6f2a6b6deb6b1342faa0b02942eb40d93df13f60
[pandora-kernel.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
26
27 /*
28  * The current flushing context - we pass it instead of 5 arguments:
29  */
30 struct cpa_data {
31         unsigned long   *vaddr;
32         pgprot_t        mask_set;
33         pgprot_t        mask_clr;
34         int             numpages;
35         int             flags;
36         unsigned long   pfn;
37         unsigned        force_split : 1;
38         int             curpage;
39         struct page     **pages;
40 };
41
42 /*
43  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45  * entries change the page attribute in parallel to some other cpu
46  * splitting a large page entry along with changing the attribute.
47  */
48 static DEFINE_SPINLOCK(cpa_lock);
49
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
53
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
56
57 void update_page_count(int level, unsigned long pages)
58 {
59         unsigned long flags;
60
61         /* Protect against CPA */
62         spin_lock_irqsave(&pgd_lock, flags);
63         direct_pages_count[level] += pages;
64         spin_unlock_irqrestore(&pgd_lock, flags);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @addr:       virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258         pgprot_t required = __pgprot(0);
259
260         /*
261          * The BIOS area between 640k and 1Mb needs to be executable for
262          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
263          */
264         if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265                 pgprot_val(forbidden) |= _PAGE_NX;
266
267         /*
268          * The kernel text needs to be executable for obvious reasons
269          * Does not cover __inittext since that is gone later on. On
270          * 64bit we do not enforce !NX on the low mapping
271          */
272         if (within(address, (unsigned long)_text, (unsigned long)_etext))
273                 pgprot_val(forbidden) |= _PAGE_NX;
274
275         /*
276          * The .rodata section needs to be read-only. Using the pfn
277          * catches all aliases.
278          */
279         if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280                    __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
281                 pgprot_val(forbidden) |= _PAGE_RW;
282         /*
283          * .data and .bss should always be writable.
284          */
285         if (within(address, (unsigned long)_sdata, (unsigned long)_edata) ||
286             within(address, (unsigned long)__bss_start, (unsigned long)__bss_stop))
287                 pgprot_val(required) |= _PAGE_RW;
288
289 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
290         /*
291          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
292          * kernel text mappings for the large page aligned text, rodata sections
293          * will be always read-only. For the kernel identity mappings covering
294          * the holes caused by this alignment can be anything that user asks.
295          *
296          * This will preserve the large page mappings for kernel text/data
297          * at no extra cost.
298          */
299         if (kernel_set_to_readonly &&
300             within(address, (unsigned long)_text,
301                    (unsigned long)__end_rodata_hpage_align)) {
302                 unsigned int level;
303
304                 /*
305                  * Don't enforce the !RW mapping for the kernel text mapping,
306                  * if the current mapping is already using small page mapping.
307                  * No need to work hard to preserve large page mappings in this
308                  * case.
309                  *
310                  * This also fixes the Linux Xen paravirt guest boot failure
311                  * (because of unexpected read-only mappings for kernel identity
312                  * mappings). In this paravirt guest case, the kernel text
313                  * mapping and the kernel identity mapping share the same
314                  * page-table pages. Thus we can't really use different
315                  * protections for the kernel text and identity mappings. Also,
316                  * these shared mappings are made of small page mappings.
317                  * Thus this don't enforce !RW mapping for small page kernel
318                  * text mapping logic will help Linux Xen parvirt guest boot
319                  * aswell.
320                  */
321                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
322                         pgprot_val(forbidden) |= _PAGE_RW;
323         }
324 #endif
325
326         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
327         prot = __pgprot(pgprot_val(prot) | pgprot_val(required));
328
329         return prot;
330 }
331
332 /*
333  * Lookup the page table entry for a virtual address. Return a pointer
334  * to the entry and the level of the mapping.
335  *
336  * Note: We return pud and pmd either when the entry is marked large
337  * or when the present bit is not set. Otherwise we would return a
338  * pointer to a nonexisting mapping.
