um: Fix __swp_type()
[pandora-kernel.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 #include <linux/signalfd.h>
71
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/sched.h>
80
81 /*
82  * Protected counters by write_lock_irq(&tasklist_lock)
83  */
84 unsigned long total_forks;      /* Handle normal Linux uptimes. */
85 int nr_threads;                 /* The idle threads do not count.. */
86
87 int max_threads;                /* tunable limit on nr_threads */
88
89 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
90
91 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
92
93 #ifdef CONFIG_PROVE_RCU
94 int lockdep_tasklist_lock_is_held(void)
95 {
96         return lockdep_is_held(&tasklist_lock);
97 }
98 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
99 #endif /* #ifdef CONFIG_PROVE_RCU */
100
101 int nr_processes(void)
102 {
103         int cpu;
104         int total = 0;
105
106         for_each_possible_cpu(cpu)
107                 total += per_cpu(process_counts, cpu);
108
109         return total;
110 }
111
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 # define alloc_task_struct_node(node)           \
114                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
115 # define free_task_struct(tsk)                  \
116                 kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
119
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
121 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122                                                   int node)
123 {
124 #ifdef CONFIG_DEBUG_STACK_USAGE
125         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
126 #else
127         gfp_t mask = GFP_KERNEL;
128 #endif
129         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
130
131         return page ? page_address(page) : NULL;
132 }
133
134 static inline void free_thread_info(struct thread_info *ti)
135 {
136         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
137 }
138 #endif
139
140 /* SLAB cache for signal_struct structures (tsk->signal) */
141 static struct kmem_cache *signal_cachep;
142
143 /* SLAB cache for sighand_struct structures (tsk->sighand) */
144 struct kmem_cache *sighand_cachep;
145
146 /* SLAB cache for files_struct structures (tsk->files) */
147 struct kmem_cache *files_cachep;
148
149 /* SLAB cache for fs_struct structures (tsk->fs) */
150 struct kmem_cache *fs_cachep;
151
152 /* SLAB cache for vm_area_struct structures */
153 struct kmem_cache *vm_area_cachep;
154
155 /* SLAB cache for mm_struct structures (tsk->mm) */
156 static struct kmem_cache *mm_cachep;
157
158 static void account_kernel_stack(struct thread_info *ti, int account)
159 {
160         struct zone *zone = page_zone(virt_to_page(ti));
161
162         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 }
164
165 void free_task(struct task_struct *tsk)
166 {
167         account_kernel_stack(tsk->stack, -1);
168         free_thread_info(tsk->stack);
169         rt_mutex_debug_task_free(tsk);
170         ftrace_graph_exit_task(tsk);
171         free_task_struct(tsk);
172 }
173 EXPORT_SYMBOL(free_task);
174
175 static inline void free_signal_struct(struct signal_struct *sig)
176 {
177         taskstats_tgid_free(sig);
178         sched_autogroup_exit(sig);
179         kmem_cache_free(signal_cachep, sig);
180 }
181
182 static inline void put_signal_struct(struct signal_struct *sig)
183 {
184         if (atomic_dec_and_test(&sig->sigcnt))
185                 free_signal_struct(sig);
186 }
187
188 void __put_task_struct(struct task_struct *tsk)
189 {
190         WARN_ON(!tsk->exit_state);
191         WARN_ON(atomic_read(&tsk->usage));
192         WARN_ON(tsk == current);
193
194         exit_creds(tsk);
195         delayacct_tsk_free(tsk);
196         put_signal_struct(tsk->signal);
197
198         if (!profile_handoff_task(tsk))
199                 free_task(tsk);
200 }
201 EXPORT_SYMBOL_GPL(__put_task_struct);
202
203 /*
204  * macro override instead of weak attribute alias, to workaround
205  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206  */
207 #ifndef arch_task_cache_init
208 #define arch_task_cache_init()
209 #endif
210
211 void __init fork_init(unsigned long mempages)
212 {
213 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
214 #ifndef ARCH_MIN_TASKALIGN
215 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
216 #endif
217         /* create a slab on which task_structs can be allocated */
218         task_struct_cachep =
219                 kmem_cache_create("task_struct", sizeof(struct task_struct),
220                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
221 #endif
222
223         /* do the arch specific task caches init */
224         arch_task_cache_init();
225
226         /*
227          * The default maximum number of threads is set to a safe
228          * value: the thread structures can take up at most half
229          * of memory.
