mm: vmscan: when reclaiming for compaction, ensure there are sufficient free pages...
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         atomic_long_set(&shrinker->nr_in_batch, 0);
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 long total_scan;
251                 long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259                 if (max_pass <= 0)
260                         continue;
261
262                 /*
263                  * copy the current shrinker scan count into a local variable
264                  * and zero it so that other concurrent shrinker invocations
265                  * don't also do this scanning work.
266                  */
267                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269                 total_scan = nr;
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 if (total_scan > 0)
330                         new_nr = atomic_long_add_return(total_scan,
331                                         &shrinker->nr_in_batch);
332                 else
333                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock or AS_UNEVICTABLE clearing
637                  * (page is unlocked) make sure that if the other thread
638                  * does not observe our setting of PG_lru and fails
639                  * isolation/check_move_unevictable_pages,
640                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked() or shmem_lock().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageSwapBacked(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page)
719                         return PAGEREF_ACTIVATE;
720
721                 return PAGEREF_KEEP;
722         }
723
724         /* Reclaim if clean, defer dirty pages to writeback */
725         if (referenced_page && !PageSwapBacked(page))
726                 return PAGEREF_RECLAIM_CLEAN;
727
728         return PAGEREF_RECLAIM;
729 }
730
731 static noinline_for_stack void free_page_list(struct list_head *free_pages)
732 {
733         struct pagevec freed_pvec;
734         struct page *page, *tmp;
735
736         pagevec_init(&freed_pvec, 1);
737
738         list_for_each_entry_safe(page, tmp, free_pages, lru) {
739                 list_del(&page->lru);
740                 if (!pagevec_add(&freed_pvec, page)) {
741                         __pagevec_free(&freed_pvec);
742                         pagevec_reinit(&freed_pvec);
743                 }
744         }
745
746         pagevec_free(&freed_pvec);
747 }
748
749 /*
750  * shrink_page_list() returns the number of reclaimed pages
751  */
752 static unsigned long shrink_page_list(struct list_head *page_list,
753                                       struct zone *zone,
754                                       struct scan_control *sc,
755                                       int priority,
756                                       unsigned long *ret_nr_dirty,
757                                       unsigned long *ret_nr_writeback)
758 {
759         LIST_HEAD(ret_pages);
760         LIST_HEAD(free_pages);
761         int pgactivate = 0;
762         unsigned long nr_dirty = 0;
763         unsigned long nr_congested = 0;
764         unsigned long nr_reclaimed = 0;
765         unsigned long nr_writeback = 0;
766
767         cond_resched();
768
769         while (!list_empty(page_list)) {
770                 enum page_references references;
771                 struct address_space *mapping;
772                 struct page *page;
773                 int may_enter_fs;
774
775                 cond_resched();
776
777                 page = lru_to_page(page_list);
778                 list_del(&page->lru);
779
780                 if (!trylock_page(page))
781                         goto keep;
782
783                 VM_BUG_ON(PageActive(page));
784                 VM_BUG_ON(page_zone(page) != zone);
785
786                 sc->nr_scanned++;
787
788                 if (unlikely(!page_evictable(page, NULL)))
789                         goto cull_mlocked;
790
791                 if (!sc->may_unmap && page_mapped(page))
792                         goto keep_locked;
793
794                 /* Double the slab pressure for mapped and swapcache pages */
795                 if (page_mapped(page) || PageSwapCache(page))
796                         sc->nr_scanned++;
797
798                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
799                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
800
801                 if (PageWriteback(page)) {
802                         nr_writeback++;
803                         /*
804                          * Synchronous reclaim cannot queue pages for
805                          * writeback due to the possibility of stack overflow
806                          * but if it encounters a page under writeback, wait
807                          * for the IO to complete.
808                          */
809                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810                             may_enter_fs)
811                                 wait_on_page_writeback(page);
812                         else {
813                                 unlock_page(page);
814                                 goto keep_lumpy;
815                         }
816                 }
817
818                 references = page_check_references(page, sc);
819                 switch (references) {
820                 case PAGEREF_ACTIVATE:
821                         goto activate_locked;
822                 case PAGEREF_KEEP:
823                         goto keep_locked;
824                 case PAGEREF_RECLAIM:
825                 case PAGEREF_RECLAIM_CLEAN:
826                         ; /* try to reclaim the page below */
827                 }
828
829                 /*
830                  * Anonymous process memory has backing store?
831                  * Try to allocate it some swap space here.
832                  */
833                 if (PageAnon(page) && !PageSwapCache(page)) {
834                         if (!(sc->gfp_mask & __GFP_IO))
835                                 goto keep_locked;
836                         if (!add_to_swap(page))
837                                 goto activate_locked;
838                         may_enter_fs = 1;
839                 }
840
841                 mapping = page_mapping(page);
842
843                 /*
844                  * The page is mapped into the page tables of one or more
845                  * processes. Try to unmap it here.
846                  */
847                 if (page_mapped(page) && mapping) {
848                         switch (try_to_unmap(page, TTU_UNMAP)) {
849                         case SWAP_FAIL:
850                                 goto activate_locked;
851                         case SWAP_AGAIN:
852                                 goto keep_locked;
853                         case SWAP_MLOCK:
854                                 goto cull_mlocked;
855                         case SWAP_SUCCESS:
856                                 ; /* try to free the page below */
857                         }
858                 }
859
860                 if (PageDirty(page)) {
861                         nr_dirty++;
862
863                         /*
864                          * Only kswapd can writeback filesystem pages to
865                          * avoid risk of stack overflow but do not writeback
866                          * unless under significant pressure.
867                          */
868                         if (page_is_file_cache(page) &&
869                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870                                 /*
871                                  * Immediately reclaim when written back.
872                                  * Similar in principal to deactivate_page()
873                                  * except we already have the page isolated
874                                  * and know it's dirty
875                                  */
876                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
877                                 SetPageReclaim(page);
878
879                                 goto keep_locked;
880                         }
881
882                         if (references == PAGEREF_RECLAIM_CLEAN)
883                                 goto keep_locked;
884                         if (!may_enter_fs)
885                                 goto keep_locked;
886                         if (!sc->may_writepage)
887                                 goto keep_locked;
888
889                         /* Page is dirty, try to write it out here */
890                         switch (pageout(page, mapping, sc)) {
891                         case PAGE_KEEP:
892                                 nr_congested++;
893                                 goto keep_locked;
894                         case PAGE_ACTIVATE:
895                                 goto activate_locked;
896                         case PAGE_SUCCESS:
897                                 if (PageWriteback(page))
898                                         goto keep_lumpy;
899                                 if (PageDirty(page))
900                                         goto keep;
901
902                                 /*
903                                  * A synchronous write - probably a ramdisk.  Go
904                                  * ahead and try to reclaim the page.
905                                  */
906                                 if (!trylock_page(page))
907                                         goto keep;
908                                 if (PageDirty(page) || PageWriteback(page))
909                                         goto keep_locked;
910                                 mapping = page_mapping(page);
911                         case PAGE_CLEAN:
912                                 ; /* try to free the page below */
913                         }
914                 }
915
916                 /*
917                  * If the page has buffers, try to free the buffer mappings
918                  * associated with this page. If we succeed we try to free
919                  * the page as well.
920                  *
921                  * We do this even if the page is PageDirty().
922                  * try_to_release_page() does not perform I/O, but it is
923                  * possible for a page to have PageDirty set, but it is actually
924                  * clean (all its buffers are clean).  This happens if the
925                  * buffers were written out directly, with submit_bh(). ext3
926                  * will do this, as well as the blockdev mapping.
927                  * try_to_release_page() will discover that cleanness and will
928                  * drop the buffers and mark the page clean - it can be freed.
929                  *
930                  * Rarely, pages can have buffers and no ->mapping.  These are
931                  * the pages which were not successfully invalidated in
932                  * truncate_complete_page().  We try to drop those buffers here
933                  * and if that worked, and the page is no longer mapped into
934                  * process address space (page_count == 1) it can be freed.
935                  * Otherwise, leave the page on the LRU so it is swappable.
936                  */
937                 if (page_has_private(page)) {
938                         if (!try_to_release_page(page, sc->gfp_mask))
939                                 goto activate_locked;
940                         if (!mapping && page_count(page) == 1) {
941                                 unlock_page(page);
942                                 if (put_page_testzero(page))
943                                         goto free_it;
944                                 else {
945                                         /*
946                                          * rare race with speculative reference.
947                                          * the speculative reference will free
948                                          * this page shortly, so we may
949                                          * increment nr_reclaimed here (and
950                                          * leave it off the LRU).
951                                          */
952                                         nr_reclaimed++;
953                                         continue;
954                                 }
955                         }
956                 }
957
958                 if (!mapping || !__remove_mapping(mapping, page))
959                         goto keep_locked;
960
961                 /*
962                  * At this point, we have no other references and there is
963                  * no way to pick any more up (removed from LRU, removed
964                  * from pagecache). Can use non-atomic bitops now (and
965                  * we obviously don't have to worry about waking up a process
966                  * waiting on the page lock, because there are no references.
967                  */
968                 __clear_page_locked(page);
969 free_it:
970                 nr_reclaimed++;
971
972                 /*
973                  * Is there need to periodically free_page_list? It would
974                  * appear not as the counts should be low
975                  */
976                 list_add(&page->lru, &free_pages);
977                 continue;
978
979 cull_mlocked:
980                 if (PageSwapCache(page))
981                         try_to_free_swap(page);
982                 unlock_page(page);
983                 putback_lru_page(page);
984                 reset_reclaim_mode(sc);
985                 continue;
986
987 activate_locked:
988                 /* Not a candidate for swapping, so reclaim swap space. */
989                 if (PageSwapCache(page) && vm_swap_full())
990                         try_to_free_swap(page);
991                 VM_BUG_ON(PageActive(page));
992                 SetPageActive(page);
993                 pgactivate++;
994 keep_locked:
995                 unlock_page(page);
996 keep:
997                 reset_reclaim_mode(sc);
998 keep_lumpy:
999                 list_add(&page->lru, &ret_pages);
1000                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1001         }
1002
1003         /*
1004          * Tag a zone as congested if all the dirty pages encountered were
1005          * backed by a congested BDI. In this case, reclaimers should just
1006          * back off and wait for congestion to clear because further reclaim
1007          * will encounter the same problem
1008          */
1009         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1010                 zone_set_flag(zone, ZONE_CONGESTED);
1011
1012         free_page_list(&free_pages);
1013
1014         list_splice(&ret_pages, page_list);
1015         count_vm_events(PGACTIVATE, pgactivate);
1016         *ret_nr_dirty += nr_dirty;
1017         *ret_nr_writeback += nr_writeback;
1018         return nr_reclaimed;
1019 }
1020
1021 /*
1022  * Attempt to remove the specified page from its LRU.  Only take this page
1023  * if it is of the appropriate PageActive status.  Pages which are being
1024  * freed elsewhere are also ignored.
1025  *
1026  * page:        page to consider
1027  * mode:        one of the LRU isolation modes defined above
1028  *
1029  * returns 0 on success, -ve errno on failure.
