mm: compaction: make isolate_lru_page() filter-aware again
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         atomic_long_set(&shrinker->nr_in_batch, 0);
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 long total_scan;
251                 long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259                 if (max_pass <= 0)
260                         continue;
261
262                 /*
263                  * copy the current shrinker scan count into a local variable
264                  * and zero it so that other concurrent shrinker invocations
265                  * don't also do this scanning work.
266                  */
267                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269                 total_scan = nr;
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 if (total_scan > 0)
330                         new_nr = atomic_long_add_return(total_scan,
331                                         &shrinker->nr_in_batch);
332                 else
333                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock or AS_UNEVICTABLE clearing
637                  * (page is unlocked) make sure that if the other thread
638                  * does not observe our setting of PG_lru and fails
639                  * isolation/check_move_unevictable_pages,
640                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked() or shmem_lock().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageSwapBacked(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page)
719                         return PAGEREF_ACTIVATE;
720
721                 return PAGEREF_KEEP;
722         }
723
724         /* Reclaim if clean, defer dirty pages to writeback */
725         if (referenced_page && !PageSwapBacked(page))
726                 return PAGEREF_RECLAIM_CLEAN;
727
728         return PAGEREF_RECLAIM;
729 }
730
731 static noinline_for_stack void free_page_list(struct list_head *free_pages)
732 {
733         struct pagevec freed_pvec;
734         struct page *page, *tmp;
735
736         pagevec_init(&freed_pvec, 1);
737
738         list_for_each_entry_safe(page, tmp, free_pages, lru) {
739                 list_del(&page->lru);
740                 if (!pagevec_add(&freed_pvec, page)) {
741                         __pagevec_free(&freed_pvec);
742                         pagevec_reinit(&freed_pvec);
743                 }
744         }
745
746         pagevec_free(&freed_pvec);
747 }
748
749 /*
750  * shrink_page_list() returns the number of reclaimed pages
751  */
752 static unsigned long shrink_page_list(struct list_head *page_list,
753                                       struct zone *zone,
754                                       struct scan_control *sc,
755                                       int priority,
756                                       unsigned long *ret_nr_dirty,
757                                       unsigned long *ret_nr_writeback)
758 {
759         LIST_HEAD(ret_pages);
760         LIST_HEAD(free_pages);
761         int pgactivate = 0;
762         unsigned long nr_dirty = 0;
763         unsigned long nr_congested = 0;
764         unsigned long nr_reclaimed = 0;
765         unsigned long nr_writeback = 0;
766
767         cond_resched();
768
769         while (!list_empty(page_list)) {
770                 enum page_references references;
771                 struct address_space *mapping;
772                 struct page *page;
773                 int may_enter_fs;
774
775                 cond_resched();
776
777                 page = lru_to_page(page_list);
778                 list_del(&page->lru);
779
780                 if (!trylock_page(page))
781                         goto keep;
782
783                 VM_BUG_ON(PageActive(page));
784                 VM_BUG_ON(page_zone(page) != zone);
785
786                 sc->nr_scanned++;
787
788                 if (unlikely(!page_evictable(page, NULL)))
789                         goto cull_mlocked;
790
791                 if (!sc->may_unmap && page_mapped(page))
792                         goto keep_locked;
793
794                 /* Double the slab pressure for mapped and swapcache pages */
795                 if (page_mapped(page) || PageSwapCache(page))
796                         sc->nr_scanned++;
797
798                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
799                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
800
801                 if (PageWriteback(page)) {
802                         nr_writeback++;
803                         /*
804                          * Synchronous reclaim cannot queue pages for
805                          * writeback due to the possibility of stack overflow
806                          * but if it encounters a page under writeback, wait
807                          * for the IO to complete.
808                          */
809                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810                             may_enter_fs)
811                                 wait_on_page_writeback(page);
812                         else {
813                                 unlock_page(page);
814                                 goto keep_lumpy;
815                         }
816                 }
817
818                 references = page_check_references(page, sc);
819                 switch (references) {
820                 case PAGEREF_ACTIVATE:
821                         goto activate_locked;
822                 case PAGEREF_KEEP:
823                         goto keep_locked;
824                 case PAGEREF_RECLAIM:
825                 case PAGEREF_RECLAIM_CLEAN:
826                         ; /* try to reclaim the page below */
827                 }
828
829                 /*
830                  * Anonymous process memory has backing store?
831                  * Try to allocate it some swap space here.
832                  */
833                 if (PageAnon(page) && !PageSwapCache(page)) {
834                         if (!(sc->gfp_mask & __GFP_IO))
835                                 goto keep_locked;
836                         if (!add_to_swap(page))
837                                 goto activate_locked;
838                         may_enter_fs = 1;
839                 }
840
841                 mapping = page_mapping(page);
842
843                 /*
844                  * The page is mapped into the page tables of one or more
845                  * processes. Try to unmap it here.
846                  */
847                 if (page_mapped(page) && mapping) {
848                         switch (try_to_unmap(page, TTU_UNMAP)) {
849                         case SWAP_FAIL:
850                                 goto activate_locked;
851                         case SWAP_AGAIN:
852                                 goto keep_locked;
853                         case SWAP_MLOCK:
854                                 goto cull_mlocked;
855                         case SWAP_SUCCESS:
856                                 ; /* try to free the page below */
857                         }
858                 }
859
860                 if (PageDirty(page)) {
861                         nr_dirty++;
862
863                         /*
864                          * Only kswapd can writeback filesystem pages to
865                          * avoid risk of stack overflow but do not writeback
866                          * unless under significant pressure.
867                          */
868                         if (page_is_file_cache(page) &&
869                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870                                 /*
871                                  * Immediately reclaim when written back.
872                                  * Similar in principal to deactivate_page()
873                                  * except we already have the page isolated
874                                  * and know it's dirty
875                                  */
876                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
877                                 SetPageReclaim(page);
878
879                                 goto keep_locked;
880                         }
881
882                         if (references == PAGEREF_RECLAIM_CLEAN)
883                                 goto keep_locked;
884                         if (!may_enter_fs)
885                                 goto keep_locked;
886                         if (!sc->may_writepage)
887                                 goto keep_locked;
888
889                         /* Page is dirty, try to write it out here */
890                         switch (pageout(page, mapping, sc)) {
891                         case PAGE_KEEP:
892                                 nr_congested++;
893                                 goto keep_locked;
894                         case PAGE_ACTIVATE:
895                                 goto activate_locked;
896                         case PAGE_SUCCESS:
897                                 if (PageWriteback(page))
898                                         goto keep_lumpy;
899                                 if (PageDirty(page))
900                                         goto keep;
901
902                                 /*
903                                  * A synchronous write - probably a ramdisk.  Go
904                                  * ahead and try to reclaim the page.
905                                  */
906                                 if (!trylock_page(page))
907                                         goto keep;
908                                 if (PageDirty(page) || PageWriteback(page))
909                                         goto keep_locked;
910                                 mapping = page_mapping(page);
911                         case PAGE_CLEAN:
912                                 ; /* try to free the page below */
913                         }
914                 }
915
916                 /*
917                  * If the page has buffers, try to free the buffer mappings
918                  * associated with this page. If we succeed we try to free
919                  * the page as well.
920                  *
921                  * We do this even if the page is PageDirty().
922                  * try_to_release_page() does not perform I/O, but it is
923                  * possible for a page to have PageDirty set, but it is actually
924                  * clean (all its buffers are clean).  This happens if the
925                  * buffers were written out directly, with submit_bh(). ext3
926                  * will do this, as well as the blockdev mapping.
927                  * try_to_release_page() will discover that cleanness and will
928                  * drop the buffers and mark the page clean - it can be freed.
929                  *
930                  * Rarely, pages can have buffers and no ->mapping.  These are
931                  * the pages which were not successfully invalidated in
932                  * truncate_complete_page().  We try to drop those buffers here
933                  * and if that worked, and the page is no longer mapped into
934                  * process address space (page_count == 1) it can be freed.
935                  * Otherwise, leave the page on the LRU so it is swappable.
936                  */
937                 if (page_has_private(page)) {
938                         if (!try_to_release_page(page, sc->gfp_mask))
939                                 goto activate_locked;
940                         if (!mapping && page_count(page) == 1) {
941                                 unlock_page(page);
942                                 if (put_page_testzero(page))
943                                         goto free_it;
944                                 else {
945                                         /*
946                                          * rare race with speculative reference.
947                                          * the speculative reference will free
948                                          * this page shortly, so we may
949                                          * increment nr_reclaimed here (and
950                                          * leave it off the LRU).
951                                          */
952                                         nr_reclaimed++;
953                                         continue;
954                                 }
955                         }
956                 }
957
958                 if (!mapping || !__remove_mapping(mapping, page))
959                         goto keep_locked;
960
961                 /*
962                  * At this point, we have no other references and there is
963                  * no way to pick any more up (removed from LRU, removed
964                  * from pagecache). Can use non-atomic bitops now (and
965                  * we obviously don't have to worry about waking up a process
966                  * waiting on the page lock, because there are no references.
967                  */
968                 __clear_page_locked(page);
969 free_it:
970                 nr_reclaimed++;
971
972                 /*
973                  * Is there need to periodically free_page_list? It would
974                  * appear not as the counts should be low
975                  */
976                 list_add(&page->lru, &free_pages);
977                 continue;
978
979 cull_mlocked:
980                 if (PageSwapCache(page))
981                         try_to_free_swap(page);
982                 unlock_page(page);
983                 putback_lru_page(page);
984                 reset_reclaim_mode(sc);
985                 continue;
986
987 activate_locked:
988                 /* Not a candidate for swapping, so reclaim swap space. */
989                 if (PageSwapCache(page) && vm_swap_full())
990                         try_to_free_swap(page);
991                 VM_BUG_ON(PageActive(page));
992                 SetPageActive(page);
993                 pgactivate++;
994 keep_locked:
995                 unlock_page(page);
996 keep:
997                 reset_reclaim_mode(sc);
998 keep_lumpy:
999                 list_add(&page->lru, &ret_pages);
1000                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1001         }
1002
1003         /*
1004          * Tag a zone as congested if all the dirty pages encountered were
1005          * backed by a congested BDI. In this case, reclaimers should just
1006          * back off and wait for congestion to clear because further reclaim
1007          * will encounter the same problem
1008          */
1009         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1010                 zone_set_flag(zone, ZONE_CONGESTED);
1011
1012         free_page_list(&free_pages);
1013
1014         list_splice(&ret_pages, page_list);
1015         count_vm_events(PGACTIVATE, pgactivate);
1016         *ret_nr_dirty += nr_dirty;
1017         *ret_nr_writeback += nr_writeback;
1018         return nr_reclaimed;
1019 }
1020
1021 /*
1022  * Attempt to remove the specified page from its LRU.  Only take this page
1023  * if it is of the appropriate PageActive status.  Pages which are being
1024  * freed elsewhere are also ignored.
1025  *
1026  * page:        page to consider
1027  * mode:        one of the LRU isolation modes defined above
1028  *
1029  * returns 0 on success, -ve errno on failure.
