get_hwbase(dev);
2238         u32 events;
2239         int i;
2240
2241         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2242
2243         for (i=0; ; i++) {
2244                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2245                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2246                 pci_push(base);
2247                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2248                 if (!(events & np->irqmask))
2249                         break;
2250
2251                 spin_lock_irq(&np->lock);
2252                 nv_tx_done(dev);
2253                 spin_unlock_irq(&np->lock);
2254
2255                 if (events & (NVREG_IRQ_TX_ERR)) {
2256                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2257                                                 dev->name, events);
2258                 }
2259                 if (i > max_interrupt_work) {
2260                         spin_lock_irq(&np->lock);
2261                         /* disable interrupts on the nic */
2262                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2263                         pci_push(base);
2264
2265                         if (!np->in_shutdown) {
2266                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2267                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2268                         }
2269                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2270                         spin_unlock_irq(&np->lock);
2271                         break;
2272                 }
2273
2274         }
2275         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2276
2277         return IRQ_RETVAL(i);
2278 }
2279
2280 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2281 {
2282         struct net_device *dev = (struct net_device *) data;
2283         struct fe_priv *np = netdev_priv(dev);
2284         u8 __iomem *base = get_hwbase(dev);
2285         u32 events;
2286         int i;
2287
2288         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2289
2290         for (i=0; ; i++) {
2291                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2292                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2293                 pci_push(base);
2294                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2295                 if (!(events & np->irqmask))
2296                         break;
2297
2298                 nv_rx_process(dev);
2299                 if (nv_alloc_rx(dev)) {
2300                         spin_lock_irq(&np->lock);
2301                         if (!np->in_shutdown)
2302                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2303                         spin_unlock_irq(&np->lock);
2304                 }
2305
2306                 if (i > max_interrupt_work) {
2307                         spin_lock_irq(&np->lock);
2308                         /* disable interrupts on the nic */
2309                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2310                         pci_push(base);
2311
2312                         if (!np->in_shutdown) {
2313                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2314                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2315                         }
2316                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2317                         spin_unlock_irq(&np->lock);
2318                         break;
2319                 }
2320
2321         }
2322         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2323
2324         return IRQ_RETVAL(i);
2325 }
2326
2327 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2328 {
2329         struct net_device *dev = (struct net_device *) data;
2330         struct fe_priv *np = netdev_priv(dev);
2331         u8 __iomem *base = get_hwbase(dev);
2332         u32 events;
2333         int i;
2334
2335         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2336
2337         for (i=0; ; i++) {
2338                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2339                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2340                 pci_push(base);
2341                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2342                 if (!(events & np->irqmask))
2343                         break;
2344
2345                 if (events & NVREG_IRQ_LINK) {
2346                         spin_lock_irq(&np->lock);
2347                         nv_link_irq(dev);
2348                         spin_unlock_irq(&np->lock);
2349                 }
2350                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2351                         spin_lock_irq(&np->lock);
2352                         nv_linkchange(dev);
2353                         spin_unlock_irq(&np->lock);
2354                         np->link_timeout = jiffies + LINK_TIMEOUT;
2355                 }
2356                 if (events & (NVREG_IRQ_UNKNOWN)) {
2357                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2358                                                 dev->name, events);
2359                 }
2360                 if (i > max_interrupt_work) {
2361                         spin_lock_irq(&np->lock);
2362                         /* disable interrupts on the nic */
2363                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2364                         pci_push(base);
2365
2366                         if (!np->in_shutdown) {
2367                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2368                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2369                         }
2370                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2371                         spin_unlock_irq(&np->lock);
2372                         break;
2373                 }
2374
2375         }
2376         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2377
2378         return IRQ_RETVAL(i);
2379 }
2380
2381 static void nv_do_nic_poll(unsigned long data)
2382 {
2383         struct net_device *dev = (struct net_device *) data;
2384         struct fe_priv *np = netdev_priv(dev);
2385         u8 __iomem *base = get_hwbase(dev);
2386         u32 mask = 0;
2387
2388         /*
2389          * First disable irq(s) and then
2390          * reenable interrupts on the nic, we have to do this before calling
2391          * nv_nic_irq because that may decide to do otherwise
2392          */
2393
2394         if (!using_multi_irqs(dev)) {
2395                 if (np->msi_flags & NV_MSI_X_ENABLED)
2396                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2397                 else
2398                         disable_irq(dev->irq);
2399                 mask = np->irqmask;
2400         } else {
2401                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2402                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2403                         mask |= NVREG_IRQ_RX_ALL;
2404                 }