339  */
340 pte_t *lookup_address(unsigned long address, unsigned int *level)
341 {
342         pgd_t *pgd = pgd_offset_k(address);
343         pud_t *pud;
344         pmd_t *pmd;
345
346         *level = PG_LEVEL_NONE;
347
348         if (pgd_none(*pgd))
349                 return NULL;
350
351         pud = pud_offset(pgd, address);
352         if (pud_none(*pud))
353                 return NULL;
354
355         *level = PG_LEVEL_1G;
356         if (pud_large(*pud) || !pud_present(*pud))
357                 return (pte_t *)pud;
358
359         pmd = pmd_offset(pud, address);
360         if (pmd_none(*pmd))
361                 return NULL;
362
363         *level = PG_LEVEL_2M;
364         if (pmd_large(*pmd) || !pmd_present(*pmd))
365                 return (pte_t *)pmd;
366
367         *level = PG_LEVEL_4K;
368
369         return pte_offset_kernel(pmd, address);
370 }
371 EXPORT_SYMBOL_GPL(lookup_address);
372
373 /*
374  * Set the new pmd in all the pgds we know about:
375  */
376 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
377 {
378         /* change init_mm */
379         set_pte_atomic(kpte, pte);
380 #ifdef CONFIG_X86_32
381         if (!SHARED_KERNEL_PMD) {
382                 struct page *page;
383
384                 list_for_each_entry(page, &pgd_list, lru) {
385                         pgd_t *pgd;
386                         pud_t *pud;
387                         pmd_t *pmd;
388
389                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
390                         pud = pud_offset(pgd, address);
391                         pmd = pmd_offset(pud, address);
392                         set_pte_atomic((pte_t *)pmd, pte);
393                 }
394         }
395 #endif
396 }
397
398 static int
399 try_preserve_large_page(pte_t *kpte, unsigned long address,
400                         struct cpa_data *cpa)
401 {
402         unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
403         pte_t new_pte, old_pte, *tmp;
404         pgprot_t old_prot, new_prot, req_prot;
405         int i, do_split = 1;
406         unsigned int level;
407
408         if (cpa->force_split)
409                 return 1;
410
411         spin_lock_irqsave(&pgd_lock, flags);
412         /*
413          * Check for races, another CPU might have split this page
414          * up already:
415          */
416         tmp = lookup_address(address, &level);
417         if (tmp != kpte)
418                 goto out_unlock;
419
420         switch (level) {
421         case PG_LEVEL_2M:
422                 psize = PMD_PAGE_SIZE;
423                 pmask = PMD_PAGE_MASK;
424                 break;
425 #ifdef CONFIG_X86_64
426         case PG_LEVEL_1G:
427                 psize = PUD_PAGE_SIZE;
428                 pmask = PUD_PAGE_MASK;
429                 break;
430 #endif
431         default:
432                 do_split = -EINVAL;
433                 goto out_unlock;
434         }
435
436         /*
437          * Calculate the number of pages, which fit into this large
438          * page starting at address:
439          */
440         nextpage_addr = (address + psize) & pmask;
441         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
442         if (numpages < cpa->numpages)
443                 cpa->numpages = numpages;
444
445         /*
446          * We are safe now. Check whether the new pgprot is the same:
447          */
448         old_pte = *kpte;
449         old_prot = new_prot = req_prot = pte_pgprot(old_pte);
450
451         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
452         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
453
454         /*
455          * old_pte points to the large page base address. So we need
456          * to add the offset of the virtual address:
457          */
458         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
459         cpa->pfn = pfn;
460
461         new_prot = static_protections(req_prot, address, pfn);
462
463         /*
464          * We need to check the full range, whether
465          * static_protection() requires a different pgprot for one of
466          * the pages in the range we try to preserve:
467          */
468         addr = address & pmask;
469         pfn = pte_pfn(old_pte);
470         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
471                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
472
473                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
474                         goto out_unlock;
475         }
476
477         /*
478          * If there are no changes, return. maxpages has been updated
479          * above:
480          */
481         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
482                 do_split = 0;
483                 goto out_unlock;
484         }
485
486         /*
487          * We need to change the attributes. Check, whether we can
488          * change the large page in one go. We request a split, when
489          * the address is not aligned and the number of pages is
490          * smaller than the number of pages in the large page. Note
491          * that we limited the number of possible pages already to
492          * the number of pages in the large page.
493          */
494         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
495                 /*
496                  * The address is aligned and the number of pages
497                  * covers the full page.