230          */
231         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
232
233         /*
234          * we need to allow at least 20 threads to boot a system
235          */
236         if (max_threads < 20)
237                 max_threads = 20;
238
239         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
240         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
241         init_task.signal->rlim[RLIMIT_SIGPENDING] =
242                 init_task.signal->rlim[RLIMIT_NPROC];
243 }
244
245 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
246                                                struct task_struct *src)
247 {
248         *dst = *src;
249         return 0;
250 }
251
252 static struct task_struct *dup_task_struct(struct task_struct *orig)
253 {
254         struct task_struct *tsk;
255         struct thread_info *ti;
256         unsigned long *stackend;
257         int node = tsk_fork_get_node(orig);
258         int err;
259
260         prepare_to_copy(orig);
261
262         tsk = alloc_task_struct_node(node);
263         if (!tsk)
264                 return NULL;
265
266         ti = alloc_thread_info_node(tsk, node);
267         if (!ti) {
268                 free_task_struct(tsk);
269                 return NULL;
270         }
271
272         err = arch_dup_task_struct(tsk, orig);
273         if (err)
274                 goto out;
275
276         tsk->stack = ti;
277
278         setup_thread_stack(tsk, orig);
279         clear_user_return_notifier(tsk);
280         clear_tsk_need_resched(tsk);
281         stackend = end_of_stack(tsk);
282         *stackend = STACK_END_MAGIC;    /* for overflow detection */
283
284 #ifdef CONFIG_CC_STACKPROTECTOR
285         tsk->stack_canary = get_random_int();
286 #endif
287
288         /*
289          * One for us, one for whoever does the "release_task()" (usually
290          * parent)
291          */
292         atomic_set(&tsk->usage, 2);
293 #ifdef CONFIG_BLK_DEV_IO_TRACE
294         tsk->btrace_seq = 0;
295 #endif
296         tsk->splice_pipe = NULL;
297
298         account_kernel_stack(ti, 1);
299
300         return tsk;
301
302 out:
303         free_thread_info(ti);
304         free_task_struct(tsk);
305         return NULL;
306 }
307
308 #ifdef CONFIG_MMU
309 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
310 {
311         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
312         struct rb_node **rb_link, *rb_parent;
313         int retval;
314         unsigned long charge;
315         struct mempolicy *pol;
316
317         down_write(&oldmm->mmap_sem);
318         flush_cache_dup_mm(oldmm);
319         /*
320          * Not linked in yet - no deadlock potential:
321          */
322         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
323
324         mm->locked_vm = 0;
325         mm->mmap = NULL;
326         mm->mmap_cache = NULL;
327         mm->free_area_cache = oldmm->mmap_base;
328         mm->cached_hole_size = ~0UL;
329         mm->map_count = 0;
330         cpumask_clear(mm_cpumask(mm));
331         mm->mm_rb = RB_ROOT;
332         rb_link = &mm->mm_rb.rb_node;
333         rb_parent = NULL;
334         pprev = &mm->mmap;
335         retval = ksm_fork(mm, oldmm);
336         if (retval)
337                 goto out;
338         retval = khugepaged_fork(mm, oldmm);
339         if (retval)
340                 goto out;
341
342         prev = NULL;
343         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
344                 struct file *file;
345
346                 if (mpnt->vm_flags & VM_DONTCOPY) {
347                         long pages = vma_pages(mpnt);
348                         mm->total_vm -= pages;
349                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
350                                                                 -pages);
351                         continue;
352                 }
353                 charge = 0;
354                 if (mpnt->vm_flags & VM_ACCOUNT) {
355                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
356                         if (security_vm_enough_memory(len))
357                                 goto fail_nomem;
358                         charge = len;
359                 }
360                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
361                 if (!tmp)
362                         goto fail_nomem;
363                 *tmp = *mpnt;
364                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
365                 pol = mpol_dup(vma_policy(mpnt));