2405                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2406                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2407                         mask |= NVREG_IRQ_TX_ALL;
2408                 }
2409                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2410                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2411                         mask |= NVREG_IRQ_OTHER;
2412                 }
2413         }
2414         np->nic_poll_irq = 0;
2415
2416         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2417
2418         writel(mask, base + NvRegIrqMask);
2419         pci_push(base);
2420
2421         if (!using_multi_irqs(dev)) {
2422                 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2423                 if (np->msi_flags & NV_MSI_X_ENABLED)
2424                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2425                 else
2426                         enable_irq(dev->irq);
2427         } else {
2428                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2429                         nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2430                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2431                 }
2432                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2433                         nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2434                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2435                 }
2436                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2437                         nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2438                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2439                 }
2440         }
2441 }
2442
2443 #ifdef CONFIG_NET_POLL_CONTROLLER
2444 static void nv_poll_controller(struct net_device *dev)
2445 {
2446         nv_do_nic_poll((unsigned long) dev);
2447 }
2448 #endif
2449
2450 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2451 {
2452         struct fe_priv *np = netdev_priv(dev);
2453         strcpy(info->driver, "forcedeth");
2454         strcpy(info->version, FORCEDETH_VERSION);
2455         strcpy(info->bus_info, pci_name(np->pci_dev));
2456 }
2457
2458 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2459 {
2460         struct fe_priv *np = netdev_priv(dev);
2461         wolinfo->supported = WAKE_MAGIC;
2462
2463         spin_lock_irq(&np->lock);
2464         if (np->wolenabled)
2465                 wolinfo->wolopts = WAKE_MAGIC;
2466         spin_unlock_irq(&np->lock);
2467 }
2468
2469 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2470 {
2471         struct fe_priv *np = netdev_priv(dev);
2472         u8 __iomem *base = get_hwbase(dev);
2473
2474         spin_lock_irq(&np->lock);
2475         if (wolinfo->wolopts == 0) {
2476                 writel(0, base + NvRegWakeUpFlags);
2477                 np->wolenabled = 0;
2478         }
2479         if (wolinfo->wolopts & WAKE_MAGIC) {
2480                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
2481                 np->wolenabled = 1;
2482         }
2483         spin_unlock_irq(&np->lock);
2484         return 0;
2485 }
2486
2487 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2488 {
2489         struct fe_priv *np = netdev_priv(dev);
2490         int adv;
2491
2492         spin_lock_irq(&np->lock);
2493         ecmd->port = PORT_MII;
2494         if (!netif_running(dev)) {
2495                 /* We do not track link speed / duplex setting if the
2496                  * interface is disabled. Force a link check */
2497                 nv_update_linkspeed(dev);
2498         }
2499         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2500                 case NVREG_LINKSPEED_10:
2501                         ecmd->speed = SPEED_10;
2502                         break;
2503                 case NVREG_LINKSPEED_100:
2504                         ecmd->speed = SPEED_100;
2505                         break;
2506                 case NVREG_LINKSPEED_1000:
2507                         ecmd->speed = SPEED_1000;
2508                         break;
2509         }
2510         ecmd->duplex = DUPLEX_HALF;
2511         if (np->duplex)
2512                 ecmd->duplex = DUPLEX_FULL;
2513
2514         ecmd->autoneg = np->autoneg;
2515
2516         ecmd->advertising = ADVERTISED_MII;
2517         if (np->autoneg) {
2518                 ecmd->advertising |= ADVERTISED_Autoneg;
2519                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2520         } else {
2521                 adv = np->fixed_mode;
2522         }
2523         if (adv & ADVERTISE_10HALF)
2524                 ecmd->advertising |= ADVERTISED_10baseT_Half;
2525         if (adv & ADVERTISE_10FULL)
2526                 ecmd->advertising |= ADVERTISED_10baseT_Full;
2527         if (adv & ADVERTISE_100HALF)
2528                 ecmd->advertising |= ADVERTISED_100baseT_Half;
2529         if (adv & ADVERTISE_100FULL)
2530                 ecmd->advertising |= ADVERTISED_100baseT_Full;
2531         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2532                 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2533                 if (adv & ADVERTISE_1000FULL)
2534                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
2535         }
2536
2537         ecmd->supported = (SUPPORTED_Autoneg |
2538                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2539                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2540                 SUPPORTED_MII);
2541         if (np->gigabit == PHY_GIGABIT)
2542                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2543
2544         ecmd->phy_address = np->phyaddr;
2545         ecmd->transceiver = XCVR_EXTERNAL;
2546
2547         /* ignore maxtxpkt, maxrxpkt for now */
2548         spin_unlock_irq(&np->lock);
2549         return 0;
2550 }
2551
2552 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2553 {
2554         struct fe_priv *np = netdev_priv(dev);
2555
2556         if (ecmd->port != PORT_MII)
2557                 return -EINVAL;
2558         if (ecmd->transceiver != XCVR_EXTERNAL)
2559                 return -EINVAL;
2560         if (ecmd->phy_address != np->phyaddr) {
2561                 /* TODO: support switching between multiple phys. Should be
2562                  * trivial, but not enabled due to lack of test hardware. */
2563                 return -EINVAL;
2564         }
2565         if (ecmd->autoneg == AUTONEG_ENABLE) {
2566                 u32 mask;
2567
2568                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2569                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2570                 if (np->gigabit == PHY_GIGABIT)
2571                         mask |= ADVERTISED_1000baseT_Full;
2572
2573                 if ((ecmd->advertising & mask) == 0)
2574                         return -EINVAL;
2575
2576         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2577                 /* Note: autonegotiation disable, speed 1000 intentionally
