#include "disk-io.h"
#include "print-tree.h"
-static int split_node(struct ctree_root *root, struct ctree_path *path,
+static int split_node(struct btrfs_root *root, struct btrfs_path *path,
int level);
-static int split_leaf(struct ctree_root *root, struct ctree_path *path,
+static int split_leaf(struct btrfs_root *root, struct btrfs_path *path,
int data_size);
-static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
- struct tree_buffer *src);
-static int balance_node_right(struct ctree_root *root,
- struct tree_buffer *dst_buf,
- struct tree_buffer *src_buf);
-static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
+static int push_node_left(struct btrfs_root *root, struct btrfs_buffer *dst,
+ struct btrfs_buffer *src);
+static int balance_node_right(struct btrfs_root *root,
+ struct btrfs_buffer *dst_buf,
+ struct btrfs_buffer *src_buf);
+static int del_ptr(struct btrfs_root *root, struct btrfs_path *path, int level,
int slot);
-inline void init_path(struct ctree_path *p)
+inline void btrfs_init_path(struct btrfs_path *p)
{
memset(p, 0, sizeof(*p));
}
-void release_path(struct ctree_root *root, struct ctree_path *p)
+void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
{
int i;
- for (i = 0; i < MAX_LEVEL; i++) {
+ for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
if (!p->nodes[i])
break;
- tree_block_release(root, p->nodes[i]);
+ btrfs_block_release(root, p->nodes[i]);
}
memset(p, 0, sizeof(*p));
}
-int btrfs_cow_block(struct ctree_root *root,
- struct tree_buffer *buf,
- struct tree_buffer *parent,
+int btrfs_cow_block(struct btrfs_root *root,
+ struct btrfs_buffer *buf,
+ struct btrfs_buffer *parent,
int parent_slot,
- struct tree_buffer **cow_ret)
+ struct btrfs_buffer **cow_ret)
{
- struct tree_buffer *cow;
+ struct btrfs_buffer *cow;
if (!list_empty(&buf->dirty)) {
*cow_ret = buf;
return 0;
}
- cow = alloc_free_block(root);
+ cow = btrfs_alloc_free_block(root);
memcpy(&cow->node, &buf->node, sizeof(buf->node));
btrfs_set_header_blocknr(&cow->node.header, cow->blocknr);
*cow_ret = cow;
root->node = cow;
cow->count++;
if (buf != root->commit_root)
- free_extent(root, buf->blocknr, 1);
- tree_block_release(root, buf);
+ btrfs_free_extent(root, buf->blocknr, 1);
+ btrfs_block_release(root, buf);
} else {
btrfs_set_node_blockptr(&parent->node, parent_slot,
cow->blocknr);
BUG_ON(list_empty(&parent->dirty));
- free_extent(root, buf->blocknr, 1);
+ btrfs_free_extent(root, buf->blocknr, 1);
}
- tree_block_release(root, buf);
+ btrfs_block_release(root, buf);
return 0;
}
* this returns the address of the start of the last item,
* which is the stop of the leaf data stack
*/
-static inline unsigned int leaf_data_end(struct leaf *leaf)
+static inline unsigned int leaf_data_end(struct btrfs_leaf *leaf)
{
u32 nr = btrfs_header_nritems(&leaf->header);
if (nr == 0)
* the start of the leaf data. IOW, how much room
* the leaf has left for both items and data
*/
-int leaf_free_space(struct leaf *leaf)
+int btrfs_leaf_free_space(struct btrfs_leaf *leaf)
{
int data_end = leaf_data_end(leaf);
int nritems = btrfs_header_nritems(&leaf->header);
return 0;
}
-int check_node(struct ctree_path *path, int level)
+int check_node(struct btrfs_path *path, int level)
{
int i;
- struct node *parent = NULL;
- struct node *node = &path->nodes[level]->node;
+ struct btrfs_node *parent = NULL;
+ struct btrfs_node *node = &path->nodes[level]->node;
int parent_slot;
u32 nritems = btrfs_header_nritems(&node->header);