1030  */
1031 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1032 {
1033         bool all_lru_mode;
1034         int ret = -EINVAL;
1035
1036         /* Only take pages on the LRU. */
1037         if (!PageLRU(page))
1038                 return ret;
1039
1040         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1041                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1042
1043         /*
1044          * When checking the active state, we need to be sure we are
1045          * dealing with comparible boolean values.  Take the logical not
1046          * of each.
1047          */
1048         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1049                 return ret;
1050
1051         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1052                 return ret;
1053
1054         /*
1055          * When this function is being called for lumpy reclaim, we
1056          * initially look into all LRU pages, active, inactive and
1057          * unevictable; only give shrink_page_list evictable pages.
1058          */
1059         if (PageUnevictable(page))
1060                 return ret;
1061
1062         ret = -EBUSY;
1063
1064         /*
1065          * To minimise LRU disruption, the caller can indicate that it only
1066          * wants to isolate pages it will be able to operate on without
1067          * blocking - clean pages for the most part.
1068          *
1069          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1070          * is used by reclaim when it is cannot write to backing storage
1071          *
1072          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1073          * that it is possible to migrate without blocking
1074          */
1075         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1076                 /* All the caller can do on PageWriteback is block */
1077                 if (PageWriteback(page))
1078                         return ret;
1079
1080                 if (PageDirty(page)) {
1081                         struct address_space *mapping;
1082
1083                         /* ISOLATE_CLEAN means only clean pages */
1084                         if (mode & ISOLATE_CLEAN)
1085                                 return ret;
1086
1087                         /*
1088                          * Only pages without mappings or that have a
1089                          * ->migratepage callback are possible to migrate
1090                          * without blocking
1091                          */
1092                         mapping = page_mapping(page);
1093                         if (mapping && !mapping->a_ops->migratepage)
1094                                 return ret;
1095                 }
1096         }
1097
1098         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1099                 return ret;
1100
1101         if (likely(get_page_unless_zero(page))) {
1102                 /*
1103                  * Be careful not to clear PageLRU until after we're
1104                  * sure the page is not being freed elsewhere -- the
1105                  * page release code relies on it.
1106                  */
1107                 ClearPageLRU(page);
1108                 ret = 0;
1109         }
1110
1111         return ret;
1112 }
1113
1114 /*
1115  * zone->lru_lock is heavily contended.  Some of the functions that
1116  * shrink the lists perform better by taking out a batch of pages
1117  * and working on them outside the LRU lock.
1118  *
1119  * For pagecache intensive workloads, this function is the hottest
1120  * spot in the kernel (apart from copy_*_user functions).
1121  *
1122  * Appropriate locks must be held before calling this function.
1123  *
1124  * @nr_to_scan: The number of pages to look through on the list.
1125  * @src:        The LRU list to pull pages off.
1126  * @dst:        The temp list to put pages on to.
1127  * @scanned:    The number of pages that were scanned.
1128  * @order:      The caller's attempted allocation order
1129  * @mode:       One of the LRU isolation modes
1130  * @file:       True [1] if isolating file [!anon] pages
1131  *
1132  * returns how many pages were moved onto *@dst.
1133  */
1134 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1135                 struct list_head *src, struct list_head *dst,
1136                 unsigned long *scanned, int order, isolate_mode_t mode,
1137                 int file)
1138 {
1139         unsigned long nr_taken = 0;
1140         unsigned long nr_lumpy_taken = 0;
1141         unsigned long nr_lumpy_dirty = 0;
1142         unsigned long nr_lumpy_failed = 0;
1143         unsigned long scan;
1144
1145         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1146                 struct page *page;
1147                 unsigned long pfn;
1148                 unsigned long end_pfn;
1149                 unsigned long page_pfn;
1150                 int zone_id;
1151
1152                 page = lru_to_page(src);
1153                 prefetchw_prev_lru_page(page, src, flags);
1154
1155                 VM_BUG_ON(!PageLRU(page));
1156
1157                 switch (__isolate_lru_page(page, mode, file)) {
1158                 case 0:
1159                         list_move(&page->lru, dst);
1160                         mem_cgroup_del_lru(page);
1161                         nr_taken += hpage_nr_pages(page);
1162                         break;
1163
1164                 case -EBUSY:
1165                         /* else it is being freed elsewhere */
1166                         list_move(&page->lru, src);
1167                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1168                         continue;
1169
1170                 default:
1171                         BUG();
1172                 }
1173
1174                 if (!order)
1175                         continue;
1176
1177                 /*
1178                  * Attempt to take all pages in the order aligned region
1179                  * surrounding the tag page.  Only take those pages of
1180                  * the same active state as that tag page.  We may safely
1181                  * round the target page pfn down to the requested order
1182                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1183                  * where that page is in a different zone we will detect
1184                  * it from its zone id and abort this block scan.
1185                  */
1186                 zone_id = page_zone_id(page);
1187                 page_pfn = page_to_pfn(page);
1188                 pfn = page_pfn & ~((1 << order) - 1);
1189                 end_pfn = pfn + (1 << order);
1190                 for (; pfn < end_pfn; pfn++) {
1191                         struct page *cursor_page;
1192
1193                         /* The target page is in the block, ignore it. */
1194                         if (unlikely(pfn == page_pfn))
1195                                 continue;
1196
1197                         /* Avoid holes within the zone. */
1198                         if (unlikely(!pfn_valid_within(pfn)))
1199                                 break;
1200
1201                         cursor_page = pfn_to_page(pfn);
1202
1203                         /* Check that we have not crossed a zone boundary. */
1204                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1205                                 break;
1206
1207                         /*
1208                          * If we don't have enough swap space, reclaiming of
1209                          * anon page which don't already have a swap slot is
1210                          * pointless.
1211                          */
1212                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1213                             !PageSwapCache(cursor_page))
1214                                 break;
1215
1216                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1217                                 list_move(&cursor_page->lru, dst);
1218                                 mem_cgroup_del_lru(cursor_page);
1219                                 nr_taken += hpage_nr_pages(page);
1220                                 nr_lumpy_taken++;
1221                                 if (PageDirty(cursor_page))
1222                                         nr_lumpy_dirty++;
1223                                 scan++;
1224                         } else {
1225                                 /*
1226                                  * Check if the page is freed already.
1227                                  *
1228                                  * We can't use page_count() as that
1229                                  * requires compound_head and we don't
1230                                  * have a pin on the page here. If a
1231                                  * page is tail, we may or may not
1232                                  * have isolated the head, so assume
1233                                  * it's not free, it'd be tricky to
1234                                  * track the head status without a
1235                                  * page pin.
1236                                  */
1237                                 if (!PageTail(cursor_page) &&
1238                                     !atomic_read(&cursor_page->_count))
1239                                         continue;
1240                                 break;
1241                         }
1242                 }
1243
1244                 /* If we break out of the loop above, lumpy reclaim failed */
1245                 if (pfn < end_pfn)
1246                         nr_lumpy_failed++;
1247         }
1248
1249         *scanned = scan;
1250
1251         trace_mm_vmscan_lru_isolate(order,
1252                         nr_to_scan, scan,
1253                         nr_taken,
1254                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1255                         mode);
1256         return nr_taken;
1257 }
1258
1259 static unsigned long isolate_pages_global(unsigned long nr,
1260                                         struct list_head *dst,
1261                                         unsigned long *scanned, int order,
1262                                         isolate_mode_t mode,
1263                                         struct zone *z, int active, int file)
1264 {
1265         int lru = LRU_BASE;
1266         if (active)
1267                 lru += LRU_ACTIVE;
1268         if (file)
1269                 lru += LRU_FILE;
1270         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1271                                                                 mode, file);
1272 }
1273
1274 /*
1275  * clear_active_flags() is a helper for shrink_active_list(), clearing
1276  * any active bits from the pages in the list.
1277  */
1278 static unsigned long clear_active_flags(struct list_head *page_list,
1279                                         unsigned int *count)
1280 {
1281         int nr_active = 0;
1282         int lru;
1283         struct page *page;
1284
1285         list_for_each_entry(page, page_list, lru) {
1286                 int numpages = hpage_nr_pages(page);
1287                 lru = page_lru_base_type(page);
1288                 if (PageActive(page)) {
1289                         lru += LRU_ACTIVE;
1290                         ClearPageActive(page);
1291                         nr_active += numpages;
1292                 }
1293                 if (count)
1294                         count[lru] += numpages;
1295         }
1296
1297         return nr_active;
1298 }
1299
1300 /**
1301  * isolate_lru_page - tries to isolate a page from its LRU list
1302  * @page: page to isolate from its LRU list
1303  *
1304  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1305  * vmstat statistic corresponding to whatever LRU list the page was on.
1306  *
1307  * Returns 0 if the page was removed from an LRU list.
1308  * Returns -EBUSY if the page was not on an LRU list.
1309  *
1310  * The returned page will have PageLRU() cleared.  If it was found on
1311  * the active list, it will have PageActive set.  If it was found on
1312  * the unevictable list, it will have the PageUnevictable bit set. That flag
1313  * may need to be cleared by the caller before letting the page go.
1314  *
1315  * The vmstat statistic corresponding to the list on which the page was
1316  * found will be decremented.
1317  *
1318  * Restrictions:
1319  * (1) Must be called with an elevated refcount on the page. This is a
1320  *     fundamentnal difference from isolate_lru_pages (which is called
1321  *     without a stable reference).
1322  * (2) the lru_lock must not be held.
1323  * (3) interrupts must be enabled.
1324  */
1325 int isolate_lru_page(struct page *page)
1326 {
1327         int ret = -EBUSY;
1328
1329         VM_BUG_ON(!page_count(page));
1330
1331         if (PageLRU(page)) {
1332                 struct zone *zone = page_zone(page);
1333
1334                 spin_lock_irq(&zone->lru_lock);
1335                 if (PageLRU(page)) {
1336                         int lru = page_lru(page);
1337                         ret = 0;
1338                         get_page(page);
1339                         ClearPageLRU(page);
1340
1341                         del_page_from_lru_list(zone, page, lru);
1342                 }
1343                 spin_unlock_irq(&zone->lru_lock);
1344         }
1345         return ret;
1346 }
1347
1348 /*
1349  * Are there way too many processes in the direct reclaim path already?
1350  */
1351 static int too_many_isolated(struct zone *zone, int file,
1352                 struct scan_control *sc)
1353 {
1354         unsigned long inactive, isolated;
1355
1356         if (current_is_kswapd())
1357                 return 0;
1358
1359         if (!scanning_global_lru(sc))
1360                 return 0;
1361
1362         if (file) {
1363                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1364                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1365         } else {
1366                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1367                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1368         }
1369
1370         return isolated > inactive;
1371 }
1372
1373 /*
1374  * TODO: Try merging with migrations version of putback_lru_pages
1375  */
1376 static noinline_for_stack void
1377 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1378                                 unsigned long nr_anon, unsigned long nr_file,
1379                                 struct list_head *page_list)
1380 {
1381         struct page *page;
1382         struct pagevec pvec;
1383         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1384
1385         pagevec_init(&pvec, 1);
1386
1387         /*
1388          * Put back any unfreeable pages.