1030  */
1031 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1032 {
1033         bool all_lru_mode;
1034         int ret = -EINVAL;
1035
1036         /* Only take pages on the LRU. */
1037         if (!PageLRU(page))
1038                 return ret;
1039
1040         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1041                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1042
1043         /*
1044          * When checking the active state, we need to be sure we are
1045          * dealing with comparible boolean values.  Take the logical not
1046          * of each.
1047          */
1048         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1049                 return ret;
1050
1051         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1052                 return ret;
1053
1054         /*
1055          * When this function is being called for lumpy reclaim, we
1056          * initially look into all LRU pages, active, inactive and
1057          * unevictable; only give shrink_page_list evictable pages.
1058          */
1059         if (PageUnevictable(page))
1060                 return ret;
1061
1062         ret = -EBUSY;
1063
1064         /*
1065          * To minimise LRU disruption, the caller can indicate that it only
1066          * wants to isolate pages it will be able to operate on without
1067          * blocking - clean pages for the most part.
1068          *
1069          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1070          * is used by reclaim when it is cannot write to backing storage
1071          *
1072          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1073          * that it is possible to migrate without blocking
1074          */
1075         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1076                 /* All the caller can do on PageWriteback is block */
1077                 if (PageWriteback(page))
1078                         return ret;
1079
1080                 if (PageDirty(page)) {
1081                         struct address_space *mapping;
1082
1083                         /* ISOLATE_CLEAN means only clean pages */
1084                         if (mode & ISOLATE_CLEAN)
1085                                 return ret;
1086
1087                         /*
1088                          * Only pages without mappings or that have a
1089                          * ->migratepage callback are possible to migrate
1090                          * without blocking
1091                          */
1092                         mapping = page_mapping(page);
1093                         if (mapping && !mapping->a_ops->migratepage)
1094                                 return ret;
1095                 }
1096         }
1097
1098         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1099                 return ret;
1100
1101         if (likely(get_page_unless_zero(page))) {
1102                 /*
1103                  * Be careful not to clear PageLRU until after we're
1104                  * sure the page is not being freed elsewhere -- the
1105                  * page release code relies on it.
1106                  */
1107                 ClearPageLRU(page);
1108                 ret = 0;
1109         }
1110
1111         return ret;
1112 }
1113
1114 /*
1115  * zone->lru_lock is heavily contended.  Some of the functions that
1116  * shrink the lists perform better by taking out a batch of pages
1117  * and working on them outside the LRU lock.
1118  *
1119  * For pagecache intensive workloads, this function is the hottest
1120  * spot in the kernel (apart from copy_*_user functions).
1121  *
1122  * Appropriate locks must be held before calling this function.
1123  *
1124  * @nr_to_scan: The number of pages to look through on the list.
1125  * @src:        The LRU list to pull pages off.
1126  * @dst:        The temp list to put pages on to.
1127  * @scanned:    The number of pages that were scanned.
1128  * @order:      The caller's attempted allocation order
1129  * @mode:       One of the LRU isolation modes
1130  * @file:       True [1] if isolating file [!anon] pages
1131  *
1132  * returns how many pages were moved onto *@dst.
1133  */
1134 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1135                 struct list_head *src, struct list_head *dst,
1136                 unsigned long *scanned, int order, isolate_mode_t mode,
1137                 int file)
1138 {
1139         unsigned long nr_taken = 0;
1140         unsigned long nr_lumpy_taken = 0;
1141         unsigned long nr_lumpy_dirty = 0;
1142         unsigned long nr_lumpy_failed = 0;
1143         unsigned long scan;
1144
1145         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1146                 struct page *page;
1147                 unsigned long pfn;
1148                 unsigned long end_pfn;
1149                 unsigned long page_pfn;
1150                 int zone_id;
1151
1152                 page = lru_to_page(src);
1153                 prefetchw_prev_lru_page(page, src, flags);
1154
1155                 VM_BUG_ON(!PageLRU(page));
1156
1157                 switch (__isolate_lru_page(page, mode, file)) {
1158                 case 0:
1159                         list_move(&page->lru, dst);
1160                         mem_cgroup_del_lru(page);
1161                         nr_taken += hpage_nr_pages(page);
1162                         break;
1163
1164                 case -EBUSY:
1165                         /* else it is being freed elsewhere */
1166                         list_move(&page->lru, src);
1167                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1168                         continue;
1169
1170                 default:
1171                         BUG();
1172                 }
1173
1174                 if (!order)
1175                         continue;
1176
1177                 /*
1178                  * Attempt to take all pages in the order aligned region
1179                  * surrounding the tag page.  Only take those pages of
1180                  * the same active state as that tag page.  We may safely
1181                  * round the target page pfn down to the requested order
1182                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1183                  * where that page is in a different zone we will detect
1184                  * it from its zone id and abort this block scan.
1185                  */
1186                 zone_id = page_zone_id(page);
1187                 page_pfn = page_to_pfn(page);
1188                 pfn = page_pfn & ~((1 << order) - 1);
1189                 end_pfn = pfn + (1 << order);
1190                 for (; pfn < end_pfn; pfn++) {
1191                         struct page *cursor_page;
1192
1193                         /* The target page is in the block, ignore it. */
1194                         if (unlikely(pfn == page_pfn))
1195                                 continue;
1196
1197                         /* Avoid holes within the zone. */
1198                         if (unlikely(!pfn_valid_within(pfn)))
1199                                 break;
1200
1201                         cursor_page = pfn_to_page(pfn);
1202
1203                         /* Check that we have not crossed a zone boundary. */
1204                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1205                                 break;
1206
1207                         /*
1208                          * If we don't have enough swap space, reclaiming of
1209                          * anon page which don't already have a swap slot is
1210                          * pointless.
1211                          */
1212                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1213                             !PageSwapCache(cursor_page))
1214                                 break;
1215
1216                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1217                                 list_move(&cursor_page->lru, dst);
1218                                 mem_cgroup_del_lru(cursor_page);
1219                                 nr_taken += hpage_nr_pages(page);
1220                                 nr_lumpy_taken++;
1221                                 if (PageDirty(cursor_page))
1222                                         nr_lumpy_dirty++;
1223                                 scan++;
1224                         } else {
1225                                 /*
1226                                  * Check if the page is freed already.
1227                                  *
1228                                  * We can't use page_count() as that
1229                                  * requires compound_head and we don't
1230                                  * have a pin on the page here. If a
1231                                  * page is tail, we may or may not
1232                                  * have isolated the head, so assume
1233                                  * it's not free, it'd be tricky to
1234                                  * track the head status without a
1235                                  * page pin.
1236                                  */
1237                                 if (!PageTail(cursor_page) &&
1238                                     !atomic_read(&cursor_page->_count))
1239                                         continue;
1240                                 break;
1241                         }
1242                 }
1243
1244                 /* If we break out of the loop above, lumpy reclaim failed */
1245                 if (pfn < end_pfn)
1246                         nr_lumpy_failed++;
1247         }
1248
1249         *scanned = scan;
1250
1251         trace_mm_vmscan_lru_isolate(order,
1252                         nr_to_scan, scan,
1253                         nr_taken,
1254                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1255                         mode);
1256         return nr_taken;
1257 }
1258
1259 static unsigned long isolate_pages_global(unsigned long nr,
1260                                         struct list_head *dst,
1261                                         unsigned long *scanned, int order,
1262                                         isolate_mode_t mode,
1263                                         struct zone *z, int active, int file)
1264 {
1265         int lru = LRU_BASE;
1266         if (active)
1267                 lru += LRU_ACTIVE;
1268         if (file)
1269                 lru += LRU_FILE;
1270         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1271                                                                 mode, file);
1272 }
1273
1274 /*
1275  * clear_active_flags() is a helper for shrink_active_list(), clearing
1276  * any active bits from the pages in the list.
1277  */
1278 static unsigned long clear_active_flags(struct list_head *page_list,
1279                                         unsigned int *count)
1280 {
1281         int nr_active = 0;
1282         int lru;
1283         struct page *page;
1284
1285         list_for_each_entry(page, page_list, lru) {
1286                 int numpages = hpage_nr_pages(page);
1287                 lru = page_lru_base_type(page);
1288                 if (PageActive(page)) {
1289                         lru += LRU_ACTIVE;
1290                         ClearPageActive(page);
1291                         nr_active += numpages;
1292                 }
1293                 if (count)
1294                         count[lru] += numpages;
1295         }
1296
1297         return nr_active;
1298 }
1299
1300 /**
1301  * isolate_lru_page - tries to isolate a page from its LRU list
1302  * @page: page to isolate from its LRU list
1303  *
1304  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1305  * vmstat statistic corresponding to whatever LRU list the page was on.
1306  *
1307  * Returns 0 if the page was removed from an LRU list.
1308  * Returns -EBUSY if the page was not on an LRU list.
1309  *
1310  * The returned page will have PageLRU() cleared.  If it was found on
1311  * the active list, it will have PageActive set.  If it was found on
1312  * the unevictable list, it will have the PageUnevictable bit set. That flag
1313  * may need to be cleared by the caller before letting the page go.
1314  *
1315  * The vmstat statistic corresponding to the list on which the page was
1316  * found will be decremented.
1317  *
1318  * Restrictions:
1319  * (1) Must be called with an elevated refcount on the page. This is a
1320  *     fundamentnal difference from isolate_lru_pages (which is called
1321  *     without a stable reference).
1322  * (2) the lru_lock must not be held.
1323  * (3) interrupts must be enabled.
1324  */
1325 int isolate_lru_page(struct page *page)
1326 {
1327         int ret = -EBUSY;
1328
1329         VM_BUG_ON(!page_count(page));
1330
1331         if (PageLRU(page)) {
1332                 struct zone *zone = page_zone(page);
1333
1334                 spin_lock_irq(&zone->lru_lock);
1335                 if (PageLRU(page)) {
1336                         int lru = page_lru(page);
1337                         ret = 0;
1338                         get_page(page);
1339                         ClearPageLRU(page);
1340
1341                         del_page_from_lru_list(zone, page, lru);
1342                 }
1343                 spin_unlock_irq(&zone->lru_lock);
1344         }
1345         return ret;
1346 }
1347
1348 /*
1349  * Are there way too many processes in the direct reclaim path already?
1350  */
1351 static int too_many_isolated(struct zone *zone, int file,
1352                 struct scan_control *sc)
1353 {
1354         unsigned long inactive, isolated;
1355
1356         if (current_is_kswapd())
1357                 return 0;
1358
1359         if (!scanning_global_lru(sc))
1360                 return 0;
1361
1362         if (file) {
1363                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1364                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1365         } else {
1366                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1367                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1368         }
1369
1370         return isolated > inactive;
1371 }
1372
1373 /*
1374  * TODO: Try merging with migrations version of putback_lru_pages
1375  */
1376 static noinline_for_stack void
1377 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1378                                 unsigned long nr_anon, unsigned long nr_file,
1379                                 struct list_head *page_list)
1380 {
1381         struct page *page;
1382         struct pagevec pvec;
1383         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1384
1385         pagevec_init(&pvec, 1);
1386
1387         /*
1388          * Put back any unfreeable pages.