498                  */
499                 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
500                 __set_pmd_pte(kpte, address, new_pte);
501                 cpa->flags |= CPA_FLUSHTLB;
502                 do_split = 0;
503         }
504
505 out_unlock:
506         spin_unlock_irqrestore(&pgd_lock, flags);
507
508         return do_split;
509 }
510
511 static int split_large_page(pte_t *kpte, unsigned long address)
512 {
513         unsigned long flags, pfn, pfninc = 1;
514         unsigned int i, level;
515         pte_t *pbase, *tmp;
516         pgprot_t ref_prot;
517         struct page *base;
518
519         if (!debug_pagealloc)
520                 spin_unlock(&cpa_lock);
521         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
522         if (!debug_pagealloc)
523                 spin_lock(&cpa_lock);
524         if (!base)
525                 return -ENOMEM;
526
527         spin_lock_irqsave(&pgd_lock, flags);
528         /*
529          * Check for races, another CPU might have split this page
530          * up for us already:
531          */
532         tmp = lookup_address(address, &level);
533         if (tmp != kpte)
534                 goto out_unlock;
535
536         pbase = (pte_t *)page_address(base);
537         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
538         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
539         /*
540          * If we ever want to utilize the PAT bit, we need to
541          * update this function to make sure it's converted from
542          * bit 12 to bit 7 when we cross from the 2MB level to
543          * the 4K level:
544          */
545         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
546
547 #ifdef CONFIG_X86_64
548         if (level == PG_LEVEL_1G) {
549                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
550                 pgprot_val(ref_prot) |= _PAGE_PSE;
551         }
552 #endif
553
554         /*
555          * Get the target pfn from the original entry:
556          */
557         pfn = pte_pfn(*kpte);
558         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
559                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
560
561         if (address >= (unsigned long)__va(0) &&
562                 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
563                 split_page_count(level);
564
565 #ifdef CONFIG_X86_64
566         if (address >= (unsigned long)__va(1UL<<32) &&
567                 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
568                 split_page_count(level);
569 #endif
570
571         /*
572          * Install the new, split up pagetable.
573          *
574          * We use the standard kernel pagetable protections for the new
575          * pagetable protections, the actual ptes set above control the
576          * primary protection behavior:
577          */
578         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
579
580         /*
581          * Intel Atom errata AAH41 workaround.
582          *
583          * The real fix should be in hw or in a microcode update, but
584          * we also probabilistically try to reduce the window of having
585          * a large TLB mixed with 4K TLBs while instruction fetches are
586          * going on.
587          */
588         __flush_tlb_all();
589
590         base = NULL;
591
592 out_unlock:
593         /*
594          * If we dropped out via the lookup_address check under
595          * pgd_lock then stick the page back into the pool:
596          */
597         if (base)
598                 __free_page(base);
599         spin_unlock_irqrestore(&pgd_lock, flags);
600
601         return 0;
602 }
603
604 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
605                                int primary)
606 {
607         /*
608          * Ignore all non primary paths.
609          */
610         if (!primary)
611                 return 0;
612
613         /*
614          * Ignore the NULL PTE for kernel identity mapping, as it is expected
615          * to have holes.
616          * Also set numpages to '1' indicating that we processed cpa req for
617          * one virtual address page and its pfn. TBD: numpages can be set based
618          * on the initial value and the level returned by lookup_address().
619          */
620         if (within(vaddr, PAGE_OFFSET,
621                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
622                 cpa->numpages = 1;
623                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
624                 return 0;
625         } else {
626                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
627                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
628                         *cpa->vaddr);
629
630                 return -EFAULT;
631         }
632 }
633
634 static int __change_page_attr(struct cpa_data *cpa, int primary)
635 {
636         unsigned long address;
637         int do_split, err;
638         unsigned int level;
639         pte_t *kpte, old_pte;
640
641         if (cpa->flags & CPA_PAGES_ARRAY) {
642                 struct page *page = cpa->pages[cpa->curpage];
643                 if (unlikely(PageHighMem(page)))
644                         return 0;
645                 address = (unsigned long)page_address(page);
646         } else if (cpa->flags & CPA_ARRAY)
647                 address = cpa->vaddr[cpa->curpage];
648         else
649                 address = *cpa->vaddr;
650 repeat:
651         kpte = lookup_address(address, &level);
652         if (!kpte)
653                 return __cpa_process_fault(cpa, address, primary);
654
655         old_pte = *kpte;
656         if (!pte_val(old_pte))
657                 return __cpa_process_fault(cpa, address, primary);
658
659         if (level == PG_LEVEL_4K) {
660                 pte_t new_pte;
661                 pgprot_t new_prot = pte_pgprot(old_pte);
662                 unsigned long pfn = pte_pfn(old_pte);
663
664                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
665                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
666
667                 new_prot = static_protections(new_prot, address, pfn);
668
669                 /*
670                  * We need to keep the pfn from the existing PTE,
671                  * after all we're only going to change it's attributes
672                  * not the memory it points to
673                  */
674                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
675                 cpa->pfn = pfn;
676                 /*
677                  * Do we really change anything ?
