UBI: some code re-structuring
[pandora-kernel.git] / drivers / mtd / ubi / wl.c
index cc8fe29..90535b5 100644 (file)
  */
 
 /*
- * UBI wear-leveling unit.
+ * UBI wear-leveling sub-system.
  *
- * This unit is responsible for wear-leveling. It works in terms of physical
- * eraseblocks and erase counters and knows nothing about logical eraseblocks,
- * volumes, etc. From this unit's perspective all physical eraseblocks are of
- * two types - used and free. Used physical eraseblocks are those that were
- * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
- * those that were put by the 'ubi_wl_put_peb()' function.
+ * This sub-system is responsible for wear-leveling. It works in terms of
+ * physical* eraseblocks and erase counters and knows nothing about logical
+ * eraseblocks, volumes, etc. From this sub-system's perspective all physical
+ * eraseblocks are of two types - used and free. Used physical eraseblocks are
+ * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
+ * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  *
  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
- * header. The rest of the physical eraseblock contains only 0xFF bytes.
+ * header. The rest of the physical eraseblock contains only %0xFF bytes.
  *
- * When physical eraseblocks are returned to the WL unit by means of the
+ * When physical eraseblocks are returned to the WL sub-system by means of the
  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  * done asynchronously in context of the per-UBI device background thread,
- * which is also managed by the WL unit.
+ * which is also managed by the WL sub-system.
  *
  * The wear-leveling is ensured by means of moving the contents of used
  * physical eraseblocks with low erase counter to free physical eraseblocks
  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
  * an "optimal" physical eraseblock. For example, when it is known that the
  * physical eraseblock will be "put" soon because it contains short-term data,
- * the WL unit may pick a free physical eraseblock with low erase counter, and
- * so forth.
+ * the WL sub-system may pick a free physical eraseblock with low erase
+ * counter, and so forth.
  *
- * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
+ * If the WL sub-system fails to erase a physical eraseblock, it marks it as
+ * bad.
  *
- * This unit is also responsible for scrubbing. If a bit-flip is detected in a
- * physical eraseblock, it has to be moved. Technically this is the same as
- * moving it for wear-leveling reasons.
+ * This sub-system is also responsible for scrubbing. If a bit-flip is detected
+ * in a physical eraseblock, it has to be moved. Technically this is the same
+ * as moving it for wear-leveling reasons.
  *
- * As it was said, for the UBI unit all physical eraseblocks are either "free"
- * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
- * eraseblocks are kept in a set of different RB-trees: @wl->used,
+ * As it was said, for the UBI sub-system all physical eraseblocks are either
+ * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
+ * used eraseblocks are kept in a set of different RB-trees: @wl->used,
  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
  *
  * Note, in this implementation, we keep a small in-RAM object for each physical
  * eraseblock. This is surely not a scalable solution. But it appears to be good
  * enough for moderately large flashes and it is simple. In future, one may
- * re-work this unit and make it more scalable.
+ * re-work this sub-system and make it more scalable.
  *
- * At the moment this unit does not utilize the sequence number, which was
- * introduced relatively recently. But it would be wise to do this because the
- * sequence number of a logical eraseblock characterizes how old is it. For
+ * At the moment this sub-system does not utilize the sequence number, which
+ * was introduced relatively recently. But it would be wise to do this because
+ * the sequence number of a logical eraseblock characterizes how old is it. For
  * example, when we move a PEB with low erase counter, and we need to pick the
  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  * pick target PEB with an average EC if our PEB is not very "old". This is a
- * room for future re-works of the WL unit.
+ * room for future re-works of the WL sub-system.
  *
- * FIXME: looks too complex, should be simplified (later).
+ * Note: the stuff with protection trees looks too complex and is difficult to
+ * understand. Should be fixed.
  */
 