1389          */
1390         spin_lock(&zone->lru_lock);
1391         while (!list_empty(page_list)) {
1392                 int lru;
1393                 page = lru_to_page(page_list);
1394                 VM_BUG_ON(PageLRU(page));
1395                 list_del(&page->lru);
1396                 if (unlikely(!page_evictable(page, NULL))) {
1397                         spin_unlock_irq(&zone->lru_lock);
1398                         putback_lru_page(page);
1399                         spin_lock_irq(&zone->lru_lock);
1400                         continue;
1401                 }
1402                 SetPageLRU(page);
1403                 lru = page_lru(page);
1404                 add_page_to_lru_list(zone, page, lru);
1405                 if (is_active_lru(lru)) {
1406                         int file = is_file_lru(lru);
1407                         int numpages = hpage_nr_pages(page);
1408                         reclaim_stat->recent_rotated[file] += numpages;
1409                 }
1410                 if (!pagevec_add(&pvec, page)) {
1411                         spin_unlock_irq(&zone->lru_lock);
1412                         __pagevec_release(&pvec);
1413                         spin_lock_irq(&zone->lru_lock);
1414                 }
1415         }
1416         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1417         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1418
1419         spin_unlock_irq(&zone->lru_lock);
1420         pagevec_release(&pvec);
1421 }
1422
1423 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1424                                         struct scan_control *sc,
1425                                         unsigned long *nr_anon,
1426                                         unsigned long *nr_file,
1427                                         struct list_head *isolated_list)
1428 {
1429         unsigned long nr_active;
1430         unsigned int count[NR_LRU_LISTS] = { 0, };
1431         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1432
1433         nr_active = clear_active_flags(isolated_list, count);
1434         __count_vm_events(PGDEACTIVATE, nr_active);
1435
1436         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1437                               -count[LRU_ACTIVE_FILE]);
1438         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1439                               -count[LRU_INACTIVE_FILE]);
1440         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1441                               -count[LRU_ACTIVE_ANON]);
1442         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1443                               -count[LRU_INACTIVE_ANON]);
1444
1445         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1446         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1447         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1448         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1449
1450         reclaim_stat->recent_scanned[0] += *nr_anon;
1451         reclaim_stat->recent_scanned[1] += *nr_file;
1452 }
1453
1454 /*
1455  * Returns true if a direct reclaim should wait on pages under writeback.
1456  *
1457  * If we are direct reclaiming for contiguous pages and we do not reclaim
1458  * everything in the list, try again and wait for writeback IO to complete.
1459  * This will stall high-order allocations noticeably. Only do that when really
1460  * need to free the pages under high memory pressure.
1461  */
1462 static inline bool should_reclaim_stall(unsigned long nr_taken,
1463                                         unsigned long nr_freed,
1464                                         int priority,
1465                                         struct scan_control *sc)
1466 {
1467         int lumpy_stall_priority;
1468
1469         /* kswapd should not stall on sync IO */
1470         if (current_is_kswapd())
1471                 return false;
1472
1473         /* Only stall on lumpy reclaim */
1474         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1475                 return false;
1476
1477         /* If we have reclaimed everything on the isolated list, no stall */
1478         if (nr_freed == nr_taken)
1479                 return false;
1480
1481         /*
1482          * For high-order allocations, there are two stall thresholds.
1483          * High-cost allocations stall immediately where as lower
1484          * order allocations such as stacks require the scanning
1485          * priority to be much higher before stalling.
1486          */
1487         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1488                 lumpy_stall_priority = DEF_PRIORITY;
1489         else
1490                 lumpy_stall_priority = DEF_PRIORITY / 3;
1491
1492         return priority <= lumpy_stall_priority;
1493 }
1494
1495 /*
1496  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1497  * of reclaimed pages
1498  */
1499 static noinline_for_stack unsigned long
1500 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1501                         struct scan_control *sc, int priority, int file)
1502 {
1503         LIST_HEAD(page_list);
1504         unsigned long nr_scanned;
1505         unsigned long nr_reclaimed = 0;
1506         unsigned long nr_taken;
1507         unsigned long nr_anon;
1508         unsigned long nr_file;
1509         unsigned long nr_dirty = 0;
1510         unsigned long nr_writeback = 0;
1511         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1512
1513         while (unlikely(too_many_isolated(zone, file, sc))) {
1514                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1515
1516                 /* We are about to die and free our memory. Return now. */
1517                 if (fatal_signal_pending(current))
1518                         return SWAP_CLUSTER_MAX;
1519         }
1520
1521         set_reclaim_mode(priority, sc, false);
1522         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1523                 reclaim_mode |= ISOLATE_ACTIVE;
1524
1525         lru_add_drain();
1526
1527         if (!sc->may_unmap)
1528                 reclaim_mode |= ISOLATE_UNMAPPED;
1529         if (!sc->may_writepage)
1530                 reclaim_mode |= ISOLATE_CLEAN;
1531
1532         spin_lock_irq(&zone->lru_lock);
1533
1534         if (scanning_global_lru(sc)) {
1535                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1536                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1537                 zone->pages_scanned += nr_scanned;
1538                 if (current_is_kswapd())
1539                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1540                                                nr_scanned);
1541                 else
1542                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1543                                                nr_scanned);
1544         } else {
1545                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1546                         &nr_scanned, sc->order, reclaim_mode, zone,
1547                         sc->mem_cgroup, 0, file);
1548                 /*
1549                  * mem_cgroup_isolate_pages() keeps track of
1550                  * scanned pages on its own.
1551                  */
1552         }
1553
1554         if (nr_taken == 0) {
1555                 spin_unlock_irq(&zone->lru_lock);
1556                 return 0;
1557         }
1558
1559         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1560
1561         spin_unlock_irq(&zone->lru_lock);
1562
1563         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1564                                                 &nr_dirty, &nr_writeback);
1565
1566         /* Check if we should syncronously wait for writeback */
1567         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1568                 set_reclaim_mode(priority, sc, true);
1569                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1570                                         priority, &nr_dirty, &nr_writeback);
1571         }
1572
1573         local_irq_disable();
1574         if (current_is_kswapd())
1575                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1576         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1577
1578         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1579
1580         /*
1581          * If reclaim is isolating dirty pages under writeback, it implies
1582          * that the long-lived page allocation rate is exceeding the page
1583          * laundering rate. Either the global limits are not being effective
1584          * at throttling processes due to the page distribution throughout
1585          * zones or there is heavy usage of a slow backing device. The
1586          * only option is to throttle from reclaim context which is not ideal
1587          * as there is no guarantee the dirtying process is throttled in the
1588          * same way balance_dirty_pages() manages.
1589          *
1590          * This scales the number of dirty pages that must be under writeback
1591          * before throttling depending on priority. It is a simple backoff
1592          * function that has the most effect in the range DEF_PRIORITY to
1593          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1594          * in trouble and reclaim is considered to be in trouble.
1595          *
1596          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1597          * DEF_PRIORITY-1  50% must be PageWriteback
1598          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1599          * ...
1600          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1601          *                     isolated page is PageWriteback
1602          */
1603         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1604                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1605
1606         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1607                 zone_idx(zone),
1608                 nr_scanned, nr_reclaimed,
1609                 priority,
1610                 trace_shrink_flags(file, sc->reclaim_mode));
1611         return nr_reclaimed;
1612 }
1613
1614 /*
1615  * This moves pages from the active list to the inactive list.
1616  *
1617  * We move them the other way if the page is referenced by one or more
1618  * processes, from rmap.
1619  *
1620  * If the pages are mostly unmapped, the processing is fast and it is
1621  * appropriate to hold zone->lru_lock across the whole operation.  But if
1622  * the pages are mapped, the processing is slow (page_referenced()) so we
1623  * should drop zone->lru_lock around each page.  It's impossible to balance
1624  * this, so instead we remove the pages from the LRU while processing them.
1625  * It is safe to rely on PG_active against the non-LRU pages in here because
1626  * nobody will play with that bit on a non-LRU page.
1627  *
1628  * The downside is that we have to touch page->_count against each page.
1629  * But we had to alter page->flags anyway.
1630  */
1631
1632 static void move_active_pages_to_lru(struct zone *zone,
1633                                      struct list_head *list,
1634                                      enum lru_list lru)
1635 {
1636         unsigned long pgmoved = 0;
1637         struct pagevec pvec;
1638         struct page *page;
1639
1640         pagevec_init(&pvec, 1);
1641
1642         while (!list_empty(list)) {
1643                 page = lru_to_page(list);
1644
1645                 VM_BUG_ON(PageLRU(page));
1646                 SetPageLRU(page);
1647
1648                 list_move(&page->lru, &zone->lru[lru].list);
1649                 mem_cgroup_add_lru_list(page, lru);
1650                 pgmoved += hpage_nr_pages(page);
1651
1652                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1653                         spin_unlock_irq(&zone->lru_lock);
1654                         if (buffer_heads_over_limit)
1655                                 pagevec_strip(&pvec);
1656                         __pagevec_release(&pvec);
1657                         spin_lock_irq(&zone->lru_lock);
1658                 }
1659         }
1660         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1661         if (!is_active_lru(lru))
1662                 __count_vm_events(PGDEACTIVATE, pgmoved);
1663 }
1664
1665 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1666                         struct scan_control *sc, int priority, int file)
1667 {
1668         unsigned long nr_taken;
1669         unsigned long pgscanned;
1670         unsigned long vm_flags;
1671         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1672         LIST_HEAD(l_active);
1673         LIST_HEAD(l_inactive);
1674         struct page *page;
1675         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1676         unsigned long nr_rotated = 0;
1677         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1678
1679         lru_add_drain();
1680
1681         if (!sc->may_unmap)
1682                 reclaim_mode |= ISOLATE_UNMAPPED;
1683         if (!sc->may_writepage)
1684                 reclaim_mode |= ISOLATE_CLEAN;
1685
1686         spin_lock_irq(&zone->lru_lock);
1687         if (scanning_global_lru(sc)) {
1688                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1689                                                 &pgscanned, sc->order,
1690                                                 reclaim_mode, zone,
1691                                                 1, file);
1692                 zone->pages_scanned += pgscanned;
1693         } else {
1694                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1695                                                 &pgscanned, sc->order,
1696                                                 reclaim_mode, zone,
1697                                                 sc->mem_cgroup, 1, file);
1698                 /*
1699                  * mem_cgroup_isolate_pages() keeps track of
1700                  * scanned pages on its own.
1701                  */
1702         }
1703
1704         reclaim_stat->recent_scanned[file] += nr_taken;
1705
1706         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1707         if (file)
1708                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1709         else
1710                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1711         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1712         spin_unlock_irq(&zone->lru_lock);
1713
1714         while (!list_empty(&l_hold)) {
1715                 cond_resched();
1716                 page = lru_to_page(&l_hold);
1717                 list_del(&page->lru);
1718
1719                 if (unlikely(!page_evictable(page, NULL))) {
1720                         putback_lru_page(page);
1721                         continue;
1722                 }
1723
1724                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1725                         nr_rotated += hpage_nr_pages(page);
1726                         /*
1727                          * Identify referenced, file-backed active pages and
1728                          * give them one more trip around the active list. So
1729                          * that executable code get better chances to stay in
1730                          * memory under moderate memory pressure.  Anon pages
1731                          * are not likely to be evicted by use-once streaming
1732                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1733                          * so we ignore them here.