return 0;
}
-int check_leaf(struct ctree_path *path, int level)
+int check_leaf(struct btrfs_path *path, int level)
{
int i;
- struct leaf *leaf = &path->nodes[level]->leaf;
- struct node *parent = NULL;
+ struct btrfs_leaf *leaf = &path->nodes[level]->leaf;
+ struct btrfs_node *parent = NULL;
int parent_slot;
u32 nritems = btrfs_header_nritems(&leaf->header);
if (path->nodes[level + 1])
parent = &path->nodes[level + 1]->node;
parent_slot = path->slots[level + 1];
- BUG_ON(leaf_free_space(leaf) < 0);
+ BUG_ON(btrfs_leaf_free_space(leaf) < 0);
if (nritems == 0)
return 0;
return 0;
}
-int check_block(struct ctree_path *path, int level)
+int check_block(struct btrfs_path *path, int level)
{
if (level == 0)
return check_leaf(path, level);
* simple bin_search frontend that does the right thing for
* leaves vs nodes
*/
-int bin_search(struct node *c, struct btrfs_key *key, int *slot)
+int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
{
if (btrfs_is_leaf(c)) {
- struct leaf *l = (struct leaf *)c;
+ struct btrfs_leaf *l = (struct btrfs_leaf *)c;
return generic_bin_search((void *)l->items,
sizeof(struct btrfs_item),
key, btrfs_header_nritems(&c->header),
return -1;
}
-struct tree_buffer *read_node_slot(struct ctree_root *root,
- struct tree_buffer *parent_buf,
+struct btrfs_buffer *read_node_slot(struct btrfs_root *root,
+ struct btrfs_buffer *parent_buf,
int slot)
{
- struct node *node = &parent_buf->node;
+ struct btrfs_node *node = &parent_buf->node;
if (slot < 0)
return NULL;
if (slot >= btrfs_header_nritems(&node->header))
return read_tree_block(root, btrfs_node_blockptr(node, slot));
}
-static int balance_level(struct ctree_root *root, struct ctree_path *path,
+static int balance_level(struct btrfs_root *root, struct btrfs_path *path,
int level)
{
- struct tree_buffer *right_buf;
- struct tree_buffer *mid_buf;
- struct tree_buffer *left_buf;
- struct tree_buffer *parent_buf = NULL;
- struct node *right = NULL;
- struct node *mid;
- struct node *left = NULL;
- struct node *parent = NULL;
+ struct btrfs_buffer *right_buf;
+ struct btrfs_buffer *mid_buf;
+ struct btrfs_buffer *left_buf;
+ struct btrfs_buffer *parent_buf = NULL;
+ struct btrfs_node *right = NULL;
+ struct btrfs_node *mid;
+ struct btrfs_node *left = NULL;
+ struct btrfs_node *parent = NULL;
int ret = 0;
int wret;
int pslot;
mid = &mid_buf->node;
orig_ptr = btrfs_node_blockptr(mid, orig_slot);
- if (level < MAX_LEVEL - 1)
+ if (level < BTRFS_MAX_LEVEL - 1)
parent_buf = path->nodes[level + 1];
pslot = path->slots[level + 1];
if (!parent_buf) {
- struct tree_buffer *child;
+ struct btrfs_buffer *child;
u64 blocknr = mid_buf->blocknr;
if (btrfs_header_nritems(&mid->header) != 1)
root->node = child;
path->nodes[level] = NULL;
/* once for the path */
- tree_block_release(root, mid_buf);
+ btrfs_block_release(root, mid_buf);
/* once for the root ptr */
- tree_block_release(root, mid_buf);
+ btrfs_block_release(root, mid_buf);
clean_tree_block(root, mid_buf);
- return free_extent(root, blocknr, 1);
+ return btrfs_free_extent(root, blocknr, 1);
}
parent = &parent_buf->node;
ret = wret;
if (btrfs_header_nritems(&right->header) == 0) {
u64 blocknr = right_buf->blocknr;
- tree_block_release(root, right_buf);
+ btrfs_block_release(root, right_buf);
clean_tree_block(root, right_buf);
right_buf = NULL;
right = NULL;
wret = del_ptr(root, path, level + 1, pslot + 1);
if (wret)
ret = wret;
- wret = free_extent(root, blocknr, 1);
+ wret = btrfs_free_extent(root, blocknr, 1);