366                 retval = PTR_ERR(pol);
367                 if (IS_ERR(pol))
368                         goto fail_nomem_policy;
369                 vma_set_policy(tmp, pol);
370                 tmp->vm_mm = mm;
371                 if (anon_vma_fork(tmp, mpnt))
372                         goto fail_nomem_anon_vma_fork;
373                 tmp->vm_flags &= ~VM_LOCKED;
374                 tmp->vm_next = tmp->vm_prev = NULL;
375                 file = tmp->vm_file;
376                 if (file) {
377                         struct inode *inode = file->f_path.dentry->d_inode;
378                         struct address_space *mapping = file->f_mapping;
379
380                         get_file(file);
381                         if (tmp->vm_flags & VM_DENYWRITE)
382                                 atomic_dec(&inode->i_writecount);
383                         mutex_lock(&mapping->i_mmap_mutex);
384                         if (tmp->vm_flags & VM_SHARED)
385                                 mapping->i_mmap_writable++;
386                         flush_dcache_mmap_lock(mapping);
387                         /* insert tmp into the share list, just after mpnt */
388                         vma_prio_tree_add(tmp, mpnt);
389                         flush_dcache_mmap_unlock(mapping);
390                         mutex_unlock(&mapping->i_mmap_mutex);
391                 }
392
393                 /*
394                  * Clear hugetlb-related page reserves for children. This only
395                  * affects MAP_PRIVATE mappings. Faults generated by the child
396                  * are not guaranteed to succeed, even if read-only
397                  */
398                 if (is_vm_hugetlb_page(tmp))
399                         reset_vma_resv_huge_pages(tmp);
400
401                 /*
402                  * Link in the new vma and copy the page table entries.
403                  */
404                 *pprev = tmp;
405                 pprev = &tmp->vm_next;
406                 tmp->vm_prev = prev;
407                 prev = tmp;
408
409                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
410                 rb_link = &tmp->vm_rb.rb_right;
411                 rb_parent = &tmp->vm_rb;
412
413                 mm->map_count++;
414                 retval = copy_page_range(mm, oldmm, mpnt);
415
416                 if (tmp->vm_ops && tmp->vm_ops->open)
417                         tmp->vm_ops->open(tmp);
418
419                 if (retval)
420                         goto out;
421         }
422         /* a new mm has just been created */
423         arch_dup_mmap(oldmm, mm);
424         retval = 0;
425 out:
426         up_write(&mm->mmap_sem);
427         flush_tlb_mm(oldmm);
428         up_write(&oldmm->mmap_sem);
429         return retval;
430 fail_nomem_anon_vma_fork:
431         mpol_put(pol);
432 fail_nomem_policy:
433         kmem_cache_free(vm_area_cachep, tmp);
434 fail_nomem:
435         retval = -ENOMEM;
436         vm_unacct_memory(charge);
437         goto out;
438 }
439
440 static inline int mm_alloc_pgd(struct mm_struct *mm)
441 {
442         mm->pgd = pgd_alloc(mm);
443         if (unlikely(!mm->pgd))
444                 return -ENOMEM;
445         return 0;
446 }
447
448 static inline void mm_free_pgd(struct mm_struct *mm)
449 {
450         pgd_free(mm, mm->pgd);
451 }
452 #else
453 #define dup_mmap(mm, oldmm)     (0)
454 #define mm_alloc_pgd(mm)        (0)
455 #define mm_free_pgd(mm)
456 #endif /* CONFIG_MMU */
457
458 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
459
460 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
461 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
462
463 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
464
465 static int __init coredump_filter_setup(char *s)
466 {
467         default_dump_filter =
468                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
469                 MMF_DUMP_FILTER_MASK;
470         return 1;
471 }
472
473 __setup("coredump_filter=", coredump_filter_setup);
474
475 #include <linux/init_task.h>
476
477 static void mm_init_aio(struct mm_struct *mm)
478 {
479 #ifdef CONFIG_AIO
480         spin_lock_init(&mm->ioctx_lock);
481         INIT_HLIST_HEAD(&mm->ioctx_list);
482 #endif
483 }
484
485 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
486 {
487         atomic_set(&mm->mm_users, 1);
488         atomic_set(&mm->mm_count, 1);
489         init_rwsem(&mm->mmap_sem);
490         INIT_LIST_HEAD(&mm->mmlist);
491         mm->flags = (current->mm) ?