678                  */
679                 if (pte_val(old_pte) != pte_val(new_pte)) {
680                         set_pte_atomic(kpte, new_pte);
681                         cpa->flags |= CPA_FLUSHTLB;
682                 }
683                 cpa->numpages = 1;
684                 return 0;
685         }
686
687         /*
688          * Check, whether we can keep the large page intact
689          * and just change the pte:
690          */
691         do_split = try_preserve_large_page(kpte, address, cpa);
692         /*
693          * When the range fits into the existing large page,
694          * return. cp->numpages and cpa->tlbflush have been updated in
695          * try_large_page:
696          */
697         if (do_split <= 0)
698                 return do_split;
699
700         /*
701          * We have to split the large page:
702          */
703         err = split_large_page(kpte, address);
704         if (!err) {
705                 /*
706                  * Do a global flush tlb after splitting the large page
707                  * and before we do the actual change page attribute in the PTE.
708                  *
709                  * With out this, we violate the TLB application note, that says
710                  * "The TLBs may contain both ordinary and large-page
711                  *  translations for a 4-KByte range of linear addresses. This
712                  *  may occur if software modifies the paging structures so that
713                  *  the page size used for the address range changes. If the two
714                  *  translations differ with respect to page frame or attributes
715                  *  (e.g., permissions), processor behavior is undefined and may
716                  *  be implementation-specific."
717                  *
718                  * We do this global tlb flush inside the cpa_lock, so that we
719                  * don't allow any other cpu, with stale tlb entries change the
720                  * page attribute in parallel, that also falls into the
721                  * just split large page entry.
722                  */
723                 flush_tlb_all();
724                 goto repeat;
725         }
726
727         return err;
728 }
729
730 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
731
732 static int cpa_process_alias(struct cpa_data *cpa)
733 {
734         struct cpa_data alias_cpa;
735         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
736         unsigned long vaddr;
737         int ret;
738
739         if (cpa->pfn >= max_pfn_mapped)
740                 return 0;
741
742 #ifdef CONFIG_X86_64
743         if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
744                 return 0;
745 #endif
746         /*
747          * No need to redo, when the primary call touched the direct
748          * mapping already:
749          */
750         if (cpa->flags & CPA_PAGES_ARRAY) {
751                 struct page *page = cpa->pages[cpa->curpage];
752                 if (unlikely(PageHighMem(page)))
753                         return 0;
754                 vaddr = (unsigned long)page_address(page);
755         } else if (cpa->flags & CPA_ARRAY)
756                 vaddr = cpa->vaddr[cpa->curpage];
757         else
758                 vaddr = *cpa->vaddr;
759
760         if (!(within(vaddr, PAGE_OFFSET,
761                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
762
763                 alias_cpa = *cpa;
764                 alias_cpa.vaddr = &laddr;
765                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
766
767                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
768                 if (ret)
769                         return ret;
770         }
771
772 #ifdef CONFIG_X86_64
773         /*
774          * If the primary call didn't touch the high mapping already
775          * and the physical address is inside the kernel map, we need
776          * to touch the high mapped kernel as well:
777          */
778         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
779             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
780                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
781                                                __START_KERNEL_map - phys_base;
782                 alias_cpa = *cpa;
783                 alias_cpa.vaddr = &temp_cpa_vaddr;
784                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
785
786                 /*
787                  * The high mapping range is imprecise, so ignore the
788                  * return value.
789                  */
790                 __change_page_attr_set_clr(&alias_cpa, 0);
791         }
792 #endif
793
794         return 0;
795 }
796
797 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
798 {
799         int ret, numpages = cpa->numpages;
800
801         while (numpages) {
802                 /*
803                  * Store the remaining nr of pages for the large page
804                  * preservation check.