if (wret)
ret = wret;
} else {
if (btrfs_header_nritems(&mid->header) == 0) {
/* we've managed to empty the middle node, drop it */
u64 blocknr = mid_buf->blocknr;
- tree_block_release(root, mid_buf);
+ btrfs_block_release(root, mid_buf);
clean_tree_block(root, mid_buf);
mid_buf = NULL;
mid = NULL;
wret = del_ptr(root, path, level + 1, pslot);
if (wret)
ret = wret;
- wret = free_extent(root, blocknr, 1);
+ wret = btrfs_free_extent(root, blocknr, 1);
if (wret)
ret = wret;
} else {
path->slots[level + 1] -= 1;
path->slots[level] = orig_slot;
if (mid_buf)
- tree_block_release(root, mid_buf);
+ btrfs_block_release(root, mid_buf);
} else {
orig_slot -= btrfs_header_nritems(&left->header);
path->slots[level] = orig_slot;
BUG();
if (right_buf)
- tree_block_release(root, right_buf);
+ btrfs_block_release(root, right_buf);
if (left_buf)
- tree_block_release(root, left_buf);
+ btrfs_block_release(root, left_buf);
return ret;
}
* tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
* possible)
*/
-int search_slot(struct ctree_root *root, struct btrfs_key *key,
- struct ctree_path *p, int ins_len, int cow)
+int btrfs_search_slot(struct btrfs_root *root, struct btrfs_key *key,
+ struct btrfs_path *p, int ins_len, int cow)
{
- struct tree_buffer *b;
- struct tree_buffer *cow_buf;
- struct node *c;
+ struct btrfs_buffer *b;
+ struct btrfs_buffer *cow_buf;
+ struct btrfs_node *c;
int slot;
int ret;
int level;
}
b = read_tree_block(root, btrfs_node_blockptr(c, slot));
} else {
- struct leaf *l = (struct leaf *)c;
+ struct btrfs_leaf *l = (struct btrfs_leaf *)c;
p->slots[level] = slot;
- if (ins_len > 0 && leaf_free_space(l) <
+ if (ins_len > 0 && btrfs_leaf_free_space(l) <
sizeof(struct btrfs_item) + ins_len) {
int sret = split_leaf(root, p, ins_len);
BUG_ON(sret > 0);
* If this fails to write a tree block, it returns -1, but continues
* fixing up the blocks in ram so the tree is consistent.
*/
-static int fixup_low_keys(struct ctree_root *root,
- struct ctree_path *path, struct btrfs_disk_key *key,
+static int fixup_low_keys(struct btrfs_root *root,
+ struct btrfs_path *path, struct btrfs_disk_key *key,
int level)
{
int i;
int ret = 0;
- for (i = level; i < MAX_LEVEL; i++) {
- struct node *t;
+ for (i = level; i < BTRFS_MAX_LEVEL; i++) {
+ struct btrfs_node *t;
int tslot = path->slots[i];
if (!path->nodes[i])
break;
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
* error, and > 0 if there was no room in the left hand block.
*/
-static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
- struct tree_buffer *src_buf)
+static int push_node_left(struct btrfs_root *root, struct btrfs_buffer *dst_buf,
+ struct btrfs_buffer *src_buf)
{
- struct node *src = &src_buf->node;
- struct node *dst = &dst_buf->node;
+ struct btrfs_node *src = &src_buf->node;
+ struct btrfs_node *dst = &dst_buf->node;
int push_items = 0;
int src_nritems;
int dst_nritems;
*
* this will only push up to 1/2 the contents of the left node over
*/
-static int balance_node_right(struct ctree_root *root,
- struct tree_buffer *dst_buf,
- struct tree_buffer *src_buf)
+static int balance_node_right(struct btrfs_root *root,
+ struct btrfs_buffer *dst_buf,
+ struct btrfs_buffer *src_buf)
{
- struct node *src = &src_buf->node;
- struct node *dst = &dst_buf->node;
+ struct btrfs_node *src = &src_buf->node;
+ struct btrfs_node *dst = &dst_buf->node;
int push_items = 0;
int max_push;
int src_nritems;
*
* returns zero on success or < 0 on failure.