 #include <linux/slab.h>
 
 /*
  * Maximum difference between two erase counters. If this threshold is
- * exceeded, the WL unit starts moving data from used physical eraseblocks with
- * low erase counter to free physical eraseblocks with high erase counter.
+ * exceeded, the WL sub-system starts moving data from used physical
+ * eraseblocks with low erase counter to free physical eraseblocks with high
+ * erase counter.
  */
 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 
 /*
- * When a physical eraseblock is moved, the WL unit has to pick the target
+ * When a physical eraseblock is moved, the WL sub-system has to pick the target
  * physical eraseblock to move to. The simplest way would be just to pick the
  * one with the highest erase counter. But in certain workloads this could lead
  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
  * situation when the picked physical eraseblock is constantly erased after the
  * data is written to it. So, we have a constant which limits the highest erase
- * counter of the free physical eraseblock to pick. Namely, the WL unit does
- * not pick eraseblocks with erase counter greater then the lowest erase
+ * counter of the free physical eraseblock to pick. Namely, the WL sub-system
+ * does not pick eraseblocks with erase counter greater then the lowest erase
  * counter plus %WL_FREE_MAX_DIFF.
  */
 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
  * @abs_ec: the absolute erase counter value when the protection ends
  * @e: the wear-leveling entry of the physical eraseblock under protection
  *
- * When the WL unit returns a physical eraseblock, the physical eraseblock is
- * protected from being moved for some "time". For this reason, the physical
- * eraseblock is not directly moved from the @wl->free tree to the @wl->used
- * tree. There is one more tree in between where this physical eraseblock is
- * temporarily stored (@wl->prot).
+ * When the WL sub-system returns a physical eraseblock, the physical
+ * eraseblock is protected from being moved for some "time". For this reason,
+ * the physical eraseblock is not directly moved from the @wl->free tree to the
+ * @wl->used tree. There is one more tree in between where this physical
+ * eraseblock is temporarily stored (@wl->prot).
  *
  * All this protection stuff is needed because:
  *  o we don't want to move physical eraseblocks just after we have given them
@@ -175,7 +178,6 @@ struct ubi_wl_prot_entry {
  * @list: a link in the list of pending works
  * @func: worker function
  * @priv: private data of the worker function
- *
  * @e: physical eraseblock to erase
  * @torture: if the physical eraseblock has to be tortured
  *
@@ -357,19 +359,18 @@ static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
  * @ubi: UBI device description object
  * @e: the physical eraseblock to add
  * @pe: protection entry object to use
- * @abs_ec: absolute erase counter value when this physical eraseblock has
- * to be removed from the protection trees.
+ * @ec: for how many erase operations this PEB should be protected
  *
  * @wl->lock has to be locked.
  */
 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
-                         struct ubi_wl_prot_entry *pe, int abs_ec)
+                         struct ubi_wl_prot_entry *pe, int ec)
 {
        struct rb_node **p, *parent = NULL;
        struct ubi_wl_prot_entry *pe1;
 
        pe->e = e;
-       pe->abs_ec = ubi->abs_ec + abs_ec;
+       pe->abs_ec = ubi->abs_ec + ec;
 
        p = &ubi->prot.pnum.rb_node;
        while (*p) {
@@ -473,52 +474,47 @@ retry:
        }
 
        switch (dtype) {
-               case UBI_LONGTERM:
-                       /*
-                        * For long term data we pick a physical eraseblock
-                        * with high erase counter. But the highest erase
-                        * counter we can pick is bounded by the the lowest
-                        * erase counter plus %WL_FREE_MAX_DIFF.
-                        */
-                       e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
-                       protect = LT_PROTECTION;
-                       break;
-               case UBI_UNKNOWN:
-                       /*
-                        * For unknown data we pick a physical eraseblock with
-                        * medium erase counter. But we by no means can pick a
-                        * physical eraseblock with erase counter greater or
-                        * equivalent than the lowest erase counter plus
-                        * %WL_FREE_MAX_DIFF.
-                        */
-                       first = rb_entry(rb_first(&ubi->free),
-                                        struct ubi_wl_entry, rb);
-                       last = rb_entry(rb_last(&ubi->free),
-                                       struct ubi_wl_entry, rb);
+       case UBI_LONGTERM:
+               /*
+                * For long term data we pick a physical eraseblock with high
+                * erase counter. But the highest erase counter we can pick is
+                * bounded by the the lowest erase counter plus
+                * %WL_FREE_MAX_DIFF.
+                */
+               e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
+               protect = LT_PROTECTION;
+               break;
+       case UBI_UNKNOWN:
+               /*
+                * For unknown data we pick a physical eraseblock with medium
+                * erase counter. But we by no means can pick a physical
+                * eraseblock with erase counter greater or equivalent than the
+                * lowest erase counter plus %WL_FREE_MAX_DIFF.
+                */
+               first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
+               last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, rb);
 