1734                          */
1735                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1736                                 list_add(&page->lru, &l_active);
1737                                 continue;
1738                         }
1739                 }
1740
1741                 ClearPageActive(page);  /* we are de-activating */
1742                 list_add(&page->lru, &l_inactive);
1743         }
1744
1745         /*
1746          * Move pages back to the lru list.
1747          */
1748         spin_lock_irq(&zone->lru_lock);
1749         /*
1750          * Count referenced pages from currently used mappings as rotated,
1751          * even though only some of them are actually re-activated.  This
1752          * helps balance scan pressure between file and anonymous pages in
1753          * get_scan_ratio.
1754          */
1755         reclaim_stat->recent_rotated[file] += nr_rotated;
1756
1757         move_active_pages_to_lru(zone, &l_active,
1758                                                 LRU_ACTIVE + file * LRU_FILE);
1759         move_active_pages_to_lru(zone, &l_inactive,
1760                                                 LRU_BASE   + file * LRU_FILE);
1761         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1762         spin_unlock_irq(&zone->lru_lock);
1763 }
1764
1765 #ifdef CONFIG_SWAP
1766 static int inactive_anon_is_low_global(struct zone *zone)
1767 {
1768         unsigned long active, inactive;
1769
1770         active = zone_page_state(zone, NR_ACTIVE_ANON);
1771         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1772
1773         if (inactive * zone->inactive_ratio < active)
1774                 return 1;
1775
1776         return 0;
1777 }
1778
1779 /**
1780  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1781  * @zone: zone to check
1782  * @sc:   scan control of this context
1783  *
1784  * Returns true if the zone does not have enough inactive anon pages,
1785  * meaning some active anon pages need to be deactivated.
1786  */
1787 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1788 {
1789         int low;
1790
1791         /*
1792          * If we don't have swap space, anonymous page deactivation
1793          * is pointless.
1794          */
1795         if (!total_swap_pages)
1796                 return 0;
1797
1798         if (scanning_global_lru(sc))
1799                 low = inactive_anon_is_low_global(zone);
1800         else
1801                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1802         return low;
1803 }
1804 #else
1805 static inline int inactive_anon_is_low(struct zone *zone,
1806                                         struct scan_control *sc)
1807 {
1808         return 0;
1809 }
1810 #endif
1811
1812 static int inactive_file_is_low_global(struct zone *zone)
1813 {
1814         unsigned long active, inactive;
1815
1816         active = zone_page_state(zone, NR_ACTIVE_FILE);
1817         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1818
1819         return (active > inactive);
1820 }
1821
1822 /**
1823  * inactive_file_is_low - check if file pages need to be deactivated
1824  * @zone: zone to check
1825  * @sc:   scan control of this context
1826  *
1827  * When the system is doing streaming IO, memory pressure here
1828  * ensures that active file pages get deactivated, until more
1829  * than half of the file pages are on the inactive list.
1830  *
1831  * Once we get to that situation, protect the system's working
1832  * set from being evicted by disabling active file page aging.
1833  *
1834  * This uses a different ratio than the anonymous pages, because
1835  * the page cache uses a use-once replacement algorithm.
1836  */
1837 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1838 {
1839         int low;
1840
1841         if (scanning_global_lru(sc))
1842                 low = inactive_file_is_low_global(zone);
1843         else
1844                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1845         return low;
1846 }
1847
1848 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1849                                 int file)
1850 {
1851         if (file)
1852                 return inactive_file_is_low(zone, sc);
1853         else
1854                 return inactive_anon_is_low(zone, sc);
1855 }
1856
1857 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1858         struct zone *zone, struct scan_control *sc, int priority)
1859 {
1860         int file = is_file_lru(lru);
1861
1862         if (is_active_lru(lru)) {
1863                 if (inactive_list_is_low(zone, sc, file))
1864                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1865                 return 0;
1866         }
1867
1868         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1869 }
1870
1871 static int vmscan_swappiness(struct scan_control *sc)
1872 {
1873         if (scanning_global_lru(sc))
1874                 return vm_swappiness;
1875         return mem_cgroup_swappiness(sc->mem_cgroup);
1876 }
1877
1878 /*
1879  * Determine how aggressively the anon and file LRU lists should be
1880  * scanned.  The relative value of each set of LRU lists is determined
1881  * by looking at the fraction of the pages scanned we did rotate back
1882  * onto the active list instead of evict.
1883  *
1884  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1885  */
1886 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1887                                         unsigned long *nr, int priority)
1888 {
1889         unsigned long anon, file, free;
1890         unsigned long anon_prio, file_prio;
1891         unsigned long ap, fp;
1892         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1893         u64 fraction[2], denominator;
1894         enum lru_list l;
1895         int noswap = 0;
1896         bool force_scan = false;
1897
1898         /*
1899          * If the zone or memcg is small, nr[l] can be 0.  This
1900          * results in no scanning on this priority and a potential
1901          * priority drop.  Global direct reclaim can go to the next
1902          * zone and tends to have no problems. Global kswapd is for
1903          * zone balancing and it needs to scan a minimum amount. When
1904          * reclaiming for a memcg, a priority drop can cause high
1905          * latencies, so it's better to scan a minimum amount there as
1906          * well.
1907          */
1908         if (scanning_global_lru(sc) && current_is_kswapd())
1909                 force_scan = true;
1910         if (!scanning_global_lru(sc))
1911                 force_scan = true;
1912
1913         /* If we have no swap space, do not bother scanning anon pages. */
1914         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1915                 noswap = 1;
1916                 fraction[0] = 0;
1917                 fraction[1] = 1;
1918                 denominator = 1;
1919                 goto out;
1920         }
1921
1922         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1923                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1924         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1925                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1926
1927         if (scanning_global_lru(sc)) {
1928                 free  = zone_page_state(zone, NR_FREE_PAGES);
1929                 /* If we have very few page cache pages,
1930                    force-scan anon pages. */
1931                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1932                         fraction[0] = 1;
1933                         fraction[1] = 0;
1934                         denominator = 1;
1935                         goto out;
1936                 }
1937         }
1938
1939         /*
1940          * With swappiness at 100, anonymous and file have the same priority.
1941          * This scanning priority is essentially the inverse of IO cost.
1942          */
1943         anon_prio = vmscan_swappiness(sc);
1944         file_prio = 200 - vmscan_swappiness(sc);
1945
1946         /*
1947          * OK, so we have swap space and a fair amount of page cache
1948          * pages.  We use the recently rotated / recently scanned
1949          * ratios to determine how valuable each cache is.
1950          *
1951          * Because workloads change over time (and to avoid overflow)
1952          * we keep these statistics as a floating average, which ends
1953          * up weighing recent references more than old ones.
1954          *
1955          * anon in [0], file in [1]
1956          */
1957         spin_lock_irq(&zone->lru_lock);
1958         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1959                 reclaim_stat->recent_scanned[0] /= 2;
1960                 reclaim_stat->recent_rotated[0] /= 2;
1961         }
1962
1963         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1964                 reclaim_stat->recent_scanned[1] /= 2;
1965                 reclaim_stat->recent_rotated[1] /= 2;
1966         }
1967
1968         /*
1969          * The amount of pressure on anon vs file pages is inversely
1970          * proportional to the fraction of recently scanned pages on
1971          * each list that were recently referenced and in active use.
1972          */
1973         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1974         ap /= reclaim_stat->recent_rotated[0] + 1;
1975
1976         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1977         fp /= reclaim_stat->recent_rotated[1] + 1;
1978         spin_unlock_irq(&zone->lru_lock);
1979
1980         fraction[0] = ap;
1981         fraction[1] = fp;
1982         denominator = ap + fp + 1;
1983 out:
1984         for_each_evictable_lru(l) {
1985                 int file = is_file_lru(l);
1986                 unsigned long scan;
1987
1988                 scan = zone_nr_lru_pages(zone, sc, l);
1989                 if (priority || noswap) {
1990                         scan >>= priority;
1991                         if (!scan && force_scan)
1992                                 scan = SWAP_CLUSTER_MAX;
1993                         scan = div64_u64(scan * fraction[file], denominator);
1994                 }
1995                 nr[l] = scan;
1996         }
1997 }
1998
1999 /*
2000  * Reclaim/compaction depends on a number of pages being freed. To avoid
2001  * disruption to the system, a small number of order-0 pages continue to be
2002  * rotated and reclaimed in the normal fashion. However, by the time we get
2003  * back to the allocator and call try_to_compact_zone(), we ensure that
2004  * there are enough free pages for it to be likely successful
2005  */
2006 static inline bool should_continue_reclaim(struct zone *zone,
2007                                         unsigned long nr_reclaimed,
2008                                         unsigned long nr_scanned,
2009                                         struct scan_control *sc)
2010 {
2011         unsigned long pages_for_compaction;
2012         unsigned long inactive_lru_pages;
2013
2014         /* If not in reclaim/compaction mode, stop */
2015         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2016                 return false;
2017
2018         /* Consider stopping depending on scan and reclaim activity */
2019         if (sc->gfp_mask & __GFP_REPEAT) {
2020                 /*
2021                  * For __GFP_REPEAT allocations, stop reclaiming if the
2022                  * full LRU list has been scanned and we are still failing
2023                  * to reclaim pages. This full LRU scan is potentially
2024                  * expensive but a __GFP_REPEAT caller really wants to succeed
2025                  */
2026                 if (!nr_reclaimed && !nr_scanned)
2027                         return false;
2028         } else {
2029                 /*
2030                  * For non-__GFP_REPEAT allocations which can presumably
2031                  * fail without consequence, stop if we failed to reclaim
2032                  * any pages from the last SWAP_CLUSTER_MAX number of
2033                  * pages that were scanned. This will return to the
2034                  * caller faster at the risk reclaim/compaction and
2035                  * the resulting allocation attempt fails
2036                  */
2037                 if (!nr_reclaimed)
2038                         return false;
2039         }
2040
2041         /*
2042          * If we have not reclaimed enough pages for compaction and the
2043          * inactive lists are large enough, continue reclaiming
2044          */
2045         pages_for_compaction = (2UL << sc->order);
2046         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2047                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2048         if (sc->nr_reclaimed < pages_for_compaction &&
2049                         inactive_lru_pages > pages_for_compaction)
2050                 return true;
2051
2052         /* If compaction would go ahead or the allocation would succeed, stop */
2053         switch (compaction_suitable(zone, sc->order)) {
2054         case COMPACT_PARTIAL:
2055         case COMPACT_CONTINUE:
2056                 return false;
2057         default:
2058                 return true;
2059         }
2060 }
2061
2062 /*
2063  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2064  */
2065 static void shrink_zone(int priority, struct zone *zone,
2066                                 struct scan_control *sc)
2067 {
2068         unsigned long nr[NR_LRU_LISTS];
2069         unsigned long nr_to_scan;
2070         enum lru_list l;
2071         unsigned long nr_reclaimed, nr_scanned;
2072         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2073         struct blk_plug plug;
2074
2075 restart:
2076         nr_reclaimed = 0;
2077         nr_scanned = sc->nr_scanned;
2078         get_scan_count(zone, sc, nr, priority);
2079
2080         blk_start_plug(&plug);
2081         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2082                                         nr[LRU_INACTIVE_FILE]) {
2083                 for_each_evictable_lru(l) {
2084                         if (nr[l]) {
2085                                 nr_to_scan = min_t(unsigned long,
2086                                                    nr[l], SWAP_CLUSTER_MAX);
2087                                 nr[l] -= nr_to_scan;
2088
2089                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2090                                                             zone, sc, priority);
2091                         }
2092                 }
2093                 /*
2094                  * On large memory systems, scan >> priority can become
2095                  * really large. This is fine for the starting priority;
2096                  * we want to put equal scanning pressure on each zone.