*/
-static int insert_new_root(struct ctree_root *root,
- struct ctree_path *path, int level)
+static int insert_new_root(struct btrfs_root *root,
+ struct btrfs_path *path, int level)
{
- struct tree_buffer *t;
- struct node *lower;
- struct node *c;
+ struct btrfs_buffer *t;
+ struct btrfs_node *lower;
+ struct btrfs_node *c;
struct btrfs_disk_key *lower_key;
BUG_ON(path->nodes[level]);
BUG_ON(path->nodes[level-1] != root->node);
- t = alloc_free_block(root);
+ t = btrfs_alloc_free_block(root);
c = &t->node;
memset(c, 0, sizeof(c));
btrfs_set_header_nritems(&c->header, 1);
btrfs_header_parentid(&root->node->node.header));
lower = &path->nodes[level-1]->node;
if (btrfs_is_leaf(lower))
- lower_key = &((struct leaf *)lower)->items[0].key;
+ lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
else
lower_key = lower->keys;
memcpy(c->keys, lower_key, sizeof(struct btrfs_disk_key));
btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->blocknr);
/* the super has an extra ref to root->node */
- tree_block_release(root, root->node);
+ btrfs_block_release(root, root->node);
root->node = t;
t->count++;
path->nodes[level] = t;
*
* returns zero on success and < 0 on any error
*/
-static int insert_ptr(struct ctree_root *root,
- struct ctree_path *path, struct btrfs_disk_key *key,
+static int insert_ptr(struct btrfs_root *root,
+ struct btrfs_path *path, struct btrfs_disk_key *key,
u64 blocknr, int slot, int level)
{
- struct node *lower;
+ struct btrfs_node *lower;
int nritems;
BUG_ON(!path->nodes[level]);
*
* returns 0 on success and < 0 on failure
*/
-static int split_node(struct ctree_root *root, struct ctree_path *path,
+static int split_node(struct btrfs_root *root, struct btrfs_path *path,
int level)
{
- struct tree_buffer *t;
- struct node *c;
- struct tree_buffer *split_buffer;
- struct node *split;
+ struct btrfs_buffer *t;
+ struct btrfs_node *c;
+ struct btrfs_buffer *split_buffer;
+ struct btrfs_node *split;
int mid;
int ret;
int wret;
return ret;
}
c_nritems = btrfs_header_nritems(&c->header);
- split_buffer = alloc_free_block(root);
+ split_buffer = btrfs_alloc_free_block(root);
split = &split_buffer->node;
btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
btrfs_set_header_blocknr(&split->header, split_buffer->blocknr);
if (path->slots[level] >= mid) {
path->slots[level] -= mid;
- tree_block_release(root, t);
+ btrfs_block_release(root, t);
path->nodes[level] = split_buffer;
path->slots[level + 1] += 1;
} else {
- tree_block_release(root, split_buffer);
+ btrfs_block_release(root, split_buffer);
}
return ret;
}
* and nr indicate which items in the leaf to check. This totals up the
* space used both by the item structs and the item data
*/
-static int leaf_space_used(struct leaf *l, int start, int nr)
+static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
{
int data_len;
int end = start + nr - 1;
* returns 1 if the push failed because the other node didn't have enough
* room, 0 if everything worked out and < 0 if there were major errors.