805                  */
806                 cpa->numpages = numpages;
807                 /* for array changes, we can't use large page */
808                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
809                         cpa->numpages = 1;
810
811                 if (!debug_pagealloc)
812                         spin_lock(&cpa_lock);
813                 ret = __change_page_attr(cpa, checkalias);
814                 if (!debug_pagealloc)
815                         spin_unlock(&cpa_lock);
816                 if (ret)
817                         return ret;
818
819                 if (checkalias) {
820                         ret = cpa_process_alias(cpa);
821                         if (ret)
822                                 return ret;
823                 }
824
825                 /*
826                  * Adjust the number of pages with the result of the
827                  * CPA operation. Either a large page has been
828                  * preserved or a single page update happened.
829                  */
830                 BUG_ON(cpa->numpages > numpages);
831                 numpages -= cpa->numpages;
832                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
833                         cpa->curpage++;
834                 else
835                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
836
837         }
838         return 0;
839 }
840
841 static inline int cache_attr(pgprot_t attr)
842 {
843         return pgprot_val(attr) &
844                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
845 }
846
847 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
848                                     pgprot_t mask_set, pgprot_t mask_clr,
849                                     int force_split, int in_flag,
850                                     struct page **pages)
851 {
852         struct cpa_data cpa;
853         int ret, cache, checkalias;
854         unsigned long baddr = 0;
855
856         /*
857          * Check, if we are requested to change a not supported
858          * feature:
859          */
860         mask_set = canon_pgprot(mask_set);
861         mask_clr = canon_pgprot(mask_clr);
862         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
863                 return 0;
864
865         /* Ensure we are PAGE_SIZE aligned */
866         if (in_flag & CPA_ARRAY) {
867                 int i;
868                 for (i = 0; i < numpages; i++) {
869                         if (addr[i] & ~PAGE_MASK) {
870                                 addr[i] &= PAGE_MASK;
871                                 WARN_ON_ONCE(1);
872                         }
873                 }
874         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
875                 /*
876                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
877                  * No need to cehck in that case
878                  */
879                 if (*addr & ~PAGE_MASK) {
880                         *addr &= PAGE_MASK;
881                         /*
882                          * People should not be passing in unaligned addresses:
883                          */
884                         WARN_ON_ONCE(1);
885                 }
886                 /*
887                  * Save address for cache flush. *addr is modified in the call
888                  * to __change_page_attr_set_clr() below.
889                  */
890                 baddr = *addr;
891         }
892
893         /* Must avoid aliasing mappings in the highmem code */
894         kmap_flush_unused();
895
896         vm_unmap_aliases();
897
898         cpa.vaddr = addr;
899         cpa.pages = pages;
900         cpa.numpages = numpages;
901         cpa.mask_set = mask_set;
902         cpa.mask_clr = mask_clr;
903         cpa.flags = 0;
904         cpa.curpage = 0;
905         cpa.force_split = force_split;
906
907         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
908                 cpa.flags |= in_flag;
909
910         /* No alias checking for _NX bit modifications */
911         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
912
913         ret = __change_page_attr_set_clr(&cpa, checkalias);
914
915         /*
916          * Check whether we really changed something:
917          */
918         if (!(cpa.flags & CPA_FLUSHTLB))
919                 goto out;
920
921         /*
922          * No need to flush, when we did not set any of the caching
923          * attributes:
924          */
925         cache = cache_attr(mask_set);
926
927         /*
928          * On success we use clflush, when the CPU supports it to
929          * avoid the wbindv. If the CPU does not support it and in the
930          * error case we fall back to cpa_flush_all (which uses
931          * wbindv):
932          */
933         if (!ret && cpu_has_clflush) {
934                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
935                         cpa_flush_array(addr, numpages, cache,
936                                         cpa.flags, pages);