2097                  * However, if the VM has a harder time of freeing pages,
2098                  * with multiple processes reclaiming pages, the total
2099                  * freeing target can get unreasonably large.
2100                  */
2101                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2102                         break;
2103         }
2104         blk_finish_plug(&plug);
2105         sc->nr_reclaimed += nr_reclaimed;
2106
2107         /*
2108          * Even if we did not try to evict anon pages at all, we want to
2109          * rebalance the anon lru active/inactive ratio.
2110          */
2111         if (inactive_anon_is_low(zone, sc))
2112                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2113
2114         /* reclaim/compaction might need reclaim to continue */
2115         if (should_continue_reclaim(zone, nr_reclaimed,
2116                                         sc->nr_scanned - nr_scanned, sc))
2117                 goto restart;
2118
2119         throttle_vm_writeout(sc->gfp_mask);
2120 }
2121
2122 /*
2123  * This is the direct reclaim path, for page-allocating processes.  We only
2124  * try to reclaim pages from zones which will satisfy the caller's allocation
2125  * request.
2126  *
2127  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2128  * Because:
2129  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2130  *    allocation or
2131  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2132  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2133  *    zone defense algorithm.
2134  *
2135  * If a zone is deemed to be full of pinned pages then just give it a light
2136  * scan then give up on it.
2137  *
2138  * This function returns true if a zone is being reclaimed for a costly
2139  * high-order allocation and compaction is either ready to begin or deferred.
2140  * This indicates to the caller that it should retry the allocation or fail.
2141  */
2142 static bool shrink_zones(int priority, struct zonelist *zonelist,
2143                                         struct scan_control *sc)
2144 {
2145         struct zoneref *z;
2146         struct zone *zone;
2147         unsigned long nr_soft_reclaimed;
2148         unsigned long nr_soft_scanned;
2149         bool should_abort_reclaim = false;
2150
2151         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2152                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2153                 if (!populated_zone(zone))
2154                         continue;
2155                 /*
2156                  * Take care memory controller reclaiming has small influence
2157                  * to global LRU.
2158                  */
2159                 if (scanning_global_lru(sc)) {
2160                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2161                                 continue;
2162                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2163                                 continue;       /* Let kswapd poll it */
2164                         if (COMPACTION_BUILD) {
2165                                 /*
2166                                  * If we already have plenty of memory free for
2167                                  * compaction in this zone, don't free any more.
2168                                  * Even though compaction is invoked for any
2169                                  * non-zero order, only frequent costly order
2170                                  * reclamation is disruptive enough to become a
2171                                  * noticable problem, like transparent huge page
2172                                  * allocations.
2173                                  */
2174                                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2175                                         (compaction_suitable(zone, sc->order) ||
2176                                          compaction_deferred(zone))) {
2177                                         should_abort_reclaim = true;
2178                                         continue;
2179                                 }
2180                         }
2181                         /*
2182                          * This steals pages from memory cgroups over softlimit
2183                          * and returns the number of reclaimed pages and
2184                          * scanned pages. This works for global memory pressure
2185                          * and balancing, not for a memcg's limit.
2186                          */
2187                         nr_soft_scanned = 0;
2188                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2189                                                 sc->order, sc->gfp_mask,
2190                                                 &nr_soft_scanned);
2191                         sc->nr_reclaimed += nr_soft_reclaimed;
2192                         sc->nr_scanned += nr_soft_scanned;
2193                         /* need some check for avoid more shrink_zone() */
2194                 }
2195
2196                 shrink_zone(priority, zone, sc);
2197         }
2198
2199         return should_abort_reclaim;
2200 }
2201
2202 static bool zone_reclaimable(struct zone *zone)
2203 {
2204         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2205 }
2206
2207 /* All zones in zonelist are unreclaimable? */
2208 static bool all_unreclaimable(struct zonelist *zonelist,
2209                 struct scan_control *sc)
2210 {
2211         struct zoneref *z;
2212         struct zone *zone;
2213
2214         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2215                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2216                 if (!populated_zone(zone))
2217                         continue;
2218                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2219                         continue;
2220                 if (!zone->all_unreclaimable)
2221                         return false;
2222         }
2223
2224         return true;
2225 }
2226
2227 /*
2228  * This is the main entry point to direct page reclaim.
2229  *
2230  * If a full scan of the inactive list fails to free enough memory then we
2231  * are "out of memory" and something needs to be killed.
2232  *
2233  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2234  * high - the zone may be full of dirty or under-writeback pages, which this
2235  * caller can't do much about.  We kick the writeback threads and take explicit
2236  * naps in the hope that some of these pages can be written.  But if the
2237  * allocating task holds filesystem locks which prevent writeout this might not
2238  * work, and the allocation attempt will fail.
2239  *
2240  * returns:     0, if no pages reclaimed
2241  *              else, the number of pages reclaimed
2242  */
2243 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2244                                         struct scan_control *sc,
2245                                         struct shrink_control *shrink)
2246 {
2247         int priority;
2248         unsigned long total_scanned = 0;
2249         struct reclaim_state *reclaim_state = current->reclaim_state;
2250         struct zoneref *z;
2251         struct zone *zone;
2252         unsigned long writeback_threshold;
2253
2254         get_mems_allowed();
2255         delayacct_freepages_start();
2256
2257         if (scanning_global_lru(sc))
2258                 count_vm_event(ALLOCSTALL);
2259
2260         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2261                 sc->nr_scanned = 0;
2262                 if (!priority)
2263                         disable_swap_token(sc->mem_cgroup);
2264                 if (shrink_zones(priority, zonelist, sc))
2265                         break;
2266
2267                 /*
2268                  * Don't shrink slabs when reclaiming memory from
2269                  * over limit cgroups
2270                  */
2271                 if (scanning_global_lru(sc)) {
2272                         unsigned long lru_pages = 0;
2273                         for_each_zone_zonelist(zone, z, zonelist,
2274                                         gfp_zone(sc->gfp_mask)) {
2275                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2276                                         continue;
2277
2278                                 lru_pages += zone_reclaimable_pages(zone);
2279                         }
2280
2281                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2282                         if (reclaim_state) {
2283                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2284                                 reclaim_state->reclaimed_slab = 0;
2285                         }
2286                 }
2287                 total_scanned += sc->nr_scanned;
2288                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2289                         goto out;
2290
2291                 /*
2292                  * Try to write back as many pages as we just scanned.  This
2293                  * tends to cause slow streaming writers to write data to the
2294                  * disk smoothly, at the dirtying rate, which is nice.   But
2295                  * that's undesirable in laptop mode, where we *want* lumpy
2296                  * writeout.  So in laptop mode, write out the whole world.
2297                  */
2298                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2299                 if (total_scanned > writeback_threshold) {
2300                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2301                                                 WB_REASON_TRY_TO_FREE_PAGES);
2302                         sc->may_writepage = 1;
2303                 }
2304
2305                 /* Take a nap, wait for some writeback to complete */
2306                 if (!sc->hibernation_mode && sc->nr_scanned &&
2307                     priority < DEF_PRIORITY - 2) {
2308                         struct zone *preferred_zone;
2309
2310                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2311                                                 &cpuset_current_mems_allowed,
2312                                                 &preferred_zone);
2313                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2314                 }
2315         }
2316
2317 out:
2318         delayacct_freepages_end();
2319         put_mems_allowed();
2320
2321         if (sc->nr_reclaimed)
2322                 return sc->nr_reclaimed;
2323
2324         /*
2325          * As hibernation is going on, kswapd is freezed so that it can't mark
2326          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2327          * check.
2328          */
2329         if (oom_killer_disabled)
2330                 return 0;
2331
2332         /* top priority shrink_zones still had more to do? don't OOM, then */
2333         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2334                 return 1;
2335
2336         return 0;
2337 }
2338
2339 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2340                                 gfp_t gfp_mask, nodemask_t *nodemask)
2341 {
2342         unsigned long nr_reclaimed;
2343         struct scan_control sc = {
2344                 .gfp_mask = gfp_mask,
2345                 .may_writepage = !laptop_mode,
2346                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2347                 .may_unmap = 1,
2348                 .may_swap = 1,
2349                 .order = order,
2350                 .mem_cgroup = NULL,
2351                 .nodemask = nodemask,
2352         };
2353         struct shrink_control shrink = {
2354                 .gfp_mask = sc.gfp_mask,
2355         };
2356
2357         trace_mm_vmscan_direct_reclaim_begin(order,
2358                                 sc.may_writepage,
2359                                 gfp_mask);
2360
2361         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2362
2363         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2364
2365         return nr_reclaimed;
2366 }
2367
2368 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2369
2370 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2371                                                 gfp_t gfp_mask, bool noswap,
2372                                                 struct zone *zone,
2373                                                 unsigned long *nr_scanned)
2374 {
2375         struct scan_control sc = {
2376                 .nr_scanned = 0,
2377                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2378                 .may_writepage = !laptop_mode,
2379                 .may_unmap = 1,
2380                 .may_swap = !noswap,
2381                 .order = 0,
2382                 .mem_cgroup = mem,
2383         };
2384
2385         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2386                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2387
2388         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2389                                                       sc.may_writepage,
2390                                                       sc.gfp_mask);
2391
2392         /*
2393          * NOTE: Although we can get the priority field, using it
2394          * here is not a good idea, since it limits the pages we can scan.
2395          * if we don't reclaim here, the shrink_zone from balance_pgdat
2396          * will pick up pages from other mem cgroup's as well. We hack
2397          * the priority and make it zero.
2398          */
2399         shrink_zone(0, zone, &sc);
2400
2401         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2402
2403         *nr_scanned = sc.nr_scanned;
2404         return sc.nr_reclaimed;
2405 }
2406
2407 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2408                                            gfp_t gfp_mask,
2409                                            bool noswap)
2410 {
2411         struct zonelist *zonelist;
2412         unsigned long nr_reclaimed;
2413         int nid;
2414         struct scan_control sc = {
2415                 .may_writepage = !laptop_mode,
2416                 .may_unmap = 1,
2417                 .may_swap = !noswap,
2418                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2419                 .order = 0,
2420                 .mem_cgroup = mem_cont,
2421                 .nodemask = NULL, /* we don't care the placement */
2422                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2423                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2424         };
2425         struct shrink_control shrink = {
2426                 .gfp_mask = sc.gfp_mask,
2427         };
2428
2429         /*
2430          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2431          * take care of from where we get pages. So the node where we start the
2432          * scan does not need to be the current node.