*/
-static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
+static int push_leaf_right(struct btrfs_root *root, struct btrfs_path *path,
int data_size)
{
- struct tree_buffer *left_buf = path->nodes[0];
- struct leaf *left = &left_buf->leaf;
- struct leaf *right;
- struct tree_buffer *right_buf;
- struct tree_buffer *upper;
+ struct btrfs_buffer *left_buf = path->nodes[0];
+ struct btrfs_leaf *left = &left_buf->leaf;
+ struct btrfs_leaf *right;
+ struct btrfs_buffer *right_buf;
+ struct btrfs_buffer *upper;
int slot;
int i;
int free_space;
right_buf = read_tree_block(root, btrfs_node_blockptr(&upper->node,
slot + 1));
right = &right_buf->leaf;
- free_space = leaf_free_space(right);
+ free_space = btrfs_leaf_free_space(right);
if (free_space < data_size + sizeof(struct btrfs_item)) {
- tree_block_release(root, right_buf);
+ btrfs_block_release(root, right_buf);
return 1;
}
/* cow and double check */
btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
right = &right_buf->leaf;
- free_space = leaf_free_space(right);
+ free_space = btrfs_leaf_free_space(right);
if (free_space < data_size + sizeof(struct btrfs_item)) {
- tree_block_release(root, right_buf);
+ btrfs_block_release(root, right_buf);
return 1;
}
push_space += btrfs_item_size(item) + sizeof(*item);
}
if (push_items == 0) {
- tree_block_release(root, right_buf);
+ btrfs_block_release(root, right_buf);
return 1;
}
right_nritems = btrfs_header_nritems(&right->header);
/* then fixup the leaf pointer in the path */
if (path->slots[0] >= left_nritems) {
path->slots[0] -= left_nritems;
- tree_block_release(root, path->nodes[0]);
+ btrfs_block_release(root, path->nodes[0]);
path->nodes[0] = right_buf;
path->slots[1] += 1;
} else {
- tree_block_release(root, right_buf);
+ btrfs_block_release(root, right_buf);
}
return 0;
}
* push some data in the path leaf to the left, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*/
-static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
+static int push_leaf_left(struct btrfs_root *root, struct btrfs_path *path,
int data_size)
{
- struct tree_buffer *right_buf = path->nodes[0];
- struct leaf *right = &right_buf->leaf;
- struct tree_buffer *t;
- struct leaf *left;
+ struct btrfs_buffer *right_buf = path->nodes[0];
+ struct btrfs_leaf *right = &right_buf->leaf;
+ struct btrfs_buffer *t;
+ struct btrfs_leaf *left;
int slot;
int i;
int free_space;
t = read_tree_block(root, btrfs_node_blockptr(&path->nodes[1]->node,
slot - 1));
left = &t->leaf;
- free_space = leaf_free_space(left);
+ free_space = btrfs_leaf_free_space(left);
if (free_space < data_size + sizeof(struct btrfs_item)) {
- tree_block_release(root, t);
+ btrfs_block_release(root, t);
return 1;
}
/* cow and double check */
btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
left = &t->leaf;
- free_space = leaf_free_space(left);
+ free_space = btrfs_leaf_free_space(left);
if (free_space < data_size + sizeof(struct btrfs_item)) {
- tree_block_release(root, t);
+ btrfs_block_release(root, t);
return 1;
}
push_space += btrfs_item_size(item) + sizeof(*item);
}
if (push_items == 0) {
- tree_block_release(root, t);
+ btrfs_block_release(root, t);
return 1;
}
/* push data from right to left */
/* then fixup the leaf pointer in the path */
if (path->slots[0] < push_items) {
path->slots[0] += old_left_nritems;
- tree_block_release(root, path->nodes[0]);
+ btrfs_block_release(root, path->nodes[0]);
path->nodes[0] = t;
path->slots[1] -= 1;
} else {
- tree_block_release(root, t);
+ btrfs_block_release(root, t);
path->slots[0] -= push_items;
}
BUG_ON(path->slots[0] < 0);
*
* returns 0 if all went well and < 0 on failure.