-                       if (last->ec - first->ec < WL_FREE_MAX_DIFF)
-                               e = rb_entry(ubi->free.rb_node,
-                                               struct ubi_wl_entry, rb);
-                       else {
-                               medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
-                               e = find_wl_entry(&ubi->free, medium_ec);
-                       }
-                       protect = U_PROTECTION;
-                       break;
-               case UBI_SHORTTERM:
-                       /*
-                        * For short term data we pick a physical eraseblock
-                        * with the lowest erase counter as we expect it will
-                        * be erased soon.
-                        */
-                       e = rb_entry(rb_first(&ubi->free),
-                                    struct ubi_wl_entry, rb);
-                       protect = ST_PROTECTION;
-                       break;
-               default:
-                       protect = 0;
-                       e = NULL;
-                       BUG();
+               if (last->ec - first->ec < WL_FREE_MAX_DIFF)
+                       e = rb_entry(ubi->free.rb_node,
+                                       struct ubi_wl_entry, rb);
+               else {
+                       medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
+                       e = find_wl_entry(&ubi->free, medium_ec);
+               }
+               protect = U_PROTECTION;
+               break;
+       case UBI_SHORTTERM:
+               /*
+                * For short term data we pick a physical eraseblock with the
+                * lowest erase counter as we expect it will be erased soon.
+                */
+               e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
+               protect = ST_PROTECTION;
+               break;
+       default:
+               protect = 0;
+               e = NULL;
+               BUG();
        }
 
        /*
@@ -582,7 +578,8 @@ found:
  * This function returns zero in case of success and a negative error code in
  * case of failure.
  */
-static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
+static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
+                     int torture)
 {
        int err;
        struct ubi_ec_hdr *ec_hdr;
@@ -634,8 +631,7 @@ out_free:
 }
 
 /**
- * check_protection_over - check if it is time to stop protecting some
- * physical eraseblocks.
+ * check_protection_over - check if it is time to stop protecting some PEBs.
  * @ubi: UBI device description object
  *
  * This function is called after each erase operation, when the absolute erase
@@ -742,7 +738,7 @@ static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
                                int cancel)
 {
-       int err, put = 0, scrubbing = 0, protect = 0;
+       int err, put = 0, scrubbing = 0;
        struct ubi_wl_prot_entry *uninitialized_var(pe);
        struct ubi_wl_entry *e1, *e2;
        struct ubi_vid_hdr *vid_hdr;
@@ -867,13 +863,28 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
                        goto out_error;
                }
 
-               protect = 1;
+               ubi_free_vid_hdr(ubi, vid_hdr);
+               spin_lock(&ubi->wl_lock);
+               prot_tree_add(ubi, e1, pe, U_PROTECTION);
+               ubi_assert(!ubi->move_to_put);
+               ubi->move_from = ubi->move_to = NULL;
+               ubi->wl_scheduled = 0;
+               spin_unlock(&ubi->wl_lock);
+
+               err = schedule_erase(ubi, e2, 0);
+               if (err)
+                       goto out_error;
+               mutex_unlock(&ubi->move_mutex);
+               return 0;
        }
 
+       /* The PEB has been successfully moved */
        ubi_free_vid_hdr(ubi, vid_hdr);
+       if (scrubbing)
+               ubi_msg("scrubbed PEB %d, data moved to PEB %d",
+                       e1->pnum, e2->pnum);
+
        spin_lock(&ubi->wl_lock);
-       if (protect)
-               prot_tree_add(ubi, e1, pe, protect);
        if (!ubi->move_to_put)
                wl_tree_add(e2, &ubi->used);
        else
@@ -882,6 +893,10 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
        ubi->move_to_put = ubi->wl_scheduled = 0;
        spin_unlock(&ubi->wl_lock);
 
+       err = schedule_erase(ubi, e1, 0);
+       if (err)
+               goto out_error;
+
        if (put) {
                /*
                 * Well, the target PEB was put meanwhile, schedule it for
@@ -893,13 +908,6 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
                        goto out_error;
        }
 