2433          */
2434         nid = mem_cgroup_select_victim_node(mem_cont);
2435
2436         zonelist = NODE_DATA(nid)->node_zonelists;
2437
2438         trace_mm_vmscan_memcg_reclaim_begin(0,
2439                                             sc.may_writepage,
2440                                             sc.gfp_mask);
2441
2442         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2443
2444         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2445
2446         return nr_reclaimed;
2447 }
2448 #endif
2449
2450 /*
2451  * pgdat_balanced is used when checking if a node is balanced for high-order
2452  * allocations. Only zones that meet watermarks and are in a zone allowed
2453  * by the callers classzone_idx are added to balanced_pages. The total of
2454  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2455  * for the node to be considered balanced. Forcing all zones to be balanced
2456  * for high orders can cause excessive reclaim when there are imbalanced zones.
2457  * The choice of 25% is due to
2458  *   o a 16M DMA zone that is balanced will not balance a zone on any
2459  *     reasonable sized machine
2460  *   o On all other machines, the top zone must be at least a reasonable
2461  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2462  *     would need to be at least 256M for it to be balance a whole node.
2463  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2464  *     to balance a node on its own. These seemed like reasonable ratios.
2465  */
2466 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2467                                                 int classzone_idx)
2468 {
2469         unsigned long present_pages = 0;
2470         int i;
2471
2472         for (i = 0; i <= classzone_idx; i++)
2473                 present_pages += pgdat->node_zones[i].present_pages;
2474
2475         /* A special case here: if zone has no page, we think it's balanced */
2476         return balanced_pages >= (present_pages >> 2);
2477 }
2478
2479 /* is kswapd sleeping prematurely? */
2480 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2481                                         int classzone_idx)
2482 {
2483         int i;
2484         unsigned long balanced = 0;
2485         bool all_zones_ok = true;
2486
2487         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2488         if (remaining)
2489                 return true;
2490
2491         /* Check the watermark levels */
2492         for (i = 0; i <= classzone_idx; i++) {
2493                 struct zone *zone = pgdat->node_zones + i;
2494
2495                 if (!populated_zone(zone))
2496                         continue;
2497
2498                 /*
2499                  * balance_pgdat() skips over all_unreclaimable after
2500                  * DEF_PRIORITY. Effectively, it considers them balanced so
2501                  * they must be considered balanced here as well if kswapd
2502                  * is to sleep
2503                  */
2504                 if (zone->all_unreclaimable) {
2505                         balanced += zone->present_pages;
2506                         continue;
2507                 }
2508
2509                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2510                                                         i, 0))
2511                         all_zones_ok = false;
2512                 else
2513                         balanced += zone->present_pages;
2514         }
2515
2516         /*
2517          * For high-order requests, the balanced zones must contain at least
2518          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2519          * must be balanced
2520          */
2521         if (order)
2522                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2523         else
2524                 return !all_zones_ok;
2525 }
2526
2527 /*
2528  * For kswapd, balance_pgdat() will work across all this node's zones until
2529  * they are all at high_wmark_pages(zone).
2530  *
2531  * Returns the final order kswapd was reclaiming at
2532  *
2533  * There is special handling here for zones which are full of pinned pages.
2534  * This can happen if the pages are all mlocked, or if they are all used by
2535  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2536  * What we do is to detect the case where all pages in the zone have been
2537  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2538  * dead and from now on, only perform a short scan.  Basically we're polling
2539  * the zone for when the problem goes away.
2540  *
2541  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2542  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2543  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2544  * lower zones regardless of the number of free pages in the lower zones. This
2545  * interoperates with the page allocator fallback scheme to ensure that aging
2546  * of pages is balanced across the zones.
2547  */
2548 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2549                                                         int *classzone_idx)
2550 {
2551         int all_zones_ok;
2552         unsigned long balanced;
2553         int priority;
2554         int i;
2555         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2556         unsigned long total_scanned;
2557         struct reclaim_state *reclaim_state = current->reclaim_state;
2558         unsigned long nr_soft_reclaimed;
2559         unsigned long nr_soft_scanned;
2560         struct scan_control sc = {
2561                 .gfp_mask = GFP_KERNEL,
2562                 .may_unmap = 1,
2563                 .may_swap = 1,
2564                 /*
2565                  * kswapd doesn't want to be bailed out while reclaim. because
2566                  * we want to put equal scanning pressure on each zone.
2567                  */
2568                 .nr_to_reclaim = ULONG_MAX,
2569                 .order = order,
2570                 .mem_cgroup = NULL,
2571         };
2572         struct shrink_control shrink = {
2573                 .gfp_mask = sc.gfp_mask,
2574         };
2575 loop_again:
2576         total_scanned = 0;
2577         sc.nr_reclaimed = 0;
2578         sc.may_writepage = !laptop_mode;
2579         count_vm_event(PAGEOUTRUN);
2580
2581         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2582                 unsigned long lru_pages = 0;
2583                 int has_under_min_watermark_zone = 0;
2584
2585                 /* The swap token gets in the way of swapout... */
2586                 if (!priority)
2587                         disable_swap_token(NULL);
2588
2589                 all_zones_ok = 1;
2590                 balanced = 0;
2591
2592                 /*
2593                  * Scan in the highmem->dma direction for the highest
2594                  * zone which needs scanning
2595                  */
2596                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2597                         struct zone *zone = pgdat->node_zones + i;
2598
2599                         if (!populated_zone(zone))
2600                                 continue;
2601
2602                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2603                                 continue;
2604
2605                         /*
2606                          * Do some background aging of the anon list, to give
2607                          * pages a chance to be referenced before reclaiming.
2608                          */
2609                         if (inactive_anon_is_low(zone, &sc))
2610                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2611                                                         &sc, priority, 0);
2612
2613                         if (!zone_watermark_ok_safe(zone, order,
2614                                         high_wmark_pages(zone), 0, 0)) {
2615                                 end_zone = i;
2616                                 break;
2617                         } else {
2618                                 /* If balanced, clear the congested flag */
2619                                 zone_clear_flag(zone, ZONE_CONGESTED);
2620                         }
2621                 }
2622                 if (i < 0)
2623                         goto out;
2624
2625                 for (i = 0; i <= end_zone; i++) {
2626                         struct zone *zone = pgdat->node_zones + i;
2627
2628                         lru_pages += zone_reclaimable_pages(zone);
2629                 }
2630
2631                 /*
2632                  * Now scan the zone in the dma->highmem direction, stopping
2633                  * at the last zone which needs scanning.
2634                  *
2635                  * We do this because the page allocator works in the opposite
2636                  * direction.  This prevents the page allocator from allocating
2637                  * pages behind kswapd's direction of progress, which would
2638                  * cause too much scanning of the lower zones.
2639                  */
2640                 for (i = 0; i <= end_zone; i++) {
2641                         struct zone *zone = pgdat->node_zones + i;
2642                         int nr_slab;
2643                         unsigned long balance_gap;
2644
2645                         if (!populated_zone(zone))
2646                                 continue;
2647
2648                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2649                                 continue;
2650
2651                         sc.nr_scanned = 0;
2652
2653                         nr_soft_scanned = 0;
2654                         /*
2655                          * Call soft limit reclaim before calling shrink_zone.
2656                          */
2657                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2658                                                         order, sc.gfp_mask,
2659                                                         &nr_soft_scanned);
2660                         sc.nr_reclaimed += nr_soft_reclaimed;
2661                         total_scanned += nr_soft_scanned;
2662
2663                         /*
2664                          * We put equal pressure on every zone, unless
2665                          * one zone has way too many pages free
2666                          * already. The "too many pages" is defined
2667                          * as the high wmark plus a "gap" where the
2668                          * gap is either the low watermark or 1%
2669                          * of the zone, whichever is smaller.
2670                          */
2671                         balance_gap = min(low_wmark_pages(zone),
2672                                 (zone->present_pages +
2673                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2674                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2675                         if (!zone_watermark_ok_safe(zone, order,
2676                                         high_wmark_pages(zone) + balance_gap,
2677                                         end_zone, 0)) {
2678                                 shrink_zone(priority, zone, &sc);
2679
2680                                 reclaim_state->reclaimed_slab = 0;
2681                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2682                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2683                                 total_scanned += sc.nr_scanned;
2684
2685                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2686                                         zone->all_unreclaimable = 1;
2687                         }
2688
2689                         /*
2690                          * If we've done a decent amount of scanning and
2691                          * the reclaim ratio is low, start doing writepage
2692                          * even in laptop mode
2693                          */
2694                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2695                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2696                                 sc.may_writepage = 1;
2697
2698                         if (zone->all_unreclaimable) {
2699                                 if (end_zone && end_zone == i)
2700                                         end_zone--;
2701                                 continue;
2702                         }
2703
2704                         if (!zone_watermark_ok_safe(zone, order,
2705                                         high_wmark_pages(zone), end_zone, 0)) {
2706                                 all_zones_ok = 0;
2707                                 /*
2708                                  * We are still under min water mark.  This
2709                                  * means that we have a GFP_ATOMIC allocation
2710                                  * failure risk. Hurry up!
2711                                  */
2712                                 if (!zone_watermark_ok_safe(zone, order,
2713                                             min_wmark_pages(zone), end_zone, 0))
2714                                         has_under_min_watermark_zone = 1;
2715                         } else {
2716                                 /*
2717                                  * If a zone reaches its high watermark,
2718                                  * consider it to be no longer congested. It's
2719                                  * possible there are dirty pages backed by
2720                                  * congested BDIs but as pressure is relieved,
2721                                  * spectulatively avoid congestion waits
2722                                  */
2723                                 zone_clear_flag(zone, ZONE_CONGESTED);
2724                                 if (i <= *classzone_idx)
2725                                         balanced += zone->present_pages;
2726                         }
2727
2728                 }
2729                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2730                         break;          /* kswapd: all done */
2731                 /*
2732                  * OK, kswapd is getting into trouble.  Take a nap, then take
2733                  * another pass across the zones.
2734                  */
2735                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2736                         if (has_under_min_watermark_zone)
2737                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2738                         else
2739                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2740                 }
2741
2742                 /*
2743                  * We do this so kswapd doesn't build up large priorities for
2744                  * example when it is freeing in parallel with allocators. It
2745                  * matches the direct reclaim path behaviour in terms of impact
2746                  * on zone->*_priority.
2747                  */
2748                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2749                         break;
2750         }
2751 out:
2752
2753         /*
2754          * order-0: All zones must meet high watermark for a balanced node
2755          * high-order: Balanced zones must make up at least 25% of the node
2756          *             for the node to be balanced
2757          */
2758         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2759                 cond_resched();
2760
2761                 try_to_freeze();
2762
2763                 /*
2764                  * Fragmentation may mean that the system cannot be
2765                  * rebalanced for high-order allocations in all zones.
2766                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2767                  * it means the zones have been fully scanned and are still
2768                  * not balanced. For high-order allocations, there is
2769                  * little point trying all over again as kswapd may
2770                  * infinite loop.
2771                  *
2772                  * Instead, recheck all watermarks at order-0 as they
2773                  * are the most important. If watermarks are ok, kswapd will go
2774                  * back to sleep. High-order users can still perform direct
2775                  * reclaim if they wish.