*/
-static int split_leaf(struct ctree_root *root, struct ctree_path *path,
+static int split_leaf(struct btrfs_root *root, struct btrfs_path *path,
int data_size)
{
- struct tree_buffer *l_buf;
- struct leaf *l;
+ struct btrfs_buffer *l_buf;
+ struct btrfs_leaf *l;
u32 nritems;
int mid;
int slot;
- struct leaf *right;
- struct tree_buffer *right_buffer;
+ struct btrfs_leaf *right;
+ struct btrfs_buffer *right_buffer;
int space_needed = data_size + sizeof(struct btrfs_item);
int data_copy_size;
int rt_data_off;
l = &l_buf->leaf;
/* did the pushes work? */
- if (leaf_free_space(l) >= sizeof(struct btrfs_item) + data_size)
+ if (btrfs_leaf_free_space(l) >= sizeof(struct btrfs_item) + data_size)
return 0;
if (!path->nodes[1]) {
slot = path->slots[0];
nritems = btrfs_header_nritems(&l->header);
mid = (nritems + 1)/ 2;
- right_buffer = alloc_free_block(root);
+ right_buffer = btrfs_alloc_free_block(root);
BUG_ON(!right_buffer);
BUG_ON(mid == nritems);
right = &right_buffer->leaf;
BUG_ON(list_empty(&l_buf->dirty));
BUG_ON(path->slots[0] != slot);
if (mid <= slot) {
- tree_block_release(root, path->nodes[0]);
+ btrfs_block_release(root, path->nodes[0]);
path->nodes[0] = right_buffer;
path->slots[0] -= mid;
path->slots[1] += 1;
} else
- tree_block_release(root, right_buffer);
+ btrfs_block_release(root, right_buffer);
BUG_ON(path->slots[0] < 0);
return ret;
}
* Given a key and some data, insert an item into the tree.
* This does all the path init required, making room in the tree if needed.
*/
-int insert_item(struct ctree_root *root, struct btrfs_key *cpu_key,
+int btrfs_insert_item(struct btrfs_root *root, struct btrfs_key *cpu_key,
void *data, int data_size)
{
int ret = 0;
int slot;
int slot_orig;
- struct leaf *leaf;
- struct tree_buffer *leaf_buf;
+ struct btrfs_leaf *leaf;
+ struct btrfs_buffer *leaf_buf;
u32 nritems;
unsigned int data_end;
- struct ctree_path path;
+ struct btrfs_path path;
struct btrfs_disk_key disk_key;
btrfs_cpu_key_to_disk(&disk_key, cpu_key);
/* create a root if there isn't one */
if (!root->node)
BUG();
- init_path(&path);
- ret = search_slot(root, cpu_key, &path, data_size, 1);
+ btrfs_init_path(&path);
+ ret = btrfs_search_slot(root, cpu_key, &path, data_size, 1);
if (ret == 0) {
- release_path(root, &path);
+ btrfs_release_path(root, &path);
return -EEXIST;
}
if (ret < 0)
nritems = btrfs_header_nritems(&leaf->header);
data_end = leaf_data_end(leaf);
- if (leaf_free_space(leaf) < sizeof(struct btrfs_item) + data_size)
+ if (btrfs_leaf_free_space(leaf) <
+ sizeof(struct btrfs_item) + data_size)
BUG();
slot = path.slots[0];
ret = fixup_low_keys(root, &path, &disk_key, 1);
BUG_ON(list_empty(&leaf_buf->dirty));
- if (leaf_free_space(leaf) < 0)
+ if (btrfs_leaf_free_space(leaf) < 0)
BUG();
check_leaf(&path, 0);
out:
- release_path(root, &path);
+ btrfs_release_path(root, &path);
return ret;
}
* continuing all the way the root if required. The root is converted into
* a leaf if all the nodes are emptied.
*/
-static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
+static int del_ptr(struct btrfs_root *root, struct btrfs_path *path, int level,
int slot)
{
- struct node *node;
- struct tree_buffer *parent = path->nodes[level];
+ struct btrfs_node *node;
+ struct btrfs_buffer *parent = path->nodes[level];
u32 nritems;
int ret = 0;
int wret;
* delete the item at the leaf level in path. If that empties
* the leaf, remove it from the tree
*/
-int del_item(struct ctree_root *root, struct ctree_path *path)
+int btrfs_del_item(struct btrfs_root *root, struct btrfs_path *path)
{
int slot;
- struct leaf *leaf;
- struct tree_buffer *leaf_buf;
+ struct btrfs_leaf *leaf;
+ struct btrfs_buffer *leaf_buf;
int doff;
int dsize;
int ret = 0;
wret = del_ptr(root, path, 1, path->slots[1]);
if (wret)
ret = wret;
- wret = free_extent(root, leaf_buf->blocknr, 1);
+ wret = btrfs_free_extent(root, leaf_buf->blocknr, 1);
if (wret)
ret = wret;
}
wret = del_ptr(root, path, 1, slot);
if (wret)
ret = wret;
- tree_block_release(root, leaf_buf);
- wret = free_extent(root, blocknr, 1);
+ btrfs_block_release(root, leaf_buf);
+ wret = btrfs_free_extent(root, blocknr, 1);
if (wret)
ret = wret;
} else {
- tree_block_release(root, leaf_buf);
+ btrfs_block_release(root, leaf_buf);
}
}
}
* returns 0 if it found something or 1 if there are no greater leaves.