2578                  * forbidden - noone should need that. */
2579
2580                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2581                         return -EINVAL;
2582                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2583                         return -EINVAL;
2584         } else {
2585                 return -EINVAL;
2586         }
2587
2588         spin_lock_irq(&np->lock);
2589         if (ecmd->autoneg == AUTONEG_ENABLE) {
2590                 int adv, bmcr;
2591
2592                 np->autoneg = 1;
2593
2594                 /* advertise only what has been requested */
2595                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2596                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2597                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2598                         adv |= ADVERTISE_10HALF;
2599                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2600                         adv |= ADVERTISE_10FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2601                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2602                         adv |= ADVERTISE_100HALF;
2603                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2604                         adv |= ADVERTISE_100FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2605                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2606
2607                 if (np->gigabit == PHY_GIGABIT) {
2608                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2609                         adv &= ~ADVERTISE_1000FULL;
2610                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2611                                 adv |= ADVERTISE_1000FULL;
2612                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2613                 }
2614
2615                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2616                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2617                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2618
2619         } else {
2620                 int adv, bmcr;
2621
2622                 np->autoneg = 0;
2623
2624                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2625                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2626                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2627                         adv |= ADVERTISE_10HALF;
2628                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2629                         adv |= ADVERTISE_10FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2630                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2631                         adv |= ADVERTISE_100HALF;
2632                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2633                         adv |= ADVERTISE_100FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2634                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2635                 np->fixed_mode = adv;
2636
2637                 if (np->gigabit == PHY_GIGABIT) {
2638                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2639                         adv &= ~ADVERTISE_1000FULL;
2640                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2641                 }
2642
2643                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2644                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2645                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2646                         bmcr |= BMCR_FULLDPLX;
2647                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2648                         bmcr |= BMCR_SPEED100;
2649                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2650
2651                 if (netif_running(dev)) {
2652                         /* Wait a bit and then reconfigure the nic. */
2653                         udelay(10);
2654                         nv_linkchange(dev);
2655                 }
2656         }
2657         spin_unlock_irq(&np->lock);
2658
2659         return 0;
2660 }
2661
2662 #define FORCEDETH_REGS_VER      1
2663
2664 static int nv_get_regs_len(struct net_device *dev)
2665 {
2666         struct fe_priv *np = netdev_priv(dev);
2667         return np->register_size;
2668 }
2669
2670 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2671 {
2672         struct fe_priv *np = netdev_priv(dev);
2673         u8 __iomem *base = get_hwbase(dev);
2674         u32 *rbuf = buf;
2675         int i;
2676
2677         regs->version = FORCEDETH_REGS_VER;
2678         spin_lock_irq(&np->lock);
2679         for (i = 0;i <= np->register_size/sizeof(u32); i++)
2680                 rbuf[i] = readl(base + i*sizeof(u32));
2681         spin_unlock_irq(&np->lock);
2682 }
2683
2684 static int nv_nway_reset(struct net_device *dev)
2685 {
2686         struct fe_priv *np = netdev_priv(dev);
2687         int ret;
2688
2689         spin_lock_irq(&np->lock);
2690         if (np->autoneg) {
2691                 int bmcr;
2692
2693                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2694                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2695                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2696
2697                 ret = 0;
2698         } else {
2699                 ret = -EINVAL;
2700         }
2701         spin_unlock_irq(&np->lock);
2702
2703         return ret;
2704 }
2705
2706 static int nv_set_tso(struct net_device *dev, u32 value)
2707 {
2708         struct fe_priv *np = netdev_priv(dev);
2709
2710         if ((np->driver_data & DEV_HAS_CHECKSUM))
2711                 return ethtool_op_set_tso(dev, value);
2712         else
2713                 return -EOPNOTSUPP;
2714 }
2715
2716 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
2717 {
2718         struct fe_priv *np = netdev_priv(dev);
2719
2720         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
2721         ring->rx_mini_max_pending = 0;
2722         ring->rx_jumbo_max_pending = 0;
2723         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
2724
2725         ring->rx_pending = np->rx_ring_size;
2726         ring->rx_mini_pending = 0;
2727         ring->rx_jumbo_pending = 0;
2728         ring->tx_pending = np->tx_ring_size;
2729 }
2730
2731 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
2732 {
2733         struct fe_priv *np = netdev_priv(dev);
2734         u8 __iomem *base = get_hwbase(dev);
2735         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
2736         dma_addr_t ring_addr;
2737
2738         if (ring->rx_pending < RX_RING_MIN ||
2739             ring->tx_pending < TX_RING_MIN ||
2740             ring->rx_mini_pending != 0 ||
2741             ring->rx_jumbo_pending != 0 ||
2742             (np->desc_ver == DESC_VER_1 &&
2743              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
2744               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
2745             (np->desc_ver != DESC_VER_1 &&