492                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
493         mm->core_state = NULL;
494         mm->nr_ptes = 0;
495         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
496         spin_lock_init(&mm->page_table_lock);
497         mm->free_area_cache = TASK_UNMAPPED_BASE;
498         mm->cached_hole_size = ~0UL;
499         mm_init_aio(mm);
500         mm_init_owner(mm, p);
501
502         if (likely(!mm_alloc_pgd(mm))) {
503                 mm->def_flags = 0;
504                 mmu_notifier_mm_init(mm);
505                 return mm;
506         }
507
508         free_mm(mm);
509         return NULL;
510 }
511
512 /*
513  * Allocate and initialize an mm_struct.
514  */
515 struct mm_struct *mm_alloc(void)
516 {
517         struct mm_struct *mm;
518
519         mm = allocate_mm();
520         if (!mm)
521                 return NULL;
522
523         memset(mm, 0, sizeof(*mm));
524         mm_init_cpumask(mm);
525         return mm_init(mm, current);
526 }
527
528 /*
529  * Called when the last reference to the mm
530  * is dropped: either by a lazy thread or by
531  * mmput. Free the page directory and the mm.
532  */
533 void __mmdrop(struct mm_struct *mm)
534 {
535         BUG_ON(mm == &init_mm);
536         mm_free_pgd(mm);
537         destroy_context(mm);
538         mmu_notifier_mm_destroy(mm);
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540         VM_BUG_ON(mm->pmd_huge_pte);
541 #endif
542         free_mm(mm);
543 }
544 EXPORT_SYMBOL_GPL(__mmdrop);
545
546 /*
547  * Decrement the use count and release all resources for an mm.
548  */
549 void mmput(struct mm_struct *mm)
550 {
551         might_sleep();
552
553         if (atomic_dec_and_test(&mm->mm_users)) {
554                 exit_aio(mm);
555                 ksm_exit(mm);
556                 khugepaged_exit(mm); /* must run before exit_mmap */
557                 exit_mmap(mm);
558                 set_mm_exe_file(mm, NULL);
559                 if (!list_empty(&mm->mmlist)) {
560                         spin_lock(&mmlist_lock);
561                         list_del(&mm->mmlist);
562                         spin_unlock(&mmlist_lock);
563                 }
564                 put_swap_token(mm);
565                 if (mm->binfmt)
566                         module_put(mm->binfmt->module);
567                 mmdrop(mm);
568         }
569 }
570 EXPORT_SYMBOL_GPL(mmput);
571
572 /*
573  * We added or removed a vma mapping the executable. The vmas are only mapped
574  * during exec and are not mapped with the mmap system call.