1389          */
1390         spin_lock(&zone->lru_lock);
1391         while (!list_empty(page_list)) {
1392                 int lru;
1393                 page = lru_to_page(page_list);
1394                 VM_BUG_ON(PageLRU(page));
1395                 list_del(&page->lru);
1396                 if (unlikely(!page_evictable(page, NULL))) {
1397                         spin_unlock_irq(&zone->lru_lock);
1398                         putback_lru_page(page);
1399                         spin_lock_irq(&zone->lru_lock);
1400                         continue;
1401                 }
1402                 SetPageLRU(page);
1403                 lru = page_lru(page);
1404                 add_page_to_lru_list(zone, page, lru);
1405                 if (is_active_lru(lru)) {
1406                         int file = is_file_lru(lru);
1407                         int numpages = hpage_nr_pages(page);
1408                         reclaim_stat->recent_rotated[file] += numpages;
1409                 }
1410                 if (!pagevec_add(&pvec, page)) {
1411                         spin_unlock_irq(&zone->lru_lock);
1412                         __pagevec_release(&pvec);
1413                         spin_lock_irq(&zone->lru_lock);
1414                 }
1415         }
1416         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1417         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1418
1419         spin_unlock_irq(&zone->lru_lock);
1420         pagevec_release(&pvec);
1421 }
1422
1423 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1424                                         struct scan_control *sc,
1425                                         unsigned long *nr_anon,
1426                                         unsigned long *nr_file,
1427                                         struct list_head *isolated_list)
1428 {
1429         unsigned long nr_active;
1430         unsigned int count[NR_LRU_LISTS] = { 0, };
1431         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1432
1433         nr_active = clear_active_flags(isolated_list, count);
1434         __count_vm_events(PGDEACTIVATE, nr_active);
1435
1436         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1437                               -count[LRU_ACTIVE_FILE]);
1438         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1439                               -count[LRU_INACTIVE_FILE]);
1440         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1441                               -count[LRU_ACTIVE_ANON]);
1442         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1443                               -count[LRU_INACTIVE_ANON]);
1444
1445         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1446         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1447         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1448         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1449
1450         reclaim_stat->recent_scanned[0] += *nr_anon;
1451         reclaim_stat->recent_scanned[1] += *nr_file;
1452 }
1453
1454 /*
1455  * Returns true if a direct reclaim should wait on pages under writeback.
1456  *
1457  * If we are direct reclaiming for contiguous pages and we do not reclaim
1458  * everything in the list, try again and wait for writeback IO to complete.
1459  * This will stall high-order allocations noticeably. Only do that when really
1460  * need to free the pages under high memory pressure.
1461  */
1462 static inline bool should_reclaim_stall(unsigned long nr_taken,
1463                                         unsigned long nr_freed,
1464                                         int priority,
1465                                         struct scan_control *sc)
1466 {
1467         int lumpy_stall_priority;
1468
1469         /* kswapd should not stall on sync IO */
1470         if (current_is_kswapd())
1471                 return false;
1472
1473         /* Only stall on lumpy reclaim */
1474         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1475                 return false;
1476
1477         /* If we have reclaimed everything on the isolated list, no stall */
1478         if (nr_freed == nr_taken)
1479                 return false;
1480
1481         /*
1482          * For high-order allocations, there are two stall thresholds.
1483          * High-cost allocations stall immediately where as lower
1484          * order allocations such as stacks require the scanning
1485          * priority to be much higher before stalling.
1486          */
1487         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1488                 lumpy_stall_priority = DEF_PRIORITY;
1489         else
1490                 lumpy_stall_priority = DEF_PRIORITY / 3;
1491
1492         return priority <= lumpy_stall_priority;
1493 }
1494
1495 /*
1496  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1497  * of reclaimed pages
1498  */
1499 static noinline_for_stack unsigned long
1500 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1501                         struct scan_control *sc, int priority, int file)
1502 {
1503         LIST_HEAD(page_list);
1504         unsigned long nr_scanned;
1505         unsigned long nr_reclaimed = 0;
1506         unsigned long nr_taken;
1507         unsigned long nr_anon;
1508         unsigned long nr_file;
1509         unsigned long nr_dirty = 0;
1510         unsigned long nr_writeback = 0;
1511         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1512
1513         while (unlikely(too_many_isolated(zone, file, sc))) {
1514                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1515
1516                 /* We are about to die and free our memory. Return now. */
1517                 if (fatal_signal_pending(current))
1518                         return SWAP_CLUSTER_MAX;
1519         }
1520
1521         set_reclaim_mode(priority, sc, false);
1522         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1523                 reclaim_mode |= ISOLATE_ACTIVE;
1524
1525         lru_add_drain();
1526
1527         if (!sc->may_unmap)
1528                 reclaim_mode |= ISOLATE_UNMAPPED;
1529         if (!sc->may_writepage)
1530                 reclaim_mode |= ISOLATE_CLEAN;
1531
1532         spin_lock_irq(&zone->lru_lock);
1533
1534         if (scanning_global_lru(sc)) {
1535                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1536                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1537                 zone->pages_scanned += nr_scanned;
1538                 if (current_is_kswapd())
1539                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1540                                                nr_scanned);
1541                 else
1542                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1543                                                nr_scanned);
1544         } else {
1545                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1546                         &nr_scanned, sc->order, reclaim_mode, zone,
1547                         sc->mem_cgroup, 0, file);
1548                 /*
1549                  * mem_cgroup_isolate_pages() keeps track of
1550                  * scanned pages on its own.
1551                  */
1552         }
1553
1554         if (nr_taken == 0) {
1555                 spin_unlock_irq(&zone->lru_lock);
1556                 return 0;
1557         }
1558
1559         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1560
1561         spin_unlock_irq(&zone->lru_lock);
1562
1563         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1564                                                 &nr_dirty, &nr_writeback);
1565
1566         /* Check if we should syncronously wait for writeback */
1567         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1568                 set_reclaim_mode(priority, sc, true);
1569                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1570                                         priority, &nr_dirty, &nr_writeback);
1571         }
1572
1573         local_irq_disable();
1574         if (current_is_kswapd())
1575                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1576         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1577
1578         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1579
1580         /*
1581          * If reclaim is isolating dirty pages under writeback, it implies
1582          * that the long-lived page allocation rate is exceeding the page
1583          * laundering rate. Either the global limits are not being effective
1584          * at throttling processes due to the page distribution throughout
1585          * zones or there is heavy usage of a slow backing device. The
1586          * only option is to throttle from reclaim context which is not ideal
1587          * as there is no guarantee the dirtying process is throttled in the
1588          * same way balance_dirty_pages() manages.
1589          *
1590          * This scales the number of dirty pages that must be under writeback
1591          * before throttling depending on priority. It is a simple backoff
1592          * function that has the most effect in the range DEF_PRIORITY to
1593          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1594          * in trouble and reclaim is considered to be in trouble.
1595          *
1596          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1597          * DEF_PRIORITY-1  50% must be PageWriteback
1598          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1599          * ...
1600          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1601          *                     isolated page is PageWriteback
1602          */
1603         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1604                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1605
1606         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1607                 zone_idx(zone),
1608                 nr_scanned, nr_reclaimed,
1609                 priority,
1610                 trace_shrink_flags(file, sc->reclaim_mode));
1611         return nr_reclaimed;
1612 }
1613
1614 /*
1615  * This moves pages from the active list to the inactive list.
1616  *
1617  * We move them the other way if the page is referenced by one or more
1618  * processes, from rmap.
1619  *
1620  * If the pages are mostly unmapped, the processing is fast and it is
1621  * appropriate to hold zone->lru_lock across the whole operation.  But if
1622  * the pages are mapped, the processing is slow (page_referenced()) so we
1623  * should drop zone->lru_lock around each page.  It's impossible to balance
1624  * this, so instead we remove the pages from the LRU while processing them.
1625  * It is safe to rely on PG_active against the non-LRU pages in here because
1626  * nobody will play with that bit on a non-LRU page.
1627  *
1628  * The downside is that we have to touch page->_count against each page.
1629  * But we had to alter page->flags anyway.
1630  */
1631
1632 static void move_active_pages_to_lru(struct zone *zone,
1633                                      struct list_head *list,
1634                                      enum lru_list lru)
1635 {
1636         unsigned long pgmoved = 0;
1637         struct pagevec pvec;
1638         struct page *page;
1639
1640         pagevec_init(&pvec, 1);
1641
1642         while (!list_empty(list)) {
1643                 page = lru_to_page(list);
1644
1645                 VM_BUG_ON(PageLRU(page));
1646                 SetPageLRU(page);
1647
1648                 list_move(&page->lru, &zone->lru[lru].list);
1649                 mem_cgroup_add_lru_list(page, lru);
1650                 pgmoved += hpage_nr_pages(page);
1651
1652                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1653                         spin_unlock_irq(&zone->lru_lock);
1654                         if (buffer_heads_over_limit)
1655                                 pagevec_strip(&pvec);
1656                         __pagevec_release(&pvec);
1657                         spin_lock_irq(&zone->lru_lock);
1658                 }
1659         }
1660         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1661         if (!is_active_lru(lru))
1662                 __count_vm_events(PGDEACTIVATE, pgmoved);
1663 }
1664
1665 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1666                         struct scan_control *sc, int priority, int file)
1667 {
1668         unsigned long nr_taken;
1669         unsigned long pgscanned;
1670         unsigned long vm_flags;
1671         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1672         LIST_HEAD(l_active);
1673         LIST_HEAD(l_inactive);
1674         struct page *page;
1675         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1676         unsigned long nr_rotated = 0;
1677         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1678
1679         lru_add_drain();
1680
1681         if (!sc->may_unmap)
1682                 reclaim_mode |= ISOLATE_UNMAPPED;
1683         if (!sc->may_writepage)
1684                 reclaim_mode |= ISOLATE_CLEAN;
1685
1686         spin_lock_irq(&zone->lru_lock);
1687         if (scanning_global_lru(sc)) {
1688                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1689                                                 &pgscanned, sc->order,
1690                                                 reclaim_mode, zone,
1691                                                 1, file);
1692                 zone->pages_scanned += pgscanned;
1693         } else {
1694                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1695                                                 &pgscanned, sc->order,
1696                                                 reclaim_mode, zone,
1697                                                 sc->mem_cgroup, 1, file);
1698                 /*
1699                  * mem_cgroup_isolate_pages() keeps track of
1700                  * scanned pages on its own.
1701                  */
1702         }
1703
1704         reclaim_stat->recent_scanned[file] += nr_taken;
1705
1706         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1707         if (file)
1708                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1709         else
1710                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1711         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1712         spin_unlock_irq(&zone->lru_lock);
1713
1714         while (!list_empty(&l_hold)) {
1715                 cond_resched();
1716                 page = lru_to_page(&l_hold);
1717                 list_del(&page->lru);
1718
1719                 if (unlikely(!page_evictable(page, NULL))) {
1720                         putback_lru_page(page);
1721                         continue;
1722                 }
1723
1724                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1725                         nr_rotated += hpage_nr_pages(page);
1726                         /*
1727                          * Identify referenced, file-backed active pages and
1728                          * give them one more trip around the active list. So
1729                          * that executable code get better chances to stay in
1730                          * memory under moderate memory pressure.  Anon pages
1731                          * are not likely to be evicted by use-once streaming
1732                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1733                          * so we ignore them here.
1734                          */
1735                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1736                                 list_add(&page->lru, &l_active);
1737                                 continue;
1738                         }
1739                 }
1740
1741                 ClearPageActive(page);  /* we are de-activating */
1742                 list_add(&page->lru, &l_inactive);
1743         }
1744
1745         /*
1746          * Move pages back to the lru list.