2746              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
2747               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
2748                 return -EINVAL;
2749         }
2750
2751         /* allocate new rings */
2752         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2753                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
2754                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
2755                                             &ring_addr);
2756         } else {
2757                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
2758                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
2759                                             &ring_addr);
2760         }
2761         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
2762         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
2763         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
2764         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
2765         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
2766         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
2767                 /* fall back to old rings */
2768                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2769                         if(rxtx_ring)
2770                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
2771                                                     rxtx_ring, ring_addr);
2772                 } else {
2773                         if (rxtx_ring)
2774                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
2775                                                     rxtx_ring, ring_addr);
2776                 }
2777                 if (rx_skbuff)
2778                         kfree(rx_skbuff);
2779                 if (rx_dma)
2780                         kfree(rx_dma);
2781                 if (tx_skbuff)
2782                         kfree(tx_skbuff);
2783                 if (tx_dma)
2784                         kfree(tx_dma);
2785                 if (tx_dma_len)
2786                         kfree(tx_dma_len);
2787                 goto exit;
2788         }
2789
2790         if (netif_running(dev)) {
2791                 nv_disable_irq(dev);
2792                 spin_lock_bh(&dev->xmit_lock);
2793                 spin_lock(&np->lock);
2794                 /* stop engines */
2795                 nv_stop_rx(dev);
2796                 nv_stop_tx(dev);
2797                 nv_txrx_reset(dev);
2798                 /* drain queues */
2799                 nv_drain_rx(dev);
2800                 nv_drain_tx(dev);
2801                 /* delete queues */
2802                 free_rings(dev);
2803         }
2804
2805         /* set new values */
2806         np->rx_ring_size = ring->rx_pending;
2807         np->tx_ring_size = ring->tx_pending;
2808         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
2809         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
2810         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2811                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
2812                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
2813         } else {
2814                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
2815                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
2816         }
2817         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
2818         np->rx_dma = (dma_addr_t*)rx_dma;
2819         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
2820         np->tx_dma = (dma_addr_t*)tx_dma;
2821         np->tx_dma_len = (unsigned int*)tx_dma_len;
2822         np->ring_addr = ring_addr;
2823
2824         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
2825         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
2826         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
2827         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
2828         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
2829
2830         if (netif_running(dev)) {
2831                 /* reinit driver view of the queues */
2832                 set_bufsize(dev);
2833                 if (nv_init_ring(dev)) {
2834                         if (!np->in_shutdown)
2835                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2836                 }
2837
2838                 /* reinit nic view of the queues */
2839                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2840                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2841                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2842                         base + NvRegRingSizes);
2843                 pci_push(base);
2844                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2845                 pci_push(base);
2846
2847                 /* restart engines */
2848                 nv_start_rx(dev);
2849                 nv_start_tx(dev);
2850                 spin_unlock(&np->lock);
2851                 spin_unlock_bh(&dev->xmit_lock);
2852                 nv_enable_irq(dev);
2853         }
2854         return 0;
2855 exit:
2856         return -ENOMEM;
2857 }
2858
2859 static struct ethtool_ops ops = {
2860         .get_drvinfo = nv_get_drvinfo,
2861         .get_link = ethtool_op_get_link,
2862         .get_wol = nv_get_wol,
2863         .set_wol = nv_set_wol,
2864         .get_settings = nv_get_settings,
2865         .set_settings = nv_set_settings,
2866         .get_regs_len = nv_get_regs_len,
2867         .get_regs = nv_get_regs,
2868         .nway_reset = nv_nway_reset,
2869         .get_perm_addr = ethtool_op_get_perm_addr,
2870         .get_tso = ethtool_op_get_tso,
2871         .set_tso = nv_set_tso,
2872         .get_ringparam = nv_get_ringparam,
2873         .set_ringparam = nv_set_ringparam,
2874 };
2875
2876 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2877 {
2878         struct fe_priv *np = get_nvpriv(dev);
2879
2880         spin_lock_irq(&np->lock);
2881
2882         /* save vlan group */
2883         np->vlangrp = grp;
2884
2885         if (grp) {
2886                 /* enable vlan on MAC */
2887                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
2888         } else {
2889                 /* disable vlan on MAC */
2890                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
2891                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
2892         }
2893
2894         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2895
2896         spin_unlock_irq(&np->lock);
2897 };
2898
2899 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2900 {
2901         /* nothing to do */
2902 };
2903
2904 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2905 {
2906         u8 __iomem *base = get_hwbase(dev);
2907         int i;
2908         u32 msixmap = 0;
2909
2910         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2911          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2912          * the remaining 8 interrupts.