2776                  */
2777                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2778                         order = sc.order = 0;
2779
2780                 goto loop_again;
2781         }
2782
2783         /*
2784          * If kswapd was reclaiming at a higher order, it has the option of
2785          * sleeping without all zones being balanced. Before it does, it must
2786          * ensure that the watermarks for order-0 on *all* zones are met and
2787          * that the congestion flags are cleared. The congestion flag must
2788          * be cleared as kswapd is the only mechanism that clears the flag
2789          * and it is potentially going to sleep here.
2790          */
2791         if (order) {
2792                 for (i = 0; i <= end_zone; i++) {
2793                         struct zone *zone = pgdat->node_zones + i;
2794
2795                         if (!populated_zone(zone))
2796                                 continue;
2797
2798                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2799                                 continue;
2800
2801                         /* Confirm the zone is balanced for order-0 */
2802                         if (!zone_watermark_ok(zone, 0,
2803                                         high_wmark_pages(zone), 0, 0)) {
2804                                 order = sc.order = 0;
2805                                 goto loop_again;
2806                         }
2807
2808                         /* If balanced, clear the congested flag */
2809                         zone_clear_flag(zone, ZONE_CONGESTED);
2810                         if (i <= *classzone_idx)
2811                                 balanced += zone->present_pages;
2812                 }
2813         }
2814
2815         /*
2816          * Return the order we were reclaiming at so sleeping_prematurely()
2817          * makes a decision on the order we were last reclaiming at. However,
2818          * if another caller entered the allocator slow path while kswapd
2819          * was awake, order will remain at the higher level
2820          */
2821         *classzone_idx = end_zone;
2822         return order;
2823 }
2824
2825 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2826 {
2827         long remaining = 0;
2828         DEFINE_WAIT(wait);
2829
2830         if (freezing(current) || kthread_should_stop())
2831                 return;
2832
2833         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2834
2835         /* Try to sleep for a short interval */
2836         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2837                 remaining = schedule_timeout(HZ/10);
2838                 finish_wait(&pgdat->kswapd_wait, &wait);
2839                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2840         }
2841
2842         /*
2843          * After a short sleep, check if it was a premature sleep. If not, then
2844          * go fully to sleep until explicitly woken up.
2845          */
2846         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2847                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2848
2849                 /*
2850                  * vmstat counters are not perfectly accurate and the estimated
2851                  * value for counters such as NR_FREE_PAGES can deviate from the
2852                  * true value by nr_online_cpus * threshold. To avoid the zone
2853                  * watermarks being breached while under pressure, we reduce the
2854                  * per-cpu vmstat threshold while kswapd is awake and restore
2855                  * them before going back to sleep.
2856                  */
2857                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2858
2859                 if (!kthread_should_stop())
2860                         schedule();
2861
2862                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2863         } else {
2864                 if (remaining)
2865                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2866                 else
2867                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2868         }
2869         finish_wait(&pgdat->kswapd_wait, &wait);
2870 }
2871
2872 /*
2873  * The background pageout daemon, started as a kernel thread
2874  * from the init process.
2875  *
2876  * This basically trickles out pages so that we have _some_
2877  * free memory available even if there is no other activity
2878  * that frees anything up. This is needed for things like routing
2879  * etc, where we otherwise might have all activity going on in
2880  * asynchronous contexts that cannot page things out.
2881  *
2882  * If there are applications that are active memory-allocators
2883  * (most normal use), this basically shouldn't matter.
2884  */
2885 static int kswapd(void *p)
2886 {
2887         unsigned long order, new_order;
2888         unsigned balanced_order;
2889         int classzone_idx, new_classzone_idx;
2890         int balanced_classzone_idx;
2891         pg_data_t *pgdat = (pg_data_t*)p;
2892         struct task_struct *tsk = current;
2893
2894         struct reclaim_state reclaim_state = {
2895                 .reclaimed_slab = 0,
2896         };
2897         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2898
2899         lockdep_set_current_reclaim_state(GFP_KERNEL);
2900
2901         if (!cpumask_empty(cpumask))
2902                 set_cpus_allowed_ptr(tsk, cpumask);
2903         current->reclaim_state = &reclaim_state;
2904
2905         /*
2906          * Tell the memory management that we're a "memory allocator",
2907          * and that if we need more memory we should get access to it
2908          * regardless (see "__alloc_pages()"). "kswapd" should
2909          * never get caught in the normal page freeing logic.
2910          *
2911          * (Kswapd normally doesn't need memory anyway, but sometimes
2912          * you need a small amount of memory in order to be able to
2913          * page out something else, and this flag essentially protects
2914          * us from recursively trying to free more memory as we're
2915          * trying to free the first piece of memory in the first place).
2916          */
2917         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2918         set_freezable();
2919
2920         order = new_order = 0;
2921         balanced_order = 0;
2922         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2923         balanced_classzone_idx = classzone_idx;
2924         for ( ; ; ) {
2925                 int ret;
2926
2927                 /*
2928                  * If the last balance_pgdat was unsuccessful it's unlikely a
2929                  * new request of a similar or harder type will succeed soon
2930                  * so consider going to sleep on the basis we reclaimed at
2931                  */
2932                 if (balanced_classzone_idx >= new_classzone_idx &&
2933                                         balanced_order == new_order) {
2934                         new_order = pgdat->kswapd_max_order;
2935                         new_classzone_idx = pgdat->classzone_idx;
2936                         pgdat->kswapd_max_order =  0;
2937                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2938                 }
2939
2940                 if (order < new_order || classzone_idx > new_classzone_idx) {
2941                         /*
2942                          * Don't sleep if someone wants a larger 'order'
2943                          * allocation or has tigher zone constraints
2944                          */
2945                         order = new_order;
2946                         classzone_idx = new_classzone_idx;
2947                 } else {
2948                         kswapd_try_to_sleep(pgdat, balanced_order,
2949                                                 balanced_classzone_idx);
2950                         order = pgdat->kswapd_max_order;
2951                         classzone_idx = pgdat->classzone_idx;
2952                         new_order = order;
2953                         new_classzone_idx = classzone_idx;
2954                         pgdat->kswapd_max_order = 0;
2955                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2956                 }
2957
2958                 ret = try_to_freeze();
2959                 if (kthread_should_stop())
2960                         break;
2961
2962                 /*
2963                  * We can speed up thawing tasks if we don't call balance_pgdat
2964                  * after returning from the refrigerator
2965                  */
2966                 if (!ret) {
2967                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2968                         balanced_classzone_idx = classzone_idx;
2969                         balanced_order = balance_pgdat(pgdat, order,
2970                                                 &balanced_classzone_idx);
2971                 }
2972         }
2973         return 0;
2974 }
2975
2976 /*
2977  * A zone is low on free memory, so wake its kswapd task to service it.
2978  */
2979 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2980 {
2981         pg_data_t *pgdat;
2982
2983         if (!populated_zone(zone))
2984                 return;
2985
2986         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2987                 return;
2988         pgdat = zone->zone_pgdat;
2989         if (pgdat->kswapd_max_order < order) {
2990                 pgdat->kswapd_max_order = order;
2991                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2992         }
2993         if (!waitqueue_active(&pgdat->kswapd_wait))
2994                 return;
2995         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2996                 return;
2997
2998         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2999         wake_up_interruptible(&pgdat->kswapd_wait);
3000 }
3001
3002 /*
3003  * The reclaimable count would be mostly accurate.
3004  * The less reclaimable pages may be
3005  * - mlocked pages, which will be moved to unevictable list when encountered
3006  * - mapped pages, which may require several travels to be reclaimed
3007  * - dirty pages, which is not "instantly" reclaimable
3008  */
3009 unsigned long global_reclaimable_pages(void)
3010 {
3011         int nr;
3012
3013         nr = global_page_state(NR_ACTIVE_FILE) +
3014              global_page_state(NR_INACTIVE_FILE);
3015
3016         if (nr_swap_pages > 0)
3017                 nr += global_page_state(NR_ACTIVE_ANON) +
3018                       global_page_state(NR_INACTIVE_ANON);
3019
3020         return nr;
3021 }
3022
3023 unsigned long zone_reclaimable_pages(struct zone *zone)
3024 {
3025         int nr;
3026
3027         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3028              zone_page_state(zone, NR_INACTIVE_FILE);
3029
3030         if (nr_swap_pages > 0)
3031                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3032                       zone_page_state(zone, NR_INACTIVE_ANON);
3033
3034         return nr;
3035 }
3036
3037 #ifdef CONFIG_HIBERNATION
3038 /*
3039  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3040  * freed pages.
3041  *
3042  * Rather than trying to age LRUs the aim is to preserve the overall
3043  * LRU order by reclaiming preferentially
3044  * inactive > active > active referenced > active mapped
3045  */
3046 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3047 {
3048         struct reclaim_state reclaim_state;
3049         struct scan_control sc = {
3050                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3051                 .may_swap = 1,
3052                 .may_unmap = 1,
3053                 .may_writepage = 1,
3054                 .nr_to_reclaim = nr_to_reclaim,
3055                 .hibernation_mode = 1,
3056                 .order = 0,
3057         };
3058         struct shrink_control shrink = {
3059                 .gfp_mask = sc.gfp_mask,
3060         };
3061         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3062         struct task_struct *p = current;
3063         unsigned long nr_reclaimed;
3064
3065         p->flags |= PF_MEMALLOC;
3066         lockdep_set_current_reclaim_state(sc.gfp_mask);
3067         reclaim_state.reclaimed_slab = 0;
3068         p->reclaim_state = &reclaim_state;
3069
3070         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3071
3072         p->reclaim_state = NULL;
3073         lockdep_clear_current_reclaim_state();
3074         p->flags &= ~PF_MEMALLOC;
3075
3076         return nr_reclaimed;
3077 }
3078 #endif /* CONFIG_HIBERNATION */
3079
3080 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3081    not required for correctness.  So if the last cpu in a node goes
3082    away, we get changed to run anywhere: as the first one comes back,
3083    restore their cpu bindings. */
3084 static int __devinit cpu_callback(struct notifier_block *nfb,
3085                                   unsigned long action, void *hcpu)
3086 {
3087         int nid;
3088
3089         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3090                 for_each_node_state(nid, N_HIGH_MEMORY) {
3091                         pg_data_t *pgdat = NODE_DATA(nid);
3092                         const struct cpumask *mask;
3093
3094                         mask = cpumask_of_node(pgdat->node_id);
3095
3096                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3097                                 /* One of our CPUs online: restore mask */
3098                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3099                 }
3100         }
3101         return NOTIFY_OK;
3102 }
3103
3104 /*
3105  * This kswapd start function will be called by init and node-hot-add.
3106  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3107  */
3108 int kswapd_run(int nid)
3109 {
3110         pg_data_t *pgdat = NODE_DATA(nid);
3111         int ret = 0;
3112
3113         if (pgdat->kswapd)
3114                 return 0;
3115
3116         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3117         if (IS_ERR(pgdat->kswapd)) {
3118                 /* failure at boot is fatal */
3119                 BUG_ON(system_state == SYSTEM_BOOTING);
3120                 printk("Failed to start kswapd on node %d\n",nid);
3121                 ret = -1;
3122         }
3123         return ret;
3124 }
3125
3126 /*
3127  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3128  * hold lock_memory_hotplug().