1747          */
1748         spin_lock_irq(&zone->lru_lock);
1749         /*
1750          * Count referenced pages from currently used mappings as rotated,
1751          * even though only some of them are actually re-activated.  This
1752          * helps balance scan pressure between file and anonymous pages in
1753          * get_scan_ratio.
1754          */
1755         reclaim_stat->recent_rotated[file] += nr_rotated;
1756
1757         move_active_pages_to_lru(zone, &l_active,
1758                                                 LRU_ACTIVE + file * LRU_FILE);
1759         move_active_pages_to_lru(zone, &l_inactive,
1760                                                 LRU_BASE   + file * LRU_FILE);
1761         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1762         spin_unlock_irq(&zone->lru_lock);
1763 }
1764
1765 #ifdef CONFIG_SWAP
1766 static int inactive_anon_is_low_global(struct zone *zone)
1767 {
1768         unsigned long active, inactive;
1769
1770         active = zone_page_state(zone, NR_ACTIVE_ANON);
1771         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1772
1773         if (inactive * zone->inactive_ratio < active)
1774                 return 1;
1775
1776         return 0;
1777 }
1778
1779 /**
1780  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1781  * @zone: zone to check
1782  * @sc:   scan control of this context
1783  *
1784  * Returns true if the zone does not have enough inactive anon pages,
1785  * meaning some active anon pages need to be deactivated.
1786  */
1787 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1788 {
1789         int low;
1790
1791         /*
1792          * If we don't have swap space, anonymous page deactivation
1793          * is pointless.
1794          */
1795         if (!total_swap_pages)
1796                 return 0;
1797
1798         if (scanning_global_lru(sc))
1799                 low = inactive_anon_is_low_global(zone);
1800         else
1801                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1802         return low;
1803 }
1804 #else
1805 static inline int inactive_anon_is_low(struct zone *zone,
1806                                         struct scan_control *sc)
1807 {
1808         return 0;
1809 }
1810 #endif
1811
1812 static int inactive_file_is_low_global(struct zone *zone)
1813 {
1814         unsigned long active, inactive;
1815
1816         active = zone_page_state(zone, NR_ACTIVE_FILE);
1817         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1818
1819         return (active > inactive);
1820 }
1821
1822 /**
1823  * inactive_file_is_low - check if file pages need to be deactivated
1824  * @zone: zone to check
1825  * @sc:   scan control of this context
1826  *
1827  * When the system is doing streaming IO, memory pressure here
1828  * ensures that active file pages get deactivated, until more
1829  * than half of the file pages are on the inactive list.
1830  *
1831  * Once we get to that situation, protect the system's working
1832  * set from being evicted by disabling active file page aging.
1833  *
1834  * This uses a different ratio than the anonymous pages, because
1835  * the page cache uses a use-once replacement algorithm.
1836  */
1837 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1838 {
1839         int low;
1840
1841         if (scanning_global_lru(sc))
1842                 low = inactive_file_is_low_global(zone);
1843         else
1844                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1845         return low;
1846 }
1847
1848 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1849                                 int file)
1850 {
1851         if (file)
1852                 return inactive_file_is_low(zone, sc);
1853         else
1854                 return inactive_anon_is_low(zone, sc);
1855 }
1856
1857 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1858         struct zone *zone, struct scan_control *sc, int priority)
1859 {
1860         int file = is_file_lru(lru);
1861
1862         if (is_active_lru(lru)) {
1863                 if (inactive_list_is_low(zone, sc, file))
1864                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1865                 return 0;
1866         }
1867
1868         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1869 }
1870
1871 static int vmscan_swappiness(struct scan_control *sc)
1872 {
1873         if (scanning_global_lru(sc))
1874                 return vm_swappiness;
1875         return mem_cgroup_swappiness(sc->mem_cgroup);
1876 }
1877
1878 /*
1879  * Determine how aggressively the anon and file LRU lists should be
1880  * scanned.  The relative value of each set of LRU lists is determined
1881  * by looking at the fraction of the pages scanned we did rotate back
1882  * onto the active list instead of evict.
1883  *
1884  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1885  */
1886 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1887                                         unsigned long *nr, int priority)
1888 {
1889         unsigned long anon, file, free;
1890         unsigned long anon_prio, file_prio;
1891         unsigned long ap, fp;
1892         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1893         u64 fraction[2], denominator;
1894         enum lru_list l;
1895         int noswap = 0;
1896         bool force_scan = false;
1897
1898         /*
1899          * If the zone or memcg is small, nr[l] can be 0.  This
1900          * results in no scanning on this priority and a potential
1901          * priority drop.  Global direct reclaim can go to the next
1902          * zone and tends to have no problems. Global kswapd is for
1903          * zone balancing and it needs to scan a minimum amount. When
1904          * reclaiming for a memcg, a priority drop can cause high
1905          * latencies, so it's better to scan a minimum amount there as
1906          * well.
1907          */
1908         if (scanning_global_lru(sc) && current_is_kswapd())
1909                 force_scan = true;
1910         if (!scanning_global_lru(sc))
1911                 force_scan = true;
1912
1913         /* If we have no swap space, do not bother scanning anon pages. */
1914         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1915                 noswap = 1;
1916                 fraction[0] = 0;
1917                 fraction[1] = 1;
1918                 denominator = 1;
1919                 goto out;
1920         }
1921
1922         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1923                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1924         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1925                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1926
1927         if (scanning_global_lru(sc)) {
1928                 free  = zone_page_state(zone, NR_FREE_PAGES);
1929                 /* If we have very few page cache pages,
1930                    force-scan anon pages. */
1931                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1932                         fraction[0] = 1;
1933                         fraction[1] = 0;
1934                         denominator = 1;
1935                         goto out;
1936                 }
1937         }
1938
1939         /*
1940          * With swappiness at 100, anonymous and file have the same priority.
1941          * This scanning priority is essentially the inverse of IO cost.
1942          */
1943         anon_prio = vmscan_swappiness(sc);
1944         file_prio = 200 - vmscan_swappiness(sc);
1945
1946         /*
1947          * OK, so we have swap space and a fair amount of page cache
1948          * pages.  We use the recently rotated / recently scanned
1949          * ratios to determine how valuable each cache is.
1950          *
1951          * Because workloads change over time (and to avoid overflow)
1952          * we keep these statistics as a floating average, which ends
1953          * up weighing recent references more than old ones.
1954          *
1955          * anon in [0], file in [1]
1956          */
1957         spin_lock_irq(&zone->lru_lock);
1958         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1959                 reclaim_stat->recent_scanned[0] /= 2;
1960                 reclaim_stat->recent_rotated[0] /= 2;
1961         }
1962
1963         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1964                 reclaim_stat->recent_scanned[1] /= 2;
1965                 reclaim_stat->recent_rotated[1] /= 2;
1966         }
1967
1968         /*
1969          * The amount of pressure on anon vs file pages is inversely
1970          * proportional to the fraction of recently scanned pages on
1971          * each list that were recently referenced and in active use.
1972          */
1973         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1974         ap /= reclaim_stat->recent_rotated[0] + 1;
1975
1976         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1977         fp /= reclaim_stat->recent_rotated[1] + 1;
1978         spin_unlock_irq(&zone->lru_lock);
1979
1980         fraction[0] = ap;
1981         fraction[1] = fp;
1982         denominator = ap + fp + 1;
1983 out:
1984         for_each_evictable_lru(l) {
1985                 int file = is_file_lru(l);
1986                 unsigned long scan;
1987
1988                 scan = zone_nr_lru_pages(zone, sc, l);
1989                 if (priority || noswap) {
1990                         scan >>= priority;
1991                         if (!scan && force_scan)
1992                                 scan = SWAP_CLUSTER_MAX;
1993                         scan = div64_u64(scan * fraction[file], denominator);
1994                 }
1995                 nr[l] = scan;
1996         }
1997 }
1998
1999 /*
2000  * Reclaim/compaction depends on a number of pages being freed. To avoid
2001  * disruption to the system, a small number of order-0 pages continue to be
2002  * rotated and reclaimed in the normal fashion. However, by the time we get
2003  * back to the allocator and call try_to_compact_zone(), we ensure that
2004  * there are enough free pages for it to be likely successful
2005  */
2006 static inline bool should_continue_reclaim(struct zone *zone,
2007                                         unsigned long nr_reclaimed,
2008                                         unsigned long nr_scanned,
2009                                         struct scan_control *sc)
2010 {
2011         unsigned long pages_for_compaction;
2012         unsigned long inactive_lru_pages;
2013
2014         /* If not in reclaim/compaction mode, stop */
2015         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2016                 return false;
2017
2018         /* Consider stopping depending on scan and reclaim activity */
2019         if (sc->gfp_mask & __GFP_REPEAT) {
2020                 /*
2021                  * For __GFP_REPEAT allocations, stop reclaiming if the
2022                  * full LRU list has been scanned and we are still failing
2023                  * to reclaim pages. This full LRU scan is potentially
2024                  * expensive but a __GFP_REPEAT caller really wants to succeed
2025                  */
2026                 if (!nr_reclaimed && !nr_scanned)
2027                         return false;
2028         } else {
2029                 /*
2030                  * For non-__GFP_REPEAT allocations which can presumably
2031                  * fail without consequence, stop if we failed to reclaim
2032                  * any pages from the last SWAP_CLUSTER_MAX number of
2033                  * pages that were scanned. This will return to the
2034                  * caller faster at the risk reclaim/compaction and
2035                  * the resulting allocation attempt fails
2036                  */
2037                 if (!nr_reclaimed)
2038                         return false;
2039         }
2040
2041         /*
2042          * If we have not reclaimed enough pages for compaction and the
2043          * inactive lists are large enough, continue reclaiming
2044          */
2045         pages_for_compaction = (2UL << sc->order);
2046         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2047                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2048         if (sc->nr_reclaimed < pages_for_compaction &&
2049                         inactive_lru_pages > pages_for_compaction)
2050                 return true;
2051
2052         /* If compaction would go ahead or the allocation would succeed, stop */
2053         switch (compaction_suitable(zone, sc->order)) {
2054         case COMPACT_PARTIAL:
2055         case COMPACT_CONTINUE:
2056                 return false;
2057         default:
2058                 return true;
2059         }
2060 }
2061
2062 /*
2063  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2064  */
2065 static void shrink_zone(int priority, struct zone *zone,
2066                                 struct scan_control *sc)
2067 {
2068         unsigned long nr[NR_LRU_LISTS];
2069         unsigned long nr_to_scan;
2070         enum lru_list l;
2071         unsigned long nr_reclaimed, nr_scanned;
2072         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2073         struct blk_plug plug;
2074
2075 restart:
2076         nr_reclaimed = 0;
2077         nr_scanned = sc->nr_scanned;
2078         get_scan_count(zone, sc, nr, priority);
2079
2080         blk_start_plug(&plug);
2081         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2082                                         nr[LRU_INACTIVE_FILE]) {
2083                 for_each_evictable_lru(l) {
2084                         if (nr[l]) {
2085                                 nr_to_scan = min_t(unsigned long,
2086                                                    nr[l], SWAP_CLUSTER_MAX);
2087                                 nr[l] -= nr_to_scan;
2088
2089                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2090                                                             zone, sc, priority);
2091                         }
2092                 }
2093                 /*
2094                  * On large memory systems, scan >> priority can become
2095                  * really large. This is fine for the starting priority;
2096                  * we want to put equal scanning pressure on each zone.