2913          */
2914         for (i = 0; i < 8; i++) {
2915                 if ((irqmask >> i) & 0x1) {
2916                         msixmap |= vector << (i << 2);
2917                 }
2918         }
2919         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2920
2921         msixmap = 0;
2922         for (i = 0; i < 8; i++) {
2923                 if ((irqmask >> (i + 8)) & 0x1) {
2924                         msixmap |= vector << (i << 2);
2925                 }
2926         }
2927         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2928 }
2929
2930 static int nv_request_irq(struct net_device *dev)
2931 {
2932         struct fe_priv *np = get_nvpriv(dev);
2933         u8 __iomem *base = get_hwbase(dev);
2934         int ret = 1;
2935         int i;
2936
2937         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2938                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2939                         np->msi_x_entry[i].entry = i;
2940                 }
2941                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2942                         np->msi_flags |= NV_MSI_X_ENABLED;
2943                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
2944                                 /* Request irq for rx handling */
2945                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2946                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2947                                         pci_disable_msix(np->pci_dev);
2948                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2949                                         goto out_err;
2950                                 }
2951                                 /* Request irq for tx handling */
2952                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2953                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2954                                         pci_disable_msix(np->pci_dev);
2955                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2956                                         goto out_free_rx;
2957                                 }
2958                                 /* Request irq for link and timer handling */
2959                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2960                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2961                                         pci_disable_msix(np->pci_dev);
2962                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2963                                         goto out_free_tx;
2964                                 }
2965                                 /* map interrupts to their respective vector */
2966                                 writel(0, base + NvRegMSIXMap0);
2967                                 writel(0, base + NvRegMSIXMap1);
2968                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2969                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2970                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2971                         } else {
2972                                 /* Request irq for all interrupts */
2973                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2974                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2975                                         pci_disable_msix(np->pci_dev);
2976                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2977                                         goto out_err;
2978                                 }
2979
2980                                 /* map interrupts to vector 0 */
2981                                 writel(0, base + NvRegMSIXMap0);
2982                                 writel(0, base + NvRegMSIXMap1);
2983                         }
2984                 }
2985         }
2986         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2987                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2988                         np->msi_flags |= NV_MSI_ENABLED;
2989                         if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2990                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2991                                 pci_disable_msi(np->pci_dev);
2992                                 np->msi_flags &= ~NV_MSI_ENABLED;
2993                                 goto out_err;
2994                         }
2995
2996                         /* map interrupts to vector 0 */
2997                         writel(0, base + NvRegMSIMap0);
2998                         writel(0, base + NvRegMSIMap1);
2999                         /* enable msi vector 0 */
3000                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3001                 }
3002         }
3003         if (ret != 0) {
3004                 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
3005                         goto out_err;
3006         }
3007
3008         return 0;
3009 out_free_tx:
3010         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3011 out_free_rx:
3012         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3013 out_err:
3014         return 1;
3015 }
3016
3017 static void nv_free_irq(struct net_device *dev)
3018 {
3019         struct fe_priv *np = get_nvpriv(dev);
3020         int i;
3021
3022         if (np->msi_flags & NV_MSI_X_ENABLED) {
3023                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3024                         free_irq(np->msi_x_entry[i].vector, dev);
3025                 }
3026                 pci_disable_msix(np->pci_dev);
3027                 np->msi_flags &= ~NV_MSI_X_ENABLED;
3028         } else {
3029                 free_irq(np->pci_dev->irq, dev);
3030                 if (np->msi_flags & NV_MSI_ENABLED) {
3031                         pci_disable_msi(np->pci_dev);
3032                         np->msi_flags &= ~NV_MSI_ENABLED;
3033                 }
3034         }
3035 }
3036
3037 static int nv_open(struct net_device *dev)
3038 {
3039         struct fe_priv *np = netdev_priv(dev);
3040         u8 __iomem *base = get_hwbase(dev);
3041         int ret = 1;
3042         int oom, i;
3043
3044         dprintk(KERN_DEBUG "nv_open: begin\n");
3045
3046         /* 1) erase previous misconfiguration */
3047         if (np->driver_data & DEV_HAS_POWER_CNTRL)
3048                 nv_mac_reset(dev);
3049         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3050         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3051         writel(0, base + NvRegMulticastAddrB);
3052         writel(0, base + NvRegMulticastMaskA);
3053         writel(0, base + NvRegMulticastMaskB);
3054         writel(0, base + NvRegPacketFilterFlags);
3055
3056         writel(0, base + NvRegTransmitterControl);
3057         writel(0, base + NvRegReceiverControl);
3058
3059         writel(0, base + NvRegAdapterControl);
3060
3061         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3062                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
3063
3064         /* 2) initialize descriptor rings */
3065         set_bufsize(dev);
3066         oom = nv_init_ring(dev);
3067
3068         writel(0, base + NvRegLinkSpeed);
3069         writel(0, base + NvRegUnknownTransmitterReg);
3070         nv_txrx_reset(dev);
3071         writel(0, base + NvRegUnknownSetupReg6);
3072
3073         np->in_shutdown = 0;
3074
3075         /* 3) set mac address */
3076         nv_copy_mac_to_hw(dev);
3077
3078         /* 4) give hw rings */
3079         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3080         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3081                 base + NvRegRingSizes);
3082
3083         /* 5) continue setup */
3084         writel(np->linkspeed, base + NvRegLinkSpeed);
3085         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
3086         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3087         writel(np->vlanctl_bits, base + NvRegVlanControl);
3088         pci_push(base);
3089         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3090         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3091                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3092                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3093
3094         writel(0, base + NvRegUnknownSetupReg4);
3095         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3096         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3097
3098         /* 6) continue setup */
3099         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3100         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3101         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3102         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3103
3104         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3105         get_random_bytes(&i, sizeof(i));
3106         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3107         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
3108         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
3109         if (poll_interval == -1) {
3110                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3111                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3112                 else
3113                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3114         }
3115         else
3116                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3117         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3118         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3119                         base + NvRegAdapterControl);
3120         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3121         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3122         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
3123
3124         i = readl(base + NvRegPowerState);
3125         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3126                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3127
3128         pci_push(base);
3129         udelay(10);
3130         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3131
3132         nv_disable_hw_interrupts(dev, np->irqmask);
3133         pci_push(base);
3134         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3135         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3136         pci_push(base);
3137
3138         if (nv_request_irq(dev)) {
3139                 goto out_drain;
3140         }
3141
3142         /* ask for interrupts */
3143         nv_enable_hw_interrupts(dev, np->irqmask);
3144
3145         spin_lock_irq(&np->lock);
3146         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3147         writel(0, base + NvRegMulticastAddrB);
3148         writel(0, base + NvRegMulticastMaskA);
3149         writel(0, base + NvRegMulticastMaskB);
3150         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
3151         /* One manual link speed update: Interrupts are enabled, future link
3152          * speed changes cause interrupts and are handled by nv_link_irq().