* returns < 0 on io errors.
*/
-int next_leaf(struct ctree_root *root, struct ctree_path *path)
+int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
int slot;
int level = 1;
u64 blocknr;
- struct tree_buffer *c;
- struct tree_buffer *next = NULL;
+ struct btrfs_buffer *c;
+ struct btrfs_buffer *next = NULL;
- while(level < MAX_LEVEL) {
+ while(level < BTRFS_MAX_LEVEL) {
if (!path->nodes[level])
return 1;
slot = path->slots[level] + 1;
}
blocknr = btrfs_node_blockptr(&c->node, slot);
if (next)
- tree_block_release(root, next);
+ btrfs_block_release(root, next);
next = read_tree_block(root, blocknr);
break;
}
while(1) {
level--;
c = path->nodes[level];
- tree_block_release(root, c);
+ btrfs_block_release(root, c);
path->nodes[level] = next;
path->slots[level] = 0;
if (!level)
-#ifndef __CTREE__
-#define __CTREE__
+#ifndef __BTRFS__
+#define __BTRFS__
#include "list.h"
#include "kerncompat.h"
-#define CTREE_BLOCKSIZE 1024
+#define BTRFS_BLOCKSIZE 1024
/*
* the key defines the order in the tree, and so it also defines (optimal)
/* generation flags to be added */
} __attribute__ ((__packed__));
-#define MAX_LEVEL 8
-#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) / \
+#define BTRFS_MAX_LEVEL 8
+#define NODEPTRS_PER_BLOCK ((BTRFS_BLOCKSIZE - sizeof(struct btrfs_header)) / \
(sizeof(struct btrfs_disk_key) + sizeof(u64)))
-struct tree_buffer;
+struct btrfs_buffer;
/*
* in ram representation of the tree. extent_root is used for all allocations
* and for the extent tree extent_root root. current_insert is used
* only for the extent tree.
*/
-struct ctree_root {
- struct tree_buffer *node;
- struct tree_buffer *commit_root;
- struct ctree_root *extent_root;
+struct btrfs_root {
+ struct btrfs_buffer *node;
+ struct btrfs_buffer *commit_root;
+ struct btrfs_root *extent_root;
struct btrfs_key current_insert;
struct btrfs_key last_insert;
int fp;
/*
* describes a tree on disk
*/
-struct ctree_root_info {
+struct btrfs_root_info {
u64 fsid[2]; /* FS specific uuid */
u64 blocknr; /* blocknr of this block */
u64 objectid; /* inode number of this root */
* the super block basically lists the main trees of the FS
* it currently lacks any block count etc etc
*/
-struct ctree_super_block {
- struct ctree_root_info root_info;
- struct ctree_root_info extent_info;
+struct btrfs_super_block {
+ struct btrfs_root_info root_info;
+ struct btrfs_root_info extent_info;
} __attribute__ ((__packed__));
/*
* The data is separate from the items to get the keys closer together
* during searches.
*/
-#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct btrfs_header))
-struct leaf {
+#define LEAF_DATA_SIZE (BTRFS_BLOCKSIZE - sizeof(struct btrfs_header))
+struct btrfs_leaf {
struct btrfs_header header;
union {
struct btrfs_item items[LEAF_DATA_SIZE/
sizeof(struct btrfs_item)];
- u8 data[CTREE_BLOCKSIZE-sizeof(struct btrfs_header)];
+ u8 data[BTRFS_BLOCKSIZE - sizeof(struct btrfs_header)];
};
} __attribute__ ((__packed__));
* all non-leaf blocks are nodes, they hold only keys and pointers to
* other blocks
*/
-struct node {
+struct btrfs_node {
struct btrfs_header header;
struct btrfs_disk_key keys[NODEPTRS_PER_BLOCK];
__le64 blockptrs[NODEPTRS_PER_BLOCK];
* items in the extent btree are used to record the objectid of the
* owner of the block and the number of references
*/
-struct extent_item {
+struct btrfs_extent_item {
__le32 refs;
__le64 owner;
} __attribute__ ((__packed__));
/*
- * ctree_paths remember the path taken from the root down to the leaf.