937                 } else
938                         cpa_flush_range(baddr, numpages, cache);
939         } else
940                 cpa_flush_all(cache);
941
942 out:
943         return ret;
944 }
945
946 static inline int change_page_attr_set(unsigned long *addr, int numpages,
947                                        pgprot_t mask, int array)
948 {
949         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
950                 (array ? CPA_ARRAY : 0), NULL);
951 }
952
953 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
954                                          pgprot_t mask, int array)
955 {
956         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
957                 (array ? CPA_ARRAY : 0), NULL);
958 }
959
960 static inline int cpa_set_pages_array(struct page **pages, int numpages,
961                                        pgprot_t mask)
962 {
963         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
964                 CPA_PAGES_ARRAY, pages);
965 }
966
967 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
968                                          pgprot_t mask)
969 {
970         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
971                 CPA_PAGES_ARRAY, pages);
972 }
973
974 int _set_memory_uc(unsigned long addr, int numpages)
975 {
976         /*
977          * for now UC MINUS. see comments in ioremap_nocache()
978          */
979         return change_page_attr_set(&addr, numpages,
980                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
981 }
982
983 int set_memory_uc(unsigned long addr, int numpages)
984 {
985         int ret;
986
987         /*
988          * for now UC MINUS. see comments in ioremap_nocache()
989          */
990         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
991                             _PAGE_CACHE_UC_MINUS, NULL);
992         if (ret)
993                 goto out_err;
994
995         ret = _set_memory_uc(addr, numpages);
996         if (ret)
997                 goto out_free;
998
999         return 0;
1000
1001 out_free:
1002         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1003 out_err:
1004         return ret;
1005 }
1006 EXPORT_SYMBOL(set_memory_uc);
1007
1008 int _set_memory_array(unsigned long *addr, int addrinarray,
1009                 unsigned long new_type)
1010 {
1011         int i, j;
1012         int ret;
1013
1014         /*
1015          * for now UC MINUS. see comments in ioremap_nocache()
1016          */
1017         for (i = 0; i < addrinarray; i++) {
1018                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1019                                         new_type, NULL);
1020                 if (ret)
1021                         goto out_free;
1022         }
1023
1024         ret = change_page_attr_set(addr, addrinarray,
1025                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1026
1027         if (!ret && new_type == _PAGE_CACHE_WC)
1028                 ret = change_page_attr_set_clr(addr, addrinarray,
1029                                                __pgprot(_PAGE_CACHE_WC),
1030                                                __pgprot(_PAGE_CACHE_MASK),
1031                                                0, CPA_ARRAY, NULL);
1032         if (ret)
1033                 goto out_free;
1034
1035         return 0;
1036
1037 out_free:
1038         for (j = 0; j < i; j++)
1039                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1040
1041         return ret;
1042 }
1043
1044 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1045 {
1046         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1047 }
1048 EXPORT_SYMBOL(set_memory_array_uc);
1049
1050 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1051 {
1052         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1053 }
1054 EXPORT_SYMBOL(set_memory_array_wc);
1055
1056 int _set_memory_wc(unsigned long addr, int numpages)
1057 {
1058         int ret;
1059         unsigned long addr_copy = addr;
1060
1061         ret = change_page_attr_set(&addr, numpages,
1062                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1063         if (!ret) {
1064                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1065                                                __pgprot(_PAGE_CACHE_WC),
1066                                                __pgprot(_PAGE_CACHE_MASK),
1067                                                0, 0, NULL);
1068         }
1069         return ret;
1070 }
1071
1072 int set_memory_wc(unsigned long addr, int numpages)
1073 {
1074         int ret;
1075
1076         if (!pat_enabled)
1077                 return set_memory_uc(addr, numpages);
1078
1079         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1080                 _PAGE_CACHE_WC, NULL);
1081         if (ret)
1082                 goto out_err;
1083
1084         ret = _set_memory_wc(addr, numpages);
1085         if (ret)
1086                 goto out_free;
1087
1088         return 0;
1089
1090 out_free:
1091         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1092 out_err:
1093         return ret;
1094 }
1095 EXPORT_SYMBOL(set_memory_wc);
1096
1097 int _set_memory_wb(unsigned long addr, int numpages)
1098 {
1099         return change_page_attr_clear(&addr, numpages,
1100                                       __pgprot(_PAGE_CACHE_MASK), 0);
1101 }
1102
1103 int set_memory_wb(unsigned long addr, int numpages)
1104 {
1105         int ret;
1106
1107         ret = _set_memory_wb(addr, numpages);
1108         if (ret)
1109                 return ret;
1110
1111         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1112         return 0;
1113 }
1114 EXPORT_SYMBOL(set_memory_wb);
1115
1116 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1117 {
1118         int i;
1119         int ret;
1120
1121         ret = change_page_attr_clear(addr, addrinarray,
1122                                       __pgprot(_PAGE_CACHE_MASK), 1);
1123         if (ret)
1124                 return ret;
1125
1126         for (i = 0; i < addrinarray; i++)
1127                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1128
1129         return 0;
1130 }
1131 EXPORT_SYMBOL(set_memory_array_wb);
1132
1133 int set_memory_x(unsigned long addr, int numpages)
1134 {
1135         if (!(__supported_pte_mask & _PAGE_NX))
1136                 return 0;
1137
1138         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1139 }
1140 EXPORT_SYMBOL(set_memory_x);
1141
1142 int set_memory_nx(unsigned long addr, int numpages)
1143 {
1144         if (!(__supported_pte_mask & _PAGE_NX))
1145                 return 0;
1146
1147         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1148 }
1149 EXPORT_SYMBOL(set_memory_nx);
1150
1151 int set_memory_ro(unsigned long addr, int numpages)
1152 {
1153         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1154 }
1155 EXPORT_SYMBOL_GPL(set_memory_ro);
1156
1157 int set_memory_rw(unsigned long addr, int numpages)
1158 {
1159         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1160 }
1161 EXPORT_SYMBOL_GPL(set_memory_rw);
1162
1163 int set_memory_np(unsigned long addr, int numpages)
1164 {
1165         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1166 }
1167
1168 int set_memory_4k(unsigned long addr, int numpages)
1169 {
1170         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1171                                         __pgprot(0), 1, 0, NULL);
1172 }
1173
1174 int set_pages_uc(struct page *page, int numpages)
1175 {
1176         unsigned long addr = (unsigned long)page_address(page);
1177
1178         return set_memory_uc(addr, numpages);
1179 }
1180 EXPORT_SYMBOL(set_pages_uc);
1181
1182 static int _set_pages_array(struct page **pages, int addrinarray,
1183                 unsigned long new_type)
1184 {
1185         unsigned long start;
1186         unsigned long end;
1187         int i;
1188         int free_idx;
1189         int ret;
1190
1191         for (i = 0; i < addrinarray; i++) {
1192                 if (PageHighMem(pages[i]))
1193                         continue;
1194                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1195                 end = start + PAGE_SIZE;
1196                 if (reserve_memtype(start, end, new_type, NULL))
1197                         goto err_out;
1198         }
1199
1200         ret = cpa_set_pages_array(pages, addrinarray,
1201                         __pgprot(_PAGE_CACHE_UC_MINUS));
1202         if (!ret && new_type == _PAGE_CACHE_WC)
1203                 ret = change_page_attr_set_clr(NULL, addrinarray,
1204                                                __pgprot(_PAGE_CACHE_WC),
1205                                                __pgprot(_PAGE_CACHE_MASK),
1206                                                0, CPA_PAGES_ARRAY, pages);
1207         if (ret)
1208                 goto err_out;
1209         return 0; /* Success */
1210 err_out:
1211         free_idx = i;
1212         for (i = 0; i < free_idx; i++) {
1213                 if (PageHighMem(pages[i]))
1214                         continue;
1215                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1216                 end = start + PAGE_SIZE;
1217                 free_memtype(start, end);
1218         }
1219         return -EINVAL;
1220 }
1221
1222 int set_pages_array_uc(struct page **pages, int addrinarray)
1223 {
1224         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1225 }
1226 EXPORT_SYMBOL(set_pages_array_uc);
1227
1228 int set_pages_array_wc(struct page **pages, int addrinarray)
1229 {
1230         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1231 }
1232 EXPORT_SYMBOL(set_pages_array_wc);
1233
1234 int set_pages_wb(struct page *page, int numpages)
1235 {
1236         unsigned long addr = (unsigned long)page_address(page);
1237
1238         return set_memory_wb(addr, numpages);
1239 }
1240 EXPORT_SYMBOL(set_pages_wb);
1241
1242 int set_pages_array_wb(struct page **pages, int addrinarray)
1243 {
1244         int retval;
1245         unsigned long start;