3153          */
3154         {
3155                 u32 miistat;
3156                 miistat = readl(base + NvRegMIIStatus);
3157                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
3158                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
3159         }
3160         /* set linkspeed to invalid value, thus force nv_update_linkspeed
3161          * to init hw */
3162         np->linkspeed = 0;
3163         ret = nv_update_linkspeed(dev);
3164         nv_start_rx(dev);
3165         nv_start_tx(dev);
3166         netif_start_queue(dev);
3167         if (ret) {
3168                 netif_carrier_on(dev);
3169         } else {
3170                 printk("%s: no link during initialization.\n", dev->name);
3171                 netif_carrier_off(dev);
3172         }
3173         if (oom)
3174                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3175         spin_unlock_irq(&np->lock);
3176
3177         return 0;
3178 out_drain:
3179         drain_ring(dev);
3180         return ret;
3181 }
3182
3183 static int nv_close(struct net_device *dev)
3184 {
3185         struct fe_priv *np = netdev_priv(dev);
3186         u8 __iomem *base;
3187
3188         spin_lock_irq(&np->lock);
3189         np->in_shutdown = 1;
3190         spin_unlock_irq(&np->lock);
3191         synchronize_irq(dev->irq);
3192
3193         del_timer_sync(&np->oom_kick);
3194         del_timer_sync(&np->nic_poll);
3195
3196         netif_stop_queue(dev);
3197         spin_lock_irq(&np->lock);
3198         nv_stop_tx(dev);
3199         nv_stop_rx(dev);
3200         nv_txrx_reset(dev);
3201
3202         /* disable interrupts on the nic or we will lock up */
3203         base = get_hwbase(dev);
3204         nv_disable_hw_interrupts(dev, np->irqmask);
3205         pci_push(base);
3206         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
3207
3208         spin_unlock_irq(&np->lock);
3209
3210         nv_free_irq(dev);
3211
3212         drain_ring(dev);
3213
3214         if (np->wolenabled)
3215                 nv_start_rx(dev);
3216
3217         /* special op: write back the misordered MAC address - otherwise
3218          * the next nv_probe would see a wrong address.
3219          */
3220         writel(np->orig_mac[0], base + NvRegMacAddrA);
3221         writel(np->orig_mac[1], base + NvRegMacAddrB);
3222
3223         /* FIXME: power down nic */
3224
3225         return 0;
3226 }
3227
3228 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
3229 {
3230         struct net_device *dev;
3231         struct fe_priv *np;
3232         unsigned long addr;
3233         u8 __iomem *base;
3234         int err, i;
3235         u32 powerstate;
3236
3237         dev = alloc_etherdev(sizeof(struct fe_priv));
3238         err = -ENOMEM;
3239         if (!dev)
3240                 goto out;
3241
3242         np = netdev_priv(dev);
3243         np->pci_dev = pci_dev;
3244         spin_lock_init(&np->lock);
3245         SET_MODULE_OWNER(dev);
3246         SET_NETDEV_DEV(dev, &pci_dev->dev);
3247
3248         init_timer(&np->oom_kick);
3249         np->oom_kick.data = (unsigned long) dev;
3250         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
3251         init_timer(&np->nic_poll);
3252         np->nic_poll.data = (unsigned long) dev;
3253         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
3254
3255         err = pci_enable_device(pci_dev);
3256         if (err) {
3257                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
3258                                 err, pci_name(pci_dev));
3259                 goto out_free;
3260         }
3261
3262         pci_set_master(pci_dev);
3263
3264         err = pci_request_regions(pci_dev, DRV_NAME);
3265         if (err < 0)
3266                 goto out_disable;
3267
3268         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
3269                 np->register_size = NV_PCI_REGSZ_VER2;
3270         else
3271                 np->register_size = NV_PCI_REGSZ_VER1;
3272
3273         err = -EINVAL;
3274         addr = 0;
3275         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3276                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
3277                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
3278                                 pci_resource_len(pci_dev, i),
3279                                 pci_resource_flags(pci_dev, i));
3280                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
3281                                 pci_resource_len(pci_dev, i) >= np->register_size) {
3282                         addr = pci_resource_start(pci_dev, i);
3283                         break;
3284                 }
3285         }
3286         if (i == DEVICE_COUNT_RESOURCE) {
3287                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
3288                                         pci_name(pci_dev));
3289                 goto out_relreg;
3290         }
3291
3292         /* copy of driver data */
3293         np->driver_data = id->driver_data;
3294
3295         /* handle different descriptor versions */
3296         if (id->driver_data & DEV_HAS_HIGH_DMA) {
3297                 /* packet format 3: supports 40-bit addressing */
3298                 np->desc_ver = DESC_VER_3;
3299                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
3300                 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
3301                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
3302                                         pci_name(pci_dev));
3303                 } else {
3304                         dev->features |= NETIF_F_HIGHDMA;
3305                         printk(KERN_INFO "forcedeth: using HIGHDMA\n");
3306                 }
3307                 if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
3308                         printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
3309                                pci_name(pci_dev));
3310                 }
3311         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
3312                 /* packet format 2: supports jumbo frames */
3313                 np->desc_ver = DESC_VER_2;
3314                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
3315         } else {
3316                 /* original packet format */
3317                 np->desc_ver = DESC_VER_1;
3318                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
3319         }
3320
3321         np->pkt_limit = NV_PKTLIMIT_1;
3322         if (id->driver_data & DEV_HAS_LARGEDESC)
3323                 np->pkt_limit = NV_PKTLIMIT_2;
3324
3325         if (id->driver_data & DEV_HAS_CHECKSUM) {
3326                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3327                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
3328 #ifdef NETIF_F_TSO
3329                 dev->features |= NETIF_F_TSO;
3330 #endif
3331         }
3332
3333         np->vlanctl_bits = 0;
3334         if (id->driver_data & DEV_HAS_VLAN) {
3335                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
3336                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
3337                 dev->vlan_rx_register = nv_vlan_rx_register;