2097                  * However, if the VM has a harder time of freeing pages,
2098                  * with multiple processes reclaiming pages, the total
2099                  * freeing target can get unreasonably large.
2100                  */
2101                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2102                         break;
2103         }
2104         blk_finish_plug(&plug);
2105         sc->nr_reclaimed += nr_reclaimed;
2106
2107         /*
2108          * Even if we did not try to evict anon pages at all, we want to
2109          * rebalance the anon lru active/inactive ratio.
2110          */
2111         if (inactive_anon_is_low(zone, sc))
2112                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2113
2114         /* reclaim/compaction might need reclaim to continue */
2115         if (should_continue_reclaim(zone, nr_reclaimed,
2116                                         sc->nr_scanned - nr_scanned, sc))
2117                 goto restart;
2118
2119         throttle_vm_writeout(sc->gfp_mask);
2120 }
2121
2122 /* Returns true if compaction should go ahead for a high-order request */
2123 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2124 {
2125         unsigned long balance_gap, watermark;
2126         bool watermark_ok;
2127
2128         /* Do not consider compaction for orders reclaim is meant to satisfy */
2129         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2130                 return false;
2131
2132         /*
2133          * Compaction takes time to run and there are potentially other
2134          * callers using the pages just freed. Continue reclaiming until
2135          * there is a buffer of free pages available to give compaction
2136          * a reasonable chance of completing and allocating the page
2137          */
2138         balance_gap = min(low_wmark_pages(zone),
2139                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2140                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2141         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2142         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2143
2144         /*
2145          * If compaction is deferred, reclaim up to a point where
2146          * compaction will have a chance of success when re-enabled
2147          */
2148         if (compaction_deferred(zone))
2149                 return watermark_ok;
2150
2151         /* If compaction is not ready to start, keep reclaiming */
2152         if (!compaction_suitable(zone, sc->order))
2153                 return false;
2154
2155         return watermark_ok;
2156 }
2157
2158 /*
2159  * This is the direct reclaim path, for page-allocating processes.  We only
2160  * try to reclaim pages from zones which will satisfy the caller's allocation
2161  * request.
2162  *
2163  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2164  * Because:
2165  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2166  *    allocation or
2167  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2168  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2169  *    zone defense algorithm.
2170  *
2171  * If a zone is deemed to be full of pinned pages then just give it a light
2172  * scan then give up on it.
2173  *
2174  * This function returns true if a zone is being reclaimed for a costly
2175  * high-order allocation and compaction is ready to begin. This indicates to
2176  * the caller that it should retry the allocation or fail.
2177  */
2178 static bool shrink_zones(int priority, struct zonelist *zonelist,
2179                                         struct scan_control *sc)
2180 {
2181         struct zoneref *z;
2182         struct zone *zone;
2183         unsigned long nr_soft_reclaimed;
2184         unsigned long nr_soft_scanned;
2185         bool should_abort_reclaim = false;
2186
2187         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2188                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2189                 if (!populated_zone(zone))
2190                         continue;
2191                 /*
2192                  * Take care memory controller reclaiming has small influence
2193                  * to global LRU.
2194                  */
2195                 if (scanning_global_lru(sc)) {
2196                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2197                                 continue;
2198                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2199                                 continue;       /* Let kswapd poll it */
2200                         if (COMPACTION_BUILD) {
2201                                 /*
2202                                  * If we already have plenty of memory free for
2203                                  * compaction in this zone, don't free any more.
2204                                  * Even though compaction is invoked for any
2205                                  * non-zero order, only frequent costly order
2206                                  * reclamation is disruptive enough to become a
2207                                  * noticable problem, like transparent huge page
2208                                  * allocations.
2209                                  */
2210                                 if (compaction_ready(zone, sc)) {
2211                                         should_abort_reclaim = true;
2212                                         continue;
2213                                 }
2214                         }
2215                         /*
2216                          * This steals pages from memory cgroups over softlimit
2217                          * and returns the number of reclaimed pages and
2218                          * scanned pages. This works for global memory pressure
2219                          * and balancing, not for a memcg's limit.
2220                          */
2221                         nr_soft_scanned = 0;
2222                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2223                                                 sc->order, sc->gfp_mask,
2224                                                 &nr_soft_scanned);
2225                         sc->nr_reclaimed += nr_soft_reclaimed;
2226                         sc->nr_scanned += nr_soft_scanned;
2227                         /* need some check for avoid more shrink_zone() */
2228                 }
2229
2230                 shrink_zone(priority, zone, sc);
2231         }
2232
2233         return should_abort_reclaim;
2234 }
2235
2236 static bool zone_reclaimable(struct zone *zone)
2237 {
2238         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2239 }
2240
2241 /* All zones in zonelist are unreclaimable? */
2242 static bool all_unreclaimable(struct zonelist *zonelist,
2243                 struct scan_control *sc)
2244 {
2245         struct zoneref *z;
2246         struct zone *zone;
2247
2248         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2249                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2250                 if (!populated_zone(zone))
2251                         continue;
2252                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2253                         continue;
2254                 if (!zone->all_unreclaimable)
2255                         return false;
2256         }
2257
2258         return true;
2259 }
2260
2261 /*
2262  * This is the main entry point to direct page reclaim.
2263  *
2264  * If a full scan of the inactive list fails to free enough memory then we
2265  * are "out of memory" and something needs to be killed.
2266  *
2267  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2268  * high - the zone may be full of dirty or under-writeback pages, which this
2269  * caller can't do much about.  We kick the writeback threads and take explicit
2270  * naps in the hope that some of these pages can be written.  But if the
2271  * allocating task holds filesystem locks which prevent writeout this might not
2272  * work, and the allocation attempt will fail.
2273  *
2274  * returns:     0, if no pages reclaimed
2275  *              else, the number of pages reclaimed
2276  */
2277 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2278                                         struct scan_control *sc,
2279                                         struct shrink_control *shrink)
2280 {
2281         int priority;
2282         unsigned long total_scanned = 0;
2283         struct reclaim_state *reclaim_state = current->reclaim_state;
2284         struct zoneref *z;
2285         struct zone *zone;
2286         unsigned long writeback_threshold;
2287
2288         get_mems_allowed();
2289         delayacct_freepages_start();
2290
2291         if (scanning_global_lru(sc))
2292                 count_vm_event(ALLOCSTALL);
2293
2294         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2295                 sc->nr_scanned = 0;
2296                 if (!priority)
2297                         disable_swap_token(sc->mem_cgroup);
2298                 if (shrink_zones(priority, zonelist, sc))
2299                         break;
2300
2301                 /*
2302                  * Don't shrink slabs when reclaiming memory from
2303                  * over limit cgroups
2304                  */
2305                 if (scanning_global_lru(sc)) {
2306                         unsigned long lru_pages = 0;
2307                         for_each_zone_zonelist(zone, z, zonelist,
2308                                         gfp_zone(sc->gfp_mask)) {
2309                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2310                                         continue;
2311
2312                                 lru_pages += zone_reclaimable_pages(zone);
2313                         }
2314
2315                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2316                         if (reclaim_state) {
2317                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2318                                 reclaim_state->reclaimed_slab = 0;
2319                         }
2320                 }
2321                 total_scanned += sc->nr_scanned;
2322                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2323                         goto out;
2324
2325                 /*
2326                  * Try to write back as many pages as we just scanned.  This
2327                  * tends to cause slow streaming writers to write data to the
2328                  * disk smoothly, at the dirtying rate, which is nice.   But
2329                  * that's undesirable in laptop mode, where we *want* lumpy
2330                  * writeout.  So in laptop mode, write out the whole world.
2331                  */
2332                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2333                 if (total_scanned > writeback_threshold) {
2334                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2335                                                 WB_REASON_TRY_TO_FREE_PAGES);
2336                         sc->may_writepage = 1;
2337                 }
2338
2339                 /* Take a nap, wait for some writeback to complete */
2340                 if (!sc->hibernation_mode && sc->nr_scanned &&
2341                     priority < DEF_PRIORITY - 2) {
2342                         struct zone *preferred_zone;
2343
2344                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2345                                                 &cpuset_current_mems_allowed,
2346                                                 &preferred_zone);
2347                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2348                 }
2349         }
2350
2351 out:
2352         delayacct_freepages_end();
2353         put_mems_allowed();
2354
2355         if (sc->nr_reclaimed)
2356                 return sc->nr_reclaimed;
2357
2358         /*
2359          * As hibernation is going on, kswapd is freezed so that it can't mark
2360          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2361          * check.
2362          */
2363         if (oom_killer_disabled)
2364                 return 0;
2365
2366         /* top priority shrink_zones still had more to do? don't OOM, then */
2367         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2368                 return 1;
2369
2370         return 0;
2371 }
2372
2373 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2374                                 gfp_t gfp_mask, nodemask_t *nodemask)
2375 {
2376         unsigned long nr_reclaimed;
2377         struct scan_control sc = {
2378                 .gfp_mask = gfp_mask,
2379                 .may_writepage = !laptop_mode,
2380                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2381                 .may_unmap = 1,
2382                 .may_swap = 1,
2383                 .order = order,
2384                 .mem_cgroup = NULL,
2385                 .nodemask = nodemask,
2386         };
2387         struct shrink_control shrink = {
2388                 .gfp_mask = sc.gfp_mask,
2389         };
2390
2391         trace_mm_vmscan_direct_reclaim_begin(order,
2392                                 sc.may_writepage,
2393                                 gfp_mask);
2394
2395         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2396
2397         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2398
2399         return nr_reclaimed;
2400 }
2401
2402 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2403
2404 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2405                                                 gfp_t gfp_mask, bool noswap,
2406                                                 struct zone *zone,
2407                                                 unsigned long *nr_scanned)
2408 {
2409         struct scan_control sc = {
2410                 .nr_scanned = 0,
2411                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2412                 .may_writepage = !laptop_mode,
2413                 .may_unmap = 1,
2414                 .may_swap = !noswap,
2415                 .order = 0,
2416                 .mem_cgroup = mem,
2417         };
2418
2419         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2420                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2421
2422         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2423                                                       sc.may_writepage,
2424                                                       sc.gfp_mask);
2425
2426         /*
2427          * NOTE: Although we can get the priority field, using it
2428          * here is not a good idea, since it limits the pages we can scan.
2429          * if we don't reclaim here, the shrink_zone from balance_pgdat
2430          * will pick up pages from other mem cgroup's as well. We hack
2431          * the priority and make it zero.
2432          */
2433         shrink_zone(0, zone, &sc);
2434
2435         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2436
2437         *nr_scanned = sc.nr_scanned;
2438         return sc.nr_reclaimed;
2439 }
2440
2441 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2442                                            gfp_t gfp_mask,
2443                                            bool noswap)
2444 {
2445         struct zonelist *zonelist;
2446         unsigned long nr_reclaimed;
2447         int nid;
2448         struct scan_control sc = {
2449                 .may_writepage = !laptop_mode,
2450                 .may_unmap = 1,
2451                 .may_swap = !noswap,
2452                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2453                 .order = 0,
2454                 .mem_cgroup = mem_cont,
2455                 .nodemask = NULL, /* we don't care the placement */
2456                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2457                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2458         };
2459         struct shrink_control shrink = {
2460                 .gfp_mask = sc.gfp_mask,
2461         };
2462
2463         /*
2464          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2465          * take care of from where we get pages. So the node where we start the
2466          * scan does not need to be the current node.