1246         unsigned long end;
1247         int i;
1248
1249         retval = cpa_clear_pages_array(pages, addrinarray,
1250                         __pgprot(_PAGE_CACHE_MASK));
1251         if (retval)
1252                 return retval;
1253
1254         for (i = 0; i < addrinarray; i++) {
1255                 if (PageHighMem(pages[i]))
1256                         continue;
1257                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1258                 end = start + PAGE_SIZE;
1259                 free_memtype(start, end);
1260         }
1261
1262         return 0;
1263 }
1264 EXPORT_SYMBOL(set_pages_array_wb);
1265
1266 int set_pages_x(struct page *page, int numpages)
1267 {
1268         unsigned long addr = (unsigned long)page_address(page);
1269
1270         return set_memory_x(addr, numpages);
1271 }
1272 EXPORT_SYMBOL(set_pages_x);
1273
1274 int set_pages_nx(struct page *page, int numpages)
1275 {
1276         unsigned long addr = (unsigned long)page_address(page);
1277
1278         return set_memory_nx(addr, numpages);
1279 }
1280 EXPORT_SYMBOL(set_pages_nx);
1281
1282 int set_pages_ro(struct page *page, int numpages)
1283 {
1284         unsigned long addr = (unsigned long)page_address(page);
1285
1286         return set_memory_ro(addr, numpages);
1287 }
1288
1289 int set_pages_rw(struct page *page, int numpages)
1290 {
1291         unsigned long addr = (unsigned long)page_address(page);
1292
1293         return set_memory_rw(addr, numpages);
1294 }
1295
1296 #ifdef CONFIG_DEBUG_PAGEALLOC
1297
1298 static int __set_pages_p(struct page *page, int numpages)
1299 {
1300         unsigned long tempaddr = (unsigned long) page_address(page);
1301         struct cpa_data cpa = { .vaddr = &tempaddr,
1302                                 .numpages = numpages,
1303                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1304                                 .mask_clr = __pgprot(0),
1305                                 .flags = 0};
1306
1307         /*
1308          * No alias checking needed for setting present flag. otherwise,
1309          * we may need to break large pages for 64-bit kernel text
1310          * mappings (this adds to complexity if we want to do this from
1311          * atomic context especially). Let's keep it simple!
1312          */
1313         return __change_page_attr_set_clr(&cpa, 0);
1314 }
1315
1316 static int __set_pages_np(struct page *page, int numpages)
1317 {
1318         unsigned long tempaddr = (unsigned long) page_address(page);
1319         struct cpa_data cpa = { .vaddr = &tempaddr,
1320                                 .numpages = numpages,
1321                                 .mask_set = __pgprot(0),
1322                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1323                                 .flags = 0};
1324
1325         /*
1326          * No alias checking needed for setting not present flag. otherwise,
1327          * we may need to break large pages for 64-bit kernel text
1328          * mappings (this adds to complexity if we want to do this from
1329          * atomic context especially). Let's keep it simple!
1330          */
1331         return __change_page_attr_set_clr(&cpa, 0);
1332 }
1333
1334 void kernel_map_pages(struct page *page, int numpages, int enable)
1335 {
1336         if (PageHighMem(page))
1337                 return;
1338         if (!enable) {
1339                 debug_check_no_locks_freed(page_address(page),
1340                                            numpages * PAGE_SIZE);
1341         }
1342
1343         /*
1344          * If page allocator is not up yet then do not call c_p_a():
1345          */
1346         if (!debug_pagealloc_enabled)
1347                 return;
1348
1349         /*
1350          * The return value is ignored as the calls cannot fail.
1351          * Large pages for identity mappings are not used at boot time
1352          * and hence no memory allocations during large page split.
1353          */
1354         if (enable)
1355                 __set_pages_p(page, numpages);
1356         else
1357                 __set_pages_np(page, numpages);
1358
1359         /*
1360          * We should perform an IPI and flush all tlbs,
1361          * but that can deadlock->flush only current cpu:
1362          */
1363         __flush_tlb_all();
1364 }
1365
1366 #ifdef CONFIG_HIBERNATION
1367
1368 bool kernel_page_present(struct page *page)
1369 {
1370         unsigned int level;
1371         pte_t *pte;
1372
1373         if (PageHighMem(page))
1374                 return false;
1375
1376         pte = lookup_address((unsigned long)page_address(page), &level);
1377         return (pte_val(*pte) & _PAGE_PRESENT);
1378 }
1379
1380 #endif /* CONFIG_HIBERNATION */
1381
1382 #endif /* CONFIG_DEBUG_PAGEALLOC */
1383
1384 /*
1385  * The testcases use internal knowledge of the implementation that shouldn't
1386  * be exposed to the rest of the kernel. Include these directly here.
1387  */
1388 #ifdef CONFIG_CPA_DEBUG
1389 #include "pageattr-test.c"
1390 #endif