-       if (!protect) {
-               err = schedule_erase(ubi, e1, 0);
-               if (err)
-                       goto out_error;
-       }
-
-
        dbg_wl("done");
        mutex_unlock(&ubi->move_mutex);
        return 0;
@@ -1054,8 +1062,8 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
                spin_unlock(&ubi->wl_lock);
 
                /*
-                * One more erase operation has happened, take care about protected
-                * physical eraseblocks.
+                * One more erase operation has happened, take care about
+                * protected physical eraseblocks.
                 */
                check_protection_over(ubi);
 
@@ -1136,7 +1144,7 @@ out_ro:
 }
 
 /**
- * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
+ * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
  * @ubi: UBI device description object
  * @pnum: physical eraseblock to return
  * @torture: if this physical eraseblock has to be tortured
@@ -1175,11 +1183,11 @@ retry:
                /*
                 * User is putting the physical eraseblock which was selected
                 * as the target the data is moved to. It may happen if the EBA
-                * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
-                * the WL unit has not put the PEB to the "used" tree yet, but
-                * it is about to do this. So we just set a flag which will
-                * tell the WL worker that the PEB is not needed anymore and
-                * should be scheduled for erasure.
+                * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
+                * but the WL sub-system has not put the PEB to the "used" tree
+                * yet, but it is about to do this. So we just set a flag which
+                * will tell the WL worker that the PEB is not needed anymore
+                * and should be scheduled for erasure.
                 */
                dbg_wl("PEB %d is the target of data moving", pnum);
                ubi_assert(!ubi->move_to_put);
@@ -1229,7 +1237,7 @@ int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
 {
        struct ubi_wl_entry *e;
 
-       ubi_msg("schedule PEB %d for scrubbing", pnum);
+       dbg_msg("schedule PEB %d for scrubbing", pnum);
 
 retry:
        spin_lock(&ubi->wl_lock);
@@ -1360,8 +1368,11 @@ int ubi_thread(void *u)
        int failures = 0;
        struct ubi_device *ubi = u;
 
+#ifdef         CONFIG_POLLUX_KERNEL_BOOT_MESSAGE_ENABLE
        ubi_msg("background thread \"%s\" started, PID %d",
                ubi->bgt_name, task_pid_nr(current));
+#endif
+
 
        set_freezable();
        for (;;) {
@@ -1395,7 +1406,8 @@ int ubi_thread(void *u)
                                ubi_msg("%s: %d consecutive failures",
                                        ubi->bgt_name, WL_MAX_FAILURES);
                                ubi_ro_mode(ubi);
-                               break;
+                               ubi->thread_enabled = 0;
+                               continue;
                        }
                } else
                        failures = 0;
@@ -1425,8 +1437,7 @@ static void cancel_pending(struct ubi_device *ubi)
 }
 
 /**
- * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
- * information.
+ * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
  * @ubi: UBI device description object
  * @si: scanning information
  *
@@ -1583,13 +1594,12 @@ static void protection_trees_destroy(struct ubi_device *ubi)
 }
 
 /**
- * ubi_wl_close - close the wear-leveling unit.
+ * ubi_wl_close - close the wear-leveling sub-system.
  * @ubi: UBI device description object
  */
 void ubi_wl_close(struct ubi_device *ubi)
 {
-       dbg_wl("close the UBI wear-leveling unit");
-
+       dbg_wl("close the WL sub-system");
        cancel_pending(ubi);
        protection_trees_destroy(ubi);
        tree_destroy(&ubi->used);
@@ -1601,8 +1611,7 @@ void ubi_wl_close(struct ubi_device *ubi)
 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
 
 /**
- * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
- * is correct.
+ * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
  * @ubi: UBI device description object
  * @pnum: the physical eraseblock number to check
  * @ec: the erase counter to check
@@ -1643,13 +1652,12 @@ out_free:
 }
 
 /**
- * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
- * in a WL RB-tree.
+ * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
  * @e: the wear-leveling entry to check
  * @root: the root of the tree
  *
- * This function returns zero if @e is in the @root RB-tree and %1 if it
- * is not.
+ * This function returns zero if @e is in the @root RB-tree and %1 if it is
+ * not.
  */
 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
                                     struct rb_root *root)