3129  */
3130 void kswapd_stop(int nid)
3131 {
3132         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3133
3134         if (kswapd) {
3135                 kthread_stop(kswapd);
3136                 NODE_DATA(nid)->kswapd = NULL;
3137         }
3138 }
3139
3140 static int __init kswapd_init(void)
3141 {
3142         int nid;
3143
3144         swap_setup();
3145         for_each_node_state(nid, N_HIGH_MEMORY)
3146                 kswapd_run(nid);
3147         hotcpu_notifier(cpu_callback, 0);
3148         return 0;
3149 }
3150
3151 module_init(kswapd_init)
3152
3153 #ifdef CONFIG_NUMA
3154 /*
3155  * Zone reclaim mode
3156  *
3157  * If non-zero call zone_reclaim when the number of free pages falls below
3158  * the watermarks.
3159  */
3160 int zone_reclaim_mode __read_mostly;
3161
3162 #define RECLAIM_OFF 0
3163 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3164 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3165 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3166
3167 /*
3168  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3169  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3170  * a zone.
3171  */
3172 #define ZONE_RECLAIM_PRIORITY 4
3173
3174 /*
3175  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3176  * occur.
3177  */
3178 int sysctl_min_unmapped_ratio = 1;
3179
3180 /*
3181  * If the number of slab pages in a zone grows beyond this percentage then
3182  * slab reclaim needs to occur.
3183  */
3184 int sysctl_min_slab_ratio = 5;
3185
3186 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3187 {
3188         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3189         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3190                 zone_page_state(zone, NR_ACTIVE_FILE);
3191
3192         /*
3193          * It's possible for there to be more file mapped pages than
3194          * accounted for by the pages on the file LRU lists because
3195          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3196          */
3197         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3198 }
3199
3200 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3201 static long zone_pagecache_reclaimable(struct zone *zone)
3202 {
3203         long nr_pagecache_reclaimable;
3204         long delta = 0;
3205
3206         /*
3207          * If RECLAIM_SWAP is set, then all file pages are considered
3208          * potentially reclaimable. Otherwise, we have to worry about
3209          * pages like swapcache and zone_unmapped_file_pages() provides
3210          * a better estimate
3211          */
3212         if (zone_reclaim_mode & RECLAIM_SWAP)
3213                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3214         else
3215                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3216
3217         /* If we can't clean pages, remove dirty pages from consideration */
3218         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3219                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3220
3221         /* Watch for any possible underflows due to delta */
3222         if (unlikely(delta > nr_pagecache_reclaimable))
3223                 delta = nr_pagecache_reclaimable;
3224
3225         return nr_pagecache_reclaimable - delta;
3226 }
3227
3228 /*
3229  * Try to free up some pages from this zone through reclaim.
3230  */
3231 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3232 {
3233         /* Minimum pages needed in order to stay on node */
3234         const unsigned long nr_pages = 1 << order;
3235         struct task_struct *p = current;
3236         struct reclaim_state reclaim_state;
3237         int priority;
3238         struct scan_control sc = {
3239                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3240                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3241                 .may_swap = 1,
3242                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3243                                        SWAP_CLUSTER_MAX),
3244                 .gfp_mask = gfp_mask,
3245                 .order = order,
3246         };
3247         struct shrink_control shrink = {
3248                 .gfp_mask = sc.gfp_mask,
3249         };
3250         unsigned long nr_slab_pages0, nr_slab_pages1;
3251
3252         cond_resched();
3253         /*
3254          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3255          * and we also need to be able to write out pages for RECLAIM_WRITE
3256          * and RECLAIM_SWAP.
3257          */
3258         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3259         lockdep_set_current_reclaim_state(gfp_mask);
3260         reclaim_state.reclaimed_slab = 0;
3261         p->reclaim_state = &reclaim_state;
3262
3263         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3264                 /*
3265                  * Free memory by calling shrink zone with increasing
3266                  * priorities until we have enough memory freed.
3267                  */
3268                 priority = ZONE_RECLAIM_PRIORITY;
3269                 do {
3270                         shrink_zone(priority, zone, &sc);
3271                         priority--;
3272                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3273         }
3274
3275         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3276         if (nr_slab_pages0 > zone->min_slab_pages) {
3277                 /*
3278                  * shrink_slab() does not currently allow us to determine how
3279                  * many pages were freed in this zone. So we take the current
3280                  * number of slab pages and shake the slab until it is reduced
3281                  * by the same nr_pages that we used for reclaiming unmapped
3282                  * pages.
3283                  *
3284                  * Note that shrink_slab will free memory on all zones and may
3285                  * take a long time.
3286                  */
3287                 for (;;) {
3288                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3289
3290                         /* No reclaimable slab or very low memory pressure */
3291                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3292                                 break;
3293
3294                         /* Freed enough memory */
3295                         nr_slab_pages1 = zone_page_state(zone,
3296                                                         NR_SLAB_RECLAIMABLE);
3297                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3298                                 break;
3299                 }
3300
3301                 /*
3302                  * Update nr_reclaimed by the number of slab pages we
3303                  * reclaimed from this zone.
3304                  */
3305                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3306                 if (nr_slab_pages1 < nr_slab_pages0)
3307                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3308         }
3309
3310         p->reclaim_state = NULL;
3311         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3312         lockdep_clear_current_reclaim_state();
3313         return sc.nr_reclaimed >= nr_pages;
3314 }
3315
3316 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3317 {
3318         int node_id;
3319         int ret;
3320
3321         /*
3322          * Zone reclaim reclaims unmapped file backed pages and
3323          * slab pages if we are over the defined limits.
3324          *
3325          * A small portion of unmapped file backed pages is needed for
3326          * file I/O otherwise pages read by file I/O will be immediately
3327          * thrown out if the zone is overallocated. So we do not reclaim
3328          * if less than a specified percentage of the zone is used by
3329          * unmapped file backed pages.
3330          */
3331         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3332             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3333                 return ZONE_RECLAIM_FULL;
3334
3335         if (zone->all_unreclaimable)
3336                 return ZONE_RECLAIM_FULL;
3337
3338         /*
3339          * Do not scan if the allocation should not be delayed.
3340          */
3341         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3342                 return ZONE_RECLAIM_NOSCAN;
3343
3344         /*
3345          * Only run zone reclaim on the local zone or on zones that do not
3346          * have associated processors. This will favor the local processor
3347          * over remote processors and spread off node memory allocations
3348          * as wide as possible.
3349          */
3350         node_id = zone_to_nid(zone);
3351         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3352                 return ZONE_RECLAIM_NOSCAN;
3353
3354         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3355                 return ZONE_RECLAIM_NOSCAN;
3356
3357         ret = __zone_reclaim(zone, gfp_mask, order);
3358         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3359
3360         if (!ret)
3361                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3362
3363         return ret;
3364 }
3365 #endif
3366
3367 /*
3368  * page_evictable - test whether a page is evictable
3369  * @page: the page to test
3370  * @vma: the VMA in which the page is or will be mapped, may be NULL
3371  *
3372  * Test whether page is evictable--i.e., should be placed on active/inactive
3373  * lists vs unevictable list.  The vma argument is !NULL when called from the
3374  * fault path to determine how to instantate a new page.
3375  *
3376  * Reasons page might not be evictable:
3377  * (1) page's mapping marked unevictable
3378  * (2) page is part of an mlocked VMA
3379  *
3380  */
3381 int page_evictable(struct page *page, struct vm_area_struct *vma)
3382 {
3383
3384         if (mapping_unevictable(page_mapping(page)))
3385                 return 0;
3386
3387         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3388                 return 0;
3389
3390         return 1;
3391 }
3392
3393 #ifdef CONFIG_SHMEM
3394 /**
3395  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3396  * @pages:      array of pages to check
3397  * @nr_pages:   number of pages to check
3398  *
3399  * Checks pages for evictability and moves them to the appropriate lru list.
3400  *
3401  * This function is only used for SysV IPC SHM_UNLOCK.
3402  */
3403 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3404 {
3405         struct zone *zone = NULL;
3406         int pgscanned = 0;
3407         int pgrescued = 0;
3408         int i;
3409
3410         for (i = 0; i < nr_pages; i++) {
3411                 struct page *page = pages[i];
3412                 struct zone *pagezone;
3413
3414                 pgscanned++;
3415                 pagezone = page_zone(page);
3416                 if (pagezone != zone) {
3417                         if (zone)
3418                                 spin_unlock_irq(&zone->lru_lock);
3419                         zone = pagezone;
3420                         spin_lock_irq(&zone->lru_lock);
3421                 }
3422
3423                 if (!PageLRU(page) || !PageUnevictable(page))
3424                         continue;
3425
3426                 if (page_evictable(page, NULL)) {
3427                         enum lru_list lru = page_lru_base_type(page);
3428
3429                         VM_BUG_ON(PageActive(page));
3430                         ClearPageUnevictable(page);
3431                         __dec_zone_state(zone, NR_UNEVICTABLE);
3432                         list_move(&page->lru, &zone->lru[lru].list);
3433                         mem_cgroup_move_lists(page, LRU_UNEVICTABLE, lru);
3434                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3435                         pgrescued++;
3436                 }
3437         }
3438
3439         if (zone) {
3440                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3441                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3442                 spin_unlock_irq(&zone->lru_lock);
3443         }
3444 }
3445 #endif /* CONFIG_SHMEM */
3446
3447 static void warn_scan_unevictable_pages(void)
3448 {
3449         printk_once(KERN_WARNING
3450                     "The scan_unevictable_pages sysctl/node-interface has been "
3451                     "disabled for lack of a legitimate use case.  If you have "
3452                     "one, please send an email to linux-mm@kvack.org.\n");
3453 }
3454
3455 /*
3456  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3457  * all nodes' unevictable lists for evictable pages
3458  */
3459 unsigned long scan_unevictable_pages;
3460
3461 int scan_unevictable_handler(struct ctl_table *table, int write,
3462                            void __user *buffer,
3463                            size_t *length, loff_t *ppos)
3464 {
3465         warn_scan_unevictable_pages();
3466         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3467         scan_unevictable_pages = 0;
3468         return 0;
3469 }
3470
3471 #ifdef CONFIG_NUMA
3472 /*
3473  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3474  * a specified node's per zone unevictable lists for evictable pages.
3475  */
3476
3477 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3478                                           struct sysdev_attribute *attr,
3479                                           char *buf)
3480 {
3481         warn_scan_unevictable_pages();
3482         return sprintf(buf, "0\n");     /* always zero; should fit... */
3483 }
3484
3485 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3486                                            struct sysdev_attribute *attr,
3487                                         const char *buf, size_t count)
3488 {
3489         warn_scan_unevictable_pages();
3490         return 1;
3491 }
3492
3493
3494 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3495                         read_scan_unevictable_node,
3496                         write_scan_unevictable_node);
3497
3498 int scan_unevictable_register_node(struct node *node)
3499 {
3500         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3501 }
3502
3503 void scan_unevictable_unregister_node(struct node *node)
3504 {
3505         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3506 }
3507 #endif