2467          */
2468         nid = mem_cgroup_select_victim_node(mem_cont);
2469
2470         zonelist = NODE_DATA(nid)->node_zonelists;
2471
2472         trace_mm_vmscan_memcg_reclaim_begin(0,
2473                                             sc.may_writepage,
2474                                             sc.gfp_mask);
2475
2476         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2477
2478         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2479
2480         return nr_reclaimed;
2481 }
2482 #endif
2483
2484 /*
2485  * pgdat_balanced is used when checking if a node is balanced for high-order
2486  * allocations. Only zones that meet watermarks and are in a zone allowed
2487  * by the callers classzone_idx are added to balanced_pages. The total of
2488  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2489  * for the node to be considered balanced. Forcing all zones to be balanced
2490  * for high orders can cause excessive reclaim when there are imbalanced zones.
2491  * The choice of 25% is due to
2492  *   o a 16M DMA zone that is balanced will not balance a zone on any
2493  *     reasonable sized machine
2494  *   o On all other machines, the top zone must be at least a reasonable
2495  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2496  *     would need to be at least 256M for it to be balance a whole node.
2497  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2498  *     to balance a node on its own. These seemed like reasonable ratios.
2499  */
2500 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2501                                                 int classzone_idx)
2502 {
2503         unsigned long present_pages = 0;
2504         int i;
2505
2506         for (i = 0; i <= classzone_idx; i++)
2507                 present_pages += pgdat->node_zones[i].present_pages;
2508
2509         /* A special case here: if zone has no page, we think it's balanced */
2510         return balanced_pages >= (present_pages >> 2);
2511 }
2512
2513 /* is kswapd sleeping prematurely? */
2514 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2515                                         int classzone_idx)
2516 {
2517         int i;
2518         unsigned long balanced = 0;
2519         bool all_zones_ok = true;
2520
2521         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2522         if (remaining)
2523                 return true;
2524
2525         /* Check the watermark levels */
2526         for (i = 0; i <= classzone_idx; i++) {
2527                 struct zone *zone = pgdat->node_zones + i;
2528
2529                 if (!populated_zone(zone))
2530                         continue;
2531
2532                 /*
2533                  * balance_pgdat() skips over all_unreclaimable after
2534                  * DEF_PRIORITY. Effectively, it considers them balanced so
2535                  * they must be considered balanced here as well if kswapd
2536                  * is to sleep
2537                  */
2538                 if (zone->all_unreclaimable) {
2539                         balanced += zone->present_pages;
2540                         continue;
2541                 }
2542
2543                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2544                                                         i, 0))
2545                         all_zones_ok = false;
2546                 else
2547                         balanced += zone->present_pages;
2548         }
2549
2550         /*
2551          * For high-order requests, the balanced zones must contain at least
2552          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2553          * must be balanced
2554          */
2555         if (order)
2556                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2557         else
2558                 return !all_zones_ok;
2559 }
2560
2561 /*
2562  * For kswapd, balance_pgdat() will work across all this node's zones until
2563  * they are all at high_wmark_pages(zone).
2564  *
2565  * Returns the final order kswapd was reclaiming at
2566  *
2567  * There is special handling here for zones which are full of pinned pages.
2568  * This can happen if the pages are all mlocked, or if they are all used by
2569  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2570  * What we do is to detect the case where all pages in the zone have been
2571  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2572  * dead and from now on, only perform a short scan.  Basically we're polling
2573  * the zone for when the problem goes away.
2574  *
2575  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2576  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2577  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2578  * lower zones regardless of the number of free pages in the lower zones. This
2579  * interoperates with the page allocator fallback scheme to ensure that aging
2580  * of pages is balanced across the zones.
2581  */
2582 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2583                                                         int *classzone_idx)
2584 {
2585         int all_zones_ok;
2586         unsigned long balanced;
2587         int priority;
2588         int i;
2589         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2590         unsigned long total_scanned;
2591         struct reclaim_state *reclaim_state = current->reclaim_state;
2592         unsigned long nr_soft_reclaimed;
2593         unsigned long nr_soft_scanned;
2594         struct scan_control sc = {
2595                 .gfp_mask = GFP_KERNEL,
2596                 .may_unmap = 1,
2597                 .may_swap = 1,
2598                 /*
2599                  * kswapd doesn't want to be bailed out while reclaim. because
2600                  * we want to put equal scanning pressure on each zone.
2601                  */
2602                 .nr_to_reclaim = ULONG_MAX,
2603                 .order = order,
2604                 .mem_cgroup = NULL,
2605         };
2606         struct shrink_control shrink = {
2607                 .gfp_mask = sc.gfp_mask,
2608         };
2609 loop_again:
2610         total_scanned = 0;
2611         sc.nr_reclaimed = 0;
2612         sc.may_writepage = !laptop_mode;
2613         count_vm_event(PAGEOUTRUN);
2614
2615         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2616                 unsigned long lru_pages = 0;
2617                 int has_under_min_watermark_zone = 0;
2618
2619                 /* The swap token gets in the way of swapout... */
2620                 if (!priority)
2621                         disable_swap_token(NULL);
2622
2623                 all_zones_ok = 1;
2624                 balanced = 0;
2625
2626                 /*
2627                  * Scan in the highmem->dma direction for the highest
2628                  * zone which needs scanning
2629                  */
2630                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2631                         struct zone *zone = pgdat->node_zones + i;
2632
2633                         if (!populated_zone(zone))
2634                                 continue;
2635
2636                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2637                                 continue;
2638
2639                         /*
2640                          * Do some background aging of the anon list, to give
2641                          * pages a chance to be referenced before reclaiming.
2642                          */
2643                         if (inactive_anon_is_low(zone, &sc))
2644                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2645                                                         &sc, priority, 0);
2646
2647                         if (!zone_watermark_ok_safe(zone, order,
2648                                         high_wmark_pages(zone), 0, 0)) {
2649                                 end_zone = i;
2650                                 break;
2651                         } else {
2652                                 /* If balanced, clear the congested flag */
2653                                 zone_clear_flag(zone, ZONE_CONGESTED);
2654                         }
2655                 }
2656                 if (i < 0)
2657                         goto out;
2658
2659                 for (i = 0; i <= end_zone; i++) {
2660                         struct zone *zone = pgdat->node_zones + i;
2661
2662                         lru_pages += zone_reclaimable_pages(zone);
2663                 }
2664
2665                 /*
2666                  * Now scan the zone in the dma->highmem direction, stopping
2667                  * at the last zone which needs scanning.
2668                  *
2669                  * We do this because the page allocator works in the opposite
2670                  * direction.  This prevents the page allocator from allocating
2671                  * pages behind kswapd's direction of progress, which would
2672                  * cause too much scanning of the lower zones.
2673                  */
2674                 for (i = 0; i <= end_zone; i++) {
2675                         struct zone *zone = pgdat->node_zones + i;
2676                         int nr_slab;
2677                         unsigned long balance_gap;
2678
2679                         if (!populated_zone(zone))
2680                                 continue;
2681
2682                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2683                                 continue;
2684
2685                         sc.nr_scanned = 0;
2686
2687                         nr_soft_scanned = 0;
2688                         /*
2689                          * Call soft limit reclaim before calling shrink_zone.
2690                          */
2691                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2692                                                         order, sc.gfp_mask,
2693                                                         &nr_soft_scanned);
2694                         sc.nr_reclaimed += nr_soft_reclaimed;
2695                         total_scanned += nr_soft_scanned;
2696
2697                         /*
2698                          * We put equal pressure on every zone, unless
2699                          * one zone has way too many pages free
2700                          * already. The "too many pages" is defined
2701                          * as the high wmark plus a "gap" where the
2702                          * gap is either the low watermark or 1%
2703                          * of the zone, whichever is smaller.
2704                          */
2705                         balance_gap = min(low_wmark_pages(zone),
2706                                 (zone->present_pages +
2707                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2708                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2709                         if (!zone_watermark_ok_safe(zone, order,
2710                                         high_wmark_pages(zone) + balance_gap,
2711                                         end_zone, 0)) {
2712                                 shrink_zone(priority, zone, &sc);
2713
2714                                 reclaim_state->reclaimed_slab = 0;
2715                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2716                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2717                                 total_scanned += sc.nr_scanned;
2718
2719                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2720                                         zone->all_unreclaimable = 1;
2721                         }
2722
2723                         /*
2724                          * If we've done a decent amount of scanning and
2725                          * the reclaim ratio is low, start doing writepage
2726                          * even in laptop mode
2727                          */
2728                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2729                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2730                                 sc.may_writepage = 1;
2731
2732                         if (zone->all_unreclaimable) {
2733                                 if (end_zone && end_zone == i)
2734                                         end_zone--;
2735                                 continue;
2736                         }
2737
2738                         if (!zone_watermark_ok_safe(zone, order,
2739                                         high_wmark_pages(zone), end_zone, 0)) {
2740                                 all_zones_ok = 0;
2741                                 /*
2742                                  * We are still under min water mark.  This
2743                                  * means that we have a GFP_ATOMIC allocation
2744                                  * failure risk. Hurry up!
2745                                  */
2746                                 if (!zone_watermark_ok_safe(zone, order,
2747                                             min_wmark_pages(zone), end_zone, 0))
2748                                         has_under_min_watermark_zone = 1;
2749                         } else {
2750                                 /*
2751                                  * If a zone reaches its high watermark,
2752                                  * consider it to be no longer congested. It's
2753                                  * possible there are dirty pages backed by
2754                                  * congested BDIs but as pressure is relieved,
2755                                  * spectulatively avoid congestion waits
2756                                  */
2757                                 zone_clear_flag(zone, ZONE_CONGESTED);
2758                                 if (i <= *classzone_idx)
2759                                         balanced += zone->present_pages;
2760                         }
2761
2762                 }
2763                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2764                         break;          /* kswapd: all done */
2765                 /*
2766                  * OK, kswapd is getting into trouble.  Take a nap, then take
2767                  * another pass across the zones.
2768                  */
2769                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2770                         if (has_under_min_watermark_zone)
2771                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2772                         else
2773                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2774                 }
2775
2776                 /*
2777                  * We do this so kswapd doesn't build up large priorities for
2778                  * example when it is freeing in parallel with allocators. It
2779                  * matches the direct reclaim path behaviour in terms of impact
2780                  * on zone->*_priority.
2781                  */
2782                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2783                         break;
2784         }
2785 out:
2786
2787         /*
2788          * order-0: All zones must meet high watermark for a balanced node
2789          * high-order: Balanced zones must make up at least 25% of the node
2790          *             for the node to be balanced
2791          */
2792         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2793                 cond_resched();
2794
2795                 try_to_freeze();
2796
2797                 /*
2798                  * Fragmentation may mean that the system cannot be
2799                  * rebalanced for high-order allocations in all zones.
2800                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2801                  * it means the zones have been fully scanned and are still
2802                  * not balanced. For high-order allocations, there is
2803                  * little point trying all over again as kswapd may
2804                  * infinite loop.