3338                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
3339         }
3340
3341         np->msi_flags = 0;
3342         if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
3343                 np->msi_flags |= NV_MSI_CAPABLE;
3344         }
3345         if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
3346                 np->msi_flags |= NV_MSI_X_CAPABLE;
3347         }
3348
3349         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE;
3350         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
3351                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE;
3352         }
3353
3354
3355         err = -ENOMEM;
3356         np->base = ioremap(addr, np->register_size);
3357         if (!np->base)
3358                 goto out_relreg;
3359         dev->base_addr = (unsigned long)np->base;
3360
3361         dev->irq = pci_dev->irq;
3362
3363         np->rx_ring_size = RX_RING_DEFAULT;
3364         np->tx_ring_size = TX_RING_DEFAULT;
3365         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
3366         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
3367
3368         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3369                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
3370                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
3371                                         &np->ring_addr);
3372                 if (!np->rx_ring.orig)
3373                         goto out_unmap;
3374                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3375         } else {
3376                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
3377                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
3378                                         &np->ring_addr);
3379                 if (!np->rx_ring.ex)
3380                         goto out_unmap;
3381                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3382         }
3383         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
3384         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
3385         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
3386         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
3387         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
3388         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
3389                 goto out_freering;
3390         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3391         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3392         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3393         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3394         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3395
3396         dev->open = nv_open;
3397         dev->stop = nv_close;
3398         dev->hard_start_xmit = nv_start_xmit;
3399         dev->get_stats = nv_get_stats;
3400         dev->change_mtu = nv_change_mtu;
3401         dev->set_mac_address = nv_set_mac_address;
3402         dev->set_multicast_list = nv_set_multicast;
3403 #ifdef CONFIG_NET_POLL_CONTROLLER
3404         dev->poll_controller = nv_poll_controller;
3405 #endif
3406         SET_ETHTOOL_OPS(dev, &ops);
3407         dev->tx_timeout = nv_tx_timeout;
3408         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
3409
3410         pci_set_drvdata(pci_dev, dev);
3411
3412         /* read the mac address */
3413         base = get_hwbase(dev);
3414         np->orig_mac[0] = readl(base + NvRegMacAddrA);
3415         np->orig_mac[1] = readl(base + NvRegMacAddrB);
3416
3417         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
3418         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
3419         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
3420         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
3421         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
3422         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
3423         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3424
3425         if (!is_valid_ether_addr(dev->perm_addr)) {
3426                 /*
3427                  * Bad mac address. At least one bios sets the mac address
3428                  * to 01:23:45:67:89:ab
3429                  */
3430                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
3431                         pci_name(pci_dev),
3432                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3433                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3434                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
3435                 dev->dev_addr[0] = 0x00;
3436                 dev->dev_addr[1] = 0x00;
3437                 dev->dev_addr[2] = 0x6c;
3438                 get_random_bytes(&dev->dev_addr[3], 3);
3439         }
3440
3441         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
3442                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3443                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3444
3445         /* disable WOL */
3446         writel(0, base + NvRegWakeUpFlags);
3447         np->wolenabled = 0;
3448
3449         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
3450                 u8 revision_id;
3451                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
3452
3453                 /* take phy and nic out of low power mode */
3454                 powerstate = readl(base + NvRegPowerState2);
3455                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
3456                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
3457                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
3458                     revision_id >= 0xA3)
3459                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
3460                 writel(powerstate, base + NvRegPowerState2);
3461         }
3462
3463         if (np->desc_ver == DESC_VER_1) {
3464                 np->tx_flags = NV_TX_VALID;
3465         } else {
3466                 np->tx_flags = NV_TX2_VALID;
3467         }
3468         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3469                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3470                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3471                         np->msi_flags |= 0x0003;
3472         } else {
3473                 np->irqmask = NVREG_IRQMASK_CPU;
3474                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3475                         np->msi_flags |= 0x0001;
3476         }
3477
3478         if (id->driver_data & DEV_NEED_TIMERIRQ)
3479                 np->irqmask |= NVREG_IRQ_TIMER;
3480         if (id->driver_data & DEV_NEED_LINKTIMER) {
3481                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
3482                 np->need_linktimer = 1;
3483                 np->link_timeout = jiffies + LINK_TIMEOUT;
3484         } else {
3485                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
3486                 np->need_linktimer = 0;
3487         }
3488
3489         /* find a suitable phy */
3490         for (i = 1; i <= 32; i++) {
3491                 int id1, id2;
3492                 int phyaddr = i & 0x1F;