- * level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
+ * btrfs_paths remember the path taken from the root down to the leaf.
+ * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
* to any other levels that are present.
*
* The slots array records the index of the item or block pointer
* used while walking the tree.
*/
-struct ctree_path {
- struct tree_buffer *nodes[MAX_LEVEL];
- int slots[MAX_LEVEL];
+struct btrfs_path {
+ struct btrfs_buffer *nodes[BTRFS_MAX_LEVEL];
+ int slots[BTRFS_MAX_LEVEL];
};
-static inline u64 btrfs_extent_owner(struct extent_item *ei)
+static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
{
return le64_to_cpu(ei->owner);
}
-static inline void btrfs_set_extent_owner(struct extent_item *ei, u64 val)
+static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
{
ei->owner = cpu_to_le64(val);
}
-static inline u32 btrfs_extent_refs(struct extent_item *ei)
+static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
{
return le32_to_cpu(ei->refs);
}
-static inline void btrfs_set_extent_refs(struct extent_item *ei, u32 val)
+static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
{
ei->refs = cpu_to_le32(val);
}
-static inline u64 btrfs_node_blockptr(struct node *n, int nr)
+static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
{
return le64_to_cpu(n->blockptrs[nr]);
}
-static inline void btrfs_set_node_blockptr(struct node *n, int nr, u64 val)
+static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
+ u64 val)
{
n->blockptrs[nr] = cpu_to_le64(val);
}
static inline int btrfs_header_level(struct btrfs_header *h)
{
- return btrfs_header_flags(h) & (MAX_LEVEL - 1);
+ return btrfs_header_flags(h) & (BTRFS_MAX_LEVEL - 1);
}
static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
{
u16 flags;
- BUG_ON(level > MAX_LEVEL);
- flags = btrfs_header_flags(h) & ~(MAX_LEVEL - 1);
+ BUG_ON(level > BTRFS_MAX_LEVEL);
+ flags = btrfs_header_flags(h) & ~(BTRFS_MAX_LEVEL - 1);
btrfs_set_header_flags(h, flags | level);
}
-static inline int btrfs_is_leaf(struct node *n)
+static inline int btrfs_is_leaf(struct btrfs_node *n)
{
return (btrfs_header_level(&n->header) == 0);
}
-struct tree_buffer *alloc_free_block(struct ctree_root *root);
-int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf);
-int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks);
-int search_slot(struct ctree_root *root, struct btrfs_key *key,
- struct ctree_path *p, int ins_len, int cow);
-void release_path(struct ctree_root *root, struct ctree_path *p);
-void init_path(struct ctree_path *p);
-int del_item(struct ctree_root *root, struct ctree_path *path);
-int insert_item(struct ctree_root *root, struct btrfs_key *key,
+struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_root *root);
+int btrfs_inc_ref(struct btrfs_root *root, struct btrfs_buffer *buf);
+int btrfs_free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks);
+int btrfs_search_slot(struct btrfs_root *root, struct btrfs_key *key,
+ struct btrfs_path *p, int ins_len, int cow);
+void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
+void btrfs_init_path(struct btrfs_path *p);
+int btrfs_del_item(struct btrfs_root *root, struct btrfs_path *path);
+int btrfs_insert_item(struct btrfs_root *root, struct btrfs_key *key,
void *data, int data_size);
-int next_leaf(struct ctree_root *root, struct ctree_path *path);
-int leaf_free_space(struct leaf *leaf);
-int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap);
-int btrfs_finish_extent_commit(struct ctree_root *root);
+int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
+int btrfs_leaf_free_space(struct btrfs_leaf *leaf);
+int btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_buffer *snap);
+int btrfs_finish_extent_commit(struct btrfs_root *root);
#endif