2805                  *
2806                  * Instead, recheck all watermarks at order-0 as they
2807                  * are the most important. If watermarks are ok, kswapd will go
2808                  * back to sleep. High-order users can still perform direct
2809                  * reclaim if they wish.
2810                  */
2811                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2812                         order = sc.order = 0;
2813
2814                 goto loop_again;
2815         }
2816
2817         /*
2818          * If kswapd was reclaiming at a higher order, it has the option of
2819          * sleeping without all zones being balanced. Before it does, it must
2820          * ensure that the watermarks for order-0 on *all* zones are met and
2821          * that the congestion flags are cleared. The congestion flag must
2822          * be cleared as kswapd is the only mechanism that clears the flag
2823          * and it is potentially going to sleep here.
2824          */
2825         if (order) {
2826                 for (i = 0; i <= end_zone; i++) {
2827                         struct zone *zone = pgdat->node_zones + i;
2828
2829                         if (!populated_zone(zone))
2830                                 continue;
2831
2832                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2833                                 continue;
2834
2835                         /* Confirm the zone is balanced for order-0 */
2836                         if (!zone_watermark_ok(zone, 0,
2837                                         high_wmark_pages(zone), 0, 0)) {
2838                                 order = sc.order = 0;
2839                                 goto loop_again;
2840                         }
2841
2842                         /* If balanced, clear the congested flag */
2843                         zone_clear_flag(zone, ZONE_CONGESTED);
2844                         if (i <= *classzone_idx)
2845                                 balanced += zone->present_pages;
2846                 }
2847         }
2848
2849         /*
2850          * Return the order we were reclaiming at so sleeping_prematurely()
2851          * makes a decision on the order we were last reclaiming at. However,
2852          * if another caller entered the allocator slow path while kswapd
2853          * was awake, order will remain at the higher level
2854          */
2855         *classzone_idx = end_zone;
2856         return order;
2857 }
2858
2859 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2860 {
2861         long remaining = 0;
2862         DEFINE_WAIT(wait);
2863
2864         if (freezing(current) || kthread_should_stop())
2865                 return;
2866
2867         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2868
2869         /* Try to sleep for a short interval */
2870         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2871                 remaining = schedule_timeout(HZ/10);
2872                 finish_wait(&pgdat->kswapd_wait, &wait);
2873                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2874         }
2875
2876         /*
2877          * After a short sleep, check if it was a premature sleep. If not, then
2878          * go fully to sleep until explicitly woken up.
2879          */
2880         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2881                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2882
2883                 /*
2884                  * vmstat counters are not perfectly accurate and the estimated
2885                  * value for counters such as NR_FREE_PAGES can deviate from the
2886                  * true value by nr_online_cpus * threshold. To avoid the zone
2887                  * watermarks being breached while under pressure, we reduce the
2888                  * per-cpu vmstat threshold while kswapd is awake and restore
2889                  * them before going back to sleep.
2890                  */
2891                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2892
2893                 if (!kthread_should_stop())
2894                         schedule();
2895
2896                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2897         } else {
2898                 if (remaining)
2899                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2900                 else
2901                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2902         }
2903         finish_wait(&pgdat->kswapd_wait, &wait);
2904 }
2905
2906 /*
2907  * The background pageout daemon, started as a kernel thread
2908  * from the init process.
2909  *
2910  * This basically trickles out pages so that we have _some_
2911  * free memory available even if there is no other activity
2912  * that frees anything up. This is needed for things like routing
2913  * etc, where we otherwise might have all activity going on in
2914  * asynchronous contexts that cannot page things out.
2915  *
2916  * If there are applications that are active memory-allocators
2917  * (most normal use), this basically shouldn't matter.
2918  */
2919 static int kswapd(void *p)
2920 {
2921         unsigned long order, new_order;
2922         unsigned balanced_order;
2923         int classzone_idx, new_classzone_idx;
2924         int balanced_classzone_idx;
2925         pg_data_t *pgdat = (pg_data_t*)p;
2926         struct task_struct *tsk = current;
2927
2928         struct reclaim_state reclaim_state = {
2929                 .reclaimed_slab = 0,
2930         };
2931         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2932
2933         lockdep_set_current_reclaim_state(GFP_KERNEL);
2934
2935         if (!cpumask_empty(cpumask))
2936                 set_cpus_allowed_ptr(tsk, cpumask);
2937         current->reclaim_state = &reclaim_state;
2938
2939         /*
2940          * Tell the memory management that we're a "memory allocator",
2941          * and that if we need more memory we should get access to it
2942          * regardless (see "__alloc_pages()"). "kswapd" should
2943          * never get caught in the normal page freeing logic.
2944          *
2945          * (Kswapd normally doesn't need memory anyway, but sometimes
2946          * you need a small amount of memory in order to be able to
2947          * page out something else, and this flag essentially protects
2948          * us from recursively trying to free more memory as we're
2949          * trying to free the first piece of memory in the first place).
2950          */
2951         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2952         set_freezable();
2953
2954         order = new_order = 0;
2955         balanced_order = 0;
2956         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2957         balanced_classzone_idx = classzone_idx;
2958         for ( ; ; ) {
2959                 int ret;
2960
2961                 /*
2962                  * If the last balance_pgdat was unsuccessful it's unlikely a
2963                  * new request of a similar or harder type will succeed soon
2964                  * so consider going to sleep on the basis we reclaimed at
2965                  */
2966                 if (balanced_classzone_idx >= new_classzone_idx &&
2967                                         balanced_order == new_order) {
2968                         new_order = pgdat->kswapd_max_order;
2969                         new_classzone_idx = pgdat->classzone_idx;
2970                         pgdat->kswapd_max_order =  0;
2971                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2972                 }
2973
2974                 if (order < new_order || classzone_idx > new_classzone_idx) {
2975                         /*
2976                          * Don't sleep if someone wants a larger 'order'
2977                          * allocation or has tigher zone constraints
2978                          */
2979                         order = new_order;
2980                         classzone_idx = new_classzone_idx;
2981                 } else {
2982                         kswapd_try_to_sleep(pgdat, balanced_order,
2983                                                 balanced_classzone_idx);
2984                         order = pgdat->kswapd_max_order;
2985                         classzone_idx = pgdat->classzone_idx;
2986                         new_order = order;
2987                         new_classzone_idx = classzone_idx;
2988                         pgdat->kswapd_max_order = 0;
2989                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2990                 }
2991
2992                 ret = try_to_freeze();
2993                 if (kthread_should_stop())
2994                         break;
2995
2996                 /*
2997                  * We can speed up thawing tasks if we don't call balance_pgdat
2998                  * after returning from the refrigerator
2999                  */
3000                 if (!ret) {
3001                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3002                         balanced_classzone_idx = classzone_idx;
3003                         balanced_order = balance_pgdat(pgdat, order,
3004                                                 &balanced_classzone_idx);
3005                 }
3006         }
3007         return 0;
3008 }
3009
3010 /*
3011  * A zone is low on free memory, so wake its kswapd task to service it.
3012  */
3013 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3014 {
3015         pg_data_t *pgdat;
3016
3017         if (!populated_zone(zone))
3018                 return;
3019
3020         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3021                 return;
3022         pgdat = zone->zone_pgdat;
3023         if (pgdat->kswapd_max_order < order) {
3024                 pgdat->kswapd_max_order = order;
3025                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3026         }
3027         if (!waitqueue_active(&pgdat->kswapd_wait))
3028                 return;
3029         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3030                 return;
3031
3032         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3033         wake_up_interruptible(&pgdat->kswapd_wait);
3034 }
3035
3036 /*
3037  * The reclaimable count would be mostly accurate.
3038  * The less reclaimable pages may be
3039  * - mlocked pages, which will be moved to unevictable list when encountered
3040  * - mapped pages, which may require several travels to be reclaimed
3041  * - dirty pages, which is not "instantly" reclaimable
3042  */
3043 unsigned long global_reclaimable_pages(void)
3044 {
3045         int nr;
3046
3047         nr = global_page_state(NR_ACTIVE_FILE) +
3048              global_page_state(NR_INACTIVE_FILE);
3049
3050         if (nr_swap_pages > 0)
3051                 nr += global_page_state(NR_ACTIVE_ANON) +
3052                       global_page_state(NR_INACTIVE_ANON);
3053
3054         return nr;
3055 }
3056
3057 unsigned long zone_reclaimable_pages(struct zone *zone)
3058 {
3059         int nr;
3060
3061         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3062              zone_page_state(zone, NR_INACTIVE_FILE);
3063
3064         if (nr_swap_pages > 0)
3065                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3066                       zone_page_state(zone, NR_INACTIVE_ANON);
3067
3068         return nr;
3069 }
3070
3071 #ifdef CONFIG_HIBERNATION
3072 /*
3073  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3074  * freed pages.
3075  *
3076  * Rather than trying to age LRUs the aim is to preserve the overall
3077  * LRU order by reclaiming preferentially
3078  * inactive > active > active referenced > active mapped
3079  */
3080 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3081 {
3082         struct reclaim_state reclaim_state;
3083         struct scan_control sc = {
3084                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3085                 .may_swap = 1,
3086                 .may_unmap = 1,
3087                 .may_writepage = 1,
3088                 .nr_to_reclaim = nr_to_reclaim,
3089                 .hibernation_mode = 1,
3090                 .order = 0,
3091         };
3092         struct shrink_control shrink = {
3093                 .gfp_mask = sc.gfp_mask,
3094         };
3095         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3096         struct task_struct *p = current;
3097         unsigned long nr_reclaimed;
3098
3099         p->flags |= PF_MEMALLOC;
3100         lockdep_set_current_reclaim_state(sc.gfp_mask);
3101         reclaim_state.reclaimed_slab = 0;
3102         p->reclaim_state = &reclaim_state;
3103
3104         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3105
3106         p->reclaim_state = NULL;
3107         lockdep_clear_current_reclaim_state();
3108         p->flags &= ~PF_MEMALLOC;
3109
3110         return nr_reclaimed;
3111 }
3112 #endif /* CONFIG_HIBERNATION */
3113
3114 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3115    not required for correctness.  So if the last cpu in a node goes
3116    away, we get changed to run anywhere: as the first one comes back,
3117    restore their cpu bindings. */
3118 static int __devinit cpu_callback(struct notifier_block *nfb,
3119                                   unsigned long action, void *hcpu)
3120 {
3121         int nid;
3122
3123         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3124                 for_each_node_state(nid, N_HIGH_MEMORY) {
3125                         pg_data_t *pgdat = NODE_DATA(nid);
3126                         const struct cpumask *mask;
3127
3128                         mask = cpumask_of_node(pgdat->node_id);
3129
3130                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3131                                 /* One of our CPUs online: restore mask */
3132                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3133                 }
3134         }
3135         return NOTIFY_OK;
3136 }
3137
3138 /*
3139  * This kswapd start function will be called by init and node-hot-add.
3140  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3141  */
3142 int kswapd_run(int nid)
3143 {
3144         pg_data_t *pgdat = NODE_DATA(nid);
3145         int ret = 0;
3146
3147         if (pgdat->kswapd)
3148                 return 0;
3149
3150         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3151         if (IS_ERR(pgdat->kswapd)) {
3152                 /* failure at boot is fatal */
3153                 BUG_ON(system_state == SYSTEM_BOOTING);
3154                 printk("Failed to start kswapd on node %d\n",nid);
3155                 ret = -1;
3156         }
3157         return ret;
3158 }
3159
3160 /*
3161  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3162  * hold lock_memory_hotplug().