3493
3494                 spin_lock_irq(&np->lock);
3495                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
3496                 spin_unlock_irq(&np->lock);
3497                 if (id1 < 0 || id1 == 0xffff)
3498                         continue;
3499                 spin_lock_irq(&np->lock);
3500                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
3501                 spin_unlock_irq(&np->lock);
3502                 if (id2 < 0 || id2 == 0xffff)
3503                         continue;
3504
3505                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
3506                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
3507                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
3508                         pci_name(pci_dev), id1, id2, phyaddr);
3509                 np->phyaddr = phyaddr;
3510                 np->phy_oui = id1 | id2;
3511                 break;
3512         }
3513         if (i == 33) {
3514                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
3515                        pci_name(pci_dev));
3516                 goto out_error;
3517         }
3518
3519         /* reset it */
3520         phy_init(dev);
3521
3522         /* set default link speed settings */
3523         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3524         np->duplex = 0;
3525         np->autoneg = 1;
3526
3527         err = register_netdev(dev);
3528         if (err) {
3529                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
3530                 goto out_error;
3531         }
3532         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
3533                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
3534                         pci_name(pci_dev));
3535
3536         return 0;
3537
3538 out_error:
3539         pci_set_drvdata(pci_dev, NULL);
3540 out_freering:
3541         free_rings(dev);
3542 out_unmap:
3543         iounmap(get_hwbase(dev));
3544 out_relreg:
3545         pci_release_regions(pci_dev);
3546 out_disable:
3547         pci_disable_device(pci_dev);
3548 out_free:
3549         free_netdev(dev);
3550 out:
3551         return err;
3552 }
3553
3554 static void __devexit nv_remove(struct pci_dev *pci_dev)
3555 {
3556         struct net_device *dev = pci_get_drvdata(pci_dev);
3557
3558         unregister_netdev(dev);
3559
3560         /* free all structures */
3561         free_rings(dev);
3562         iounmap(get_hwbase(dev));
3563         pci_release_regions(pci_dev);
3564         pci_disable_device(pci_dev);
3565         free_netdev(dev);
3566         pci_set_drvdata(pci_dev, NULL);
3567 }
3568
3569 static struct pci_device_id pci_tbl[] = {
3570         {       /* nForce Ethernet Controller */
3571                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
3572                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3573         },
3574         {       /* nForce2 Ethernet Controller */
3575                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
3576                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3577         },
3578         {       /* nForce3 Ethernet Controller */
3579                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
3580                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3581         },
3582         {       /* nForce3 Ethernet Controller */
3583                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
3584                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3585         },
3586         {       /* nForce3 Ethernet Controller */
3587                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
3588                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3589         },
3590         {       /* nForce3 Ethernet Controller */
3591                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
3592                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3593         },
3594         {       /* nForce3 Ethernet Controller */
3595                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
3596                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3597         },
3598         {       /* CK804 Ethernet Controller */
3599                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
3600                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3601         },
3602         {       /* CK804 Ethernet Controller */
3603                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
3604                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3605         },
3606         {       /* MCP04 Ethernet Controller */
3607                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
3608                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3609         },
3610         {       /* MCP04 Ethernet Controller */
3611                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
3612                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3613         },
3614         {       /* MCP51 Ethernet Controller */
3615                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
3616                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3617         },
3618         {       /* MCP51 Ethernet Controller */
3619                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
3620                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3621         },
3622         {       /* MCP55 Ethernet Controller */
3623                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
3624                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
3625         },
3626         {       /* MCP55 Ethernet Controller */
3627                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
3628                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
3629         },
3630         {0,},
3631 };
3632
3633 static struct pci_driver driver = {
3634         .name = "forcedeth",
3635         .id_table = pci_tbl,
3636         .probe = nv_probe,
3637         .remove = __devexit_p(nv_remove),
3638 };
3639
3640
3641 static int __init init_nic(void)
3642 {
3643         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
3644         return pci_module_init(&driver);
3645 }
3646
3647 static void __exit exit_nic(void)
3648 {
3649         pci_unregister_driver(&driver);
3650 }
3651
3652 module_param(max_interrupt_work, int, 0);
3653 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
3654 module_param(optimization_mode, int, 0);
3655 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
3656 module_param(poll_interval, int, 0);
3657 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
3658 module_param(disable_msi, int, 0);
3659 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
3660 module_param(disable_msix, int, 0);
3661 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
3662
3663 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
3664 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
3665 MODULE_LICENSE("GPL");
3666
3667 MODULE_DEVICE_TABLE(pci, pci_tbl);
3668
3669 module_init(init_nic);
3670 module_exit(exit_nic);