3163  */
3164 void kswapd_stop(int nid)
3165 {
3166         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3167
3168         if (kswapd) {
3169                 kthread_stop(kswapd);
3170                 NODE_DATA(nid)->kswapd = NULL;
3171         }
3172 }
3173
3174 static int __init kswapd_init(void)
3175 {
3176         int nid;
3177
3178         swap_setup();
3179         for_each_node_state(nid, N_HIGH_MEMORY)
3180                 kswapd_run(nid);
3181         hotcpu_notifier(cpu_callback, 0);
3182         return 0;
3183 }
3184
3185 module_init(kswapd_init)
3186
3187 #ifdef CONFIG_NUMA
3188 /*
3189  * Zone reclaim mode
3190  *
3191  * If non-zero call zone_reclaim when the number of free pages falls below
3192  * the watermarks.
3193  */
3194 int zone_reclaim_mode __read_mostly;
3195
3196 #define RECLAIM_OFF 0
3197 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3198 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3199 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3200
3201 /*
3202  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3203  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3204  * a zone.
3205  */
3206 #define ZONE_RECLAIM_PRIORITY 4
3207
3208 /*
3209  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3210  * occur.
3211  */
3212 int sysctl_min_unmapped_ratio = 1;
3213
3214 /*
3215  * If the number of slab pages in a zone grows beyond this percentage then
3216  * slab reclaim needs to occur.
3217  */
3218 int sysctl_min_slab_ratio = 5;
3219
3220 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3221 {
3222         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3223         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3224                 zone_page_state(zone, NR_ACTIVE_FILE);
3225
3226         /*
3227          * It's possible for there to be more file mapped pages than
3228          * accounted for by the pages on the file LRU lists because
3229          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3230          */
3231         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3232 }
3233
3234 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3235 static long zone_pagecache_reclaimable(struct zone *zone)
3236 {
3237         long nr_pagecache_reclaimable;
3238         long delta = 0;
3239
3240         /*
3241          * If RECLAIM_SWAP is set, then all file pages are considered
3242          * potentially reclaimable. Otherwise, we have to worry about
3243          * pages like swapcache and zone_unmapped_file_pages() provides
3244          * a better estimate
3245          */
3246         if (zone_reclaim_mode & RECLAIM_SWAP)
3247                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3248         else
3249                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3250
3251         /* If we can't clean pages, remove dirty pages from consideration */
3252         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3253                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3254
3255         /* Watch for any possible underflows due to delta */
3256         if (unlikely(delta > nr_pagecache_reclaimable))
3257                 delta = nr_pagecache_reclaimable;
3258
3259         return nr_pagecache_reclaimable - delta;
3260 }
3261
3262 /*
3263  * Try to free up some pages from this zone through reclaim.
3264  */
3265 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3266 {
3267         /* Minimum pages needed in order to stay on node */
3268         const unsigned long nr_pages = 1 << order;
3269         struct task_struct *p = current;
3270         struct reclaim_state reclaim_state;
3271         int priority;
3272         struct scan_control sc = {
3273                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3274                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3275                 .may_swap = 1,
3276                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3277                                        SWAP_CLUSTER_MAX),
3278                 .gfp_mask = gfp_mask,
3279                 .order = order,
3280         };
3281         struct shrink_control shrink = {
3282                 .gfp_mask = sc.gfp_mask,
3283         };
3284         unsigned long nr_slab_pages0, nr_slab_pages1;
3285
3286         cond_resched();
3287         /*
3288          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3289          * and we also need to be able to write out pages for RECLAIM_WRITE
3290          * and RECLAIM_SWAP.
3291          */
3292         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3293         lockdep_set_current_reclaim_state(gfp_mask);
3294         reclaim_state.reclaimed_slab = 0;
3295         p->reclaim_state = &reclaim_state;
3296
3297         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3298                 /*
3299                  * Free memory by calling shrink zone with increasing
3300                  * priorities until we have enough memory freed.
3301                  */
3302                 priority = ZONE_RECLAIM_PRIORITY;
3303                 do {
3304                         shrink_zone(priority, zone, &sc);
3305                         priority--;
3306                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3307         }
3308
3309         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3310         if (nr_slab_pages0 > zone->min_slab_pages) {
3311                 /*
3312                  * shrink_slab() does not currently allow us to determine how
3313                  * many pages were freed in this zone. So we take the current
3314                  * number of slab pages and shake the slab until it is reduced
3315                  * by the same nr_pages that we used for reclaiming unmapped
3316                  * pages.
3317                  *
3318                  * Note that shrink_slab will free memory on all zones and may
3319                  * take a long time.
3320                  */
3321                 for (;;) {
3322                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3323
3324                         /* No reclaimable slab or very low memory pressure */
3325                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3326                                 break;
3327
3328                         /* Freed enough memory */
3329                         nr_slab_pages1 = zone_page_state(zone,
3330                                                         NR_SLAB_RECLAIMABLE);
3331                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3332                                 break;
3333                 }
3334
3335                 /*
3336                  * Update nr_reclaimed by the number of slab pages we
3337                  * reclaimed from this zone.
3338                  */
3339                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3340                 if (nr_slab_pages1 < nr_slab_pages0)
3341                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3342         }
3343
3344         p->reclaim_state = NULL;
3345         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3346         lockdep_clear_current_reclaim_state();
3347         return sc.nr_reclaimed >= nr_pages;
3348 }
3349
3350 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3351 {
3352         int node_id;
3353         int ret;
3354
3355         /*
3356          * Zone reclaim reclaims unmapped file backed pages and
3357          * slab pages if we are over the defined limits.
3358          *
3359          * A small portion of unmapped file backed pages is needed for
3360          * file I/O otherwise pages read by file I/O will be immediately
3361          * thrown out if the zone is overallocated. So we do not reclaim
3362          * if less than a specified percentage of the zone is used by
3363          * unmapped file backed pages.
3364          */
3365         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3366             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3367                 return ZONE_RECLAIM_FULL;
3368
3369         if (zone->all_unreclaimable)
3370                 return ZONE_RECLAIM_FULL;
3371
3372         /*
3373          * Do not scan if the allocation should not be delayed.
3374          */
3375         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3376                 return ZONE_RECLAIM_NOSCAN;
3377
3378         /*
3379          * Only run zone reclaim on the local zone or on zones that do not
3380          * have associated processors. This will favor the local processor
3381          * over remote processors and spread off node memory allocations
3382          * as wide as possible.
3383          */
3384         node_id = zone_to_nid(zone);
3385         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3386                 return ZONE_RECLAIM_NOSCAN;
3387
3388         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3389                 return ZONE_RECLAIM_NOSCAN;
3390
3391         ret = __zone_reclaim(zone, gfp_mask, order);
3392         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3393
3394         if (!ret)
3395                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3396
3397         return ret;
3398 }
3399 #endif
3400
3401 /*
3402  * page_evictable - test whether a page is evictable
3403  * @page: the page to test
3404  * @vma: the VMA in which the page is or will be mapped, may be NULL
3405  *
3406  * Test whether page is evictable--i.e., should be placed on active/inactive
3407  * lists vs unevictable list.  The vma argument is !NULL when called from the
3408  * fault path to determine how to instantate a new page.
3409  *
3410  * Reasons page might not be evictable:
3411  * (1) page's mapping marked unevictable
3412  * (2) page is part of an mlocked VMA
3413  *
3414  */
3415 int page_evictable(struct page *page, struct vm_area_struct *vma)
3416 {
3417
3418         if (mapping_unevictable(page_mapping(page)))
3419                 return 0;
3420
3421         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3422                 return 0;
3423
3424         return 1;
3425 }
3426
3427 #ifdef CONFIG_SHMEM
3428 /**
3429  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3430  * @pages:      array of pages to check
3431  * @nr_pages:   number of pages to check
3432  *
3433  * Checks pages for evictability and moves them to the appropriate lru list.
3434  *
3435  * This function is only used for SysV IPC SHM_UNLOCK.
3436  */
3437 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3438 {
3439         struct zone *zone = NULL;
3440         int pgscanned = 0;
3441         int pgrescued = 0;
3442         int i;
3443
3444         for (i = 0; i < nr_pages; i++) {
3445                 struct page *page = pages[i];
3446                 struct zone *pagezone;
3447
3448                 pgscanned++;
3449                 pagezone = page_zone(page);
3450                 if (pagezone != zone) {
3451                         if (zone)
3452                                 spin_unlock_irq(&zone->lru_lock);
3453                         zone = pagezone;
3454                         spin_lock_irq(&zone->lru_lock);
3455                 }
3456
3457                 if (!PageLRU(page) || !PageUnevictable(page))
3458                         continue;
3459
3460                 if (page_evictable(page, NULL)) {
3461                         enum lru_list lru = page_lru_base_type(page);
3462
3463                         VM_BUG_ON(PageActive(page));
3464                         ClearPageUnevictable(page);
3465                         __dec_zone_state(zone, NR_UNEVICTABLE);
3466                         list_move(&page->lru, &zone->lru[lru].list);
3467                         mem_cgroup_move_lists(page, LRU_UNEVICTABLE, lru);
3468                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3469                         pgrescued++;
3470                 }
3471         }
3472
3473         if (zone) {
3474                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3475                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3476                 spin_unlock_irq(&zone->lru_lock);
3477         }
3478 }
3479 #endif /* CONFIG_SHMEM */
3480
3481 static void warn_scan_unevictable_pages(void)
3482 {
3483         printk_once(KERN_WARNING
3484                     "The scan_unevictable_pages sysctl/node-interface has been "
3485                     "disabled for lack of a legitimate use case.  If you have "
3486                     "one, please send an email to linux-mm@kvack.org.\n");
3487 }
3488
3489 /*
3490  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3491  * all nodes' unevictable lists for evictable pages
3492  */
3493 unsigned long scan_unevictable_pages;
3494
3495 int scan_unevictable_handler(struct ctl_table *table, int write,
3496                            void __user *buffer,
3497                            size_t *length, loff_t *ppos)
3498 {
3499         warn_scan_unevictable_pages();
3500         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3501         scan_unevictable_pages = 0;
3502         return 0;
3503 }
3504
3505 #ifdef CONFIG_NUMA
3506 /*
3507  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3508  * a specified node's per zone unevictable lists for evictable pages.
3509  */
3510
3511 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3512                                           struct sysdev_attribute *attr,
3513                                           char *buf)
3514 {
3515         warn_scan_unevictable_pages();
3516         return sprintf(buf, "0\n");     /* always zero; should fit... */
3517 }
3518
3519 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3520                                            struct sysdev_attribute *attr,
3521                                         const char *buf, size_t count)
3522 {
3523         warn_scan_unevictable_pages();
3524         return 1;
3525 }
3526
3527
3528 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3529                         read_scan_unevictable_node,
3530                         write_scan_unevictable_node);
3531
3532 int scan_unevictable_register_node(struct node *node)
3533 {
3534         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3535 }
3536
3537 void scan_unevictable_unregister_node(struct node *node)
3538 {
3539         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3540 }
3541 #endif