575  * Callers must hold down_write() on the mm's mmap_sem for these
576  */
577 void added_exe_file_vma(struct mm_struct *mm)
578 {
579         mm->num_exe_file_vmas++;
580 }
581
582 void removed_exe_file_vma(struct mm_struct *mm)
583 {
584         mm->num_exe_file_vmas--;
585         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
586                 fput(mm->exe_file);
587                 mm->exe_file = NULL;
588         }
589
590 }
591
592 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
593 {
594         if (new_exe_file)
595                 get_file(new_exe_file);
596         if (mm->exe_file)
597                 fput(mm->exe_file);
598         mm->exe_file = new_exe_file;
599         mm->num_exe_file_vmas = 0;
600 }
601
602 struct file *get_mm_exe_file(struct mm_struct *mm)
603 {
604         struct file *exe_file;
605
606         /* We need mmap_sem to protect against races with removal of
607          * VM_EXECUTABLE vmas */
608         down_read(&mm->mmap_sem);
609         exe_file = mm->exe_file;
610         if (exe_file)
611                 get_file(exe_file);
612         up_read(&mm->mmap_sem);
613         return exe_file;
614 }
615
616 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
617 {
618         /* It's safe to write the exe_file pointer without exe_file_lock because
619          * this is called during fork when the task is not yet in /proc */
620         newmm->exe_file = get_mm_exe_file(oldmm);
621 }
622
623 /**
624  * get_task_mm - acquire a reference to the task's mm
625  *
626  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
627  * this kernel workthread has transiently adopted a user mm with use_mm,
628  * to do its AIO) is not set and if so returns a reference to it, after
629  * bumping up the use count.  User must release the mm via mmput()
630  * after use.  Typically used by /proc and ptrace.
631  */
632 struct mm_struct *get_task_mm(struct task_struct *task)
633 {
634         struct mm_struct *mm;
635
636         task_lock(task);
637         mm = task->mm;
638         if (mm) {
639                 if (task->flags & PF_KTHREAD)
640                         mm = NULL;
641                 else
642                         atomic_inc(&mm->mm_users);
643         }
644         task_unlock(task);
645         return mm;
646 }
647 EXPORT_SYMBOL_GPL(get_task_mm);
648
649 /* Please note the differences between mmput and mm_release.
650  * mmput is called whenever we stop holding onto a mm_struct,
651  * error success whatever.
652  *
653  * mm_release is called after a mm_struct has been removed
654  * from the current process.
655  *
656  * This difference is important for error handling, when we
657  * only half set up a mm_struct for a new process and need to restore
658  * the old one.  Because we mmput the new mm_struct before
659  * restoring the old one. . .
660  * Eric Biederman 10 January 1998
661  */
662 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
663 {
664         struct completion *vfork_done = tsk->vfork_done;
665
666         /* Get rid of any futexes when releasing the mm */
667 #ifdef CONFIG_FUTEX
668         if (unlikely(tsk->robust_list)) {
669                 exit_robust_list(tsk);
670                 tsk->robust_list = NULL;
671         }
672 #ifdef CONFIG_COMPAT
673         if (unlikely(tsk->compat_robust_list)) {
674                 compat_exit_robust_list(tsk);
675                 tsk->compat_robust_list = NULL;
676         }
677 #endif
678         if (unlikely(!list_empty(&tsk->pi_state_list)))
679                 exit_pi_state_list(tsk);
680 #endif
681
682         /* Get rid of any cached register state */
683         deactivate_mm(tsk, mm);
684
685         /* notify parent sleeping on vfork() */
686         if (vfork_done) {
687                 tsk->vfork_done = NULL;
688                 complete(vfork_done);
689         }
690
691         /*
692          * If we're exiting normally, clear a user-space tid field if
693          * requested.  We leave this alone when dying by signal, to leave
694          * the value intact in a core dump, and to save the unnecessary
695          * trouble otherwise.  Userland only wants this done for a sys_exit.
696          */
697         if (tsk->clear_child_tid) {
698                 if (!(tsk->flags & PF_SIGNALED) &&
699                     atomic_read(&mm->mm_users) > 1) {
700                         /*
701                          * We don't check the error code - if userspace has
702                          * not set up a proper pointer then tough luck.
703                          */
704                         put_user(0, tsk->clear_child_tid);
705                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
706                                         1, NULL, NULL, 0);
707                 }
708                 tsk->clear_child_tid = NULL;
709         }
710 }
711
712 /*
713  * Allocate a new mm structure and copy contents from the
714  * mm structure of the passed in task structure.
715  */
716 struct mm_struct *dup_mm(struct task_struct *tsk)
717 {
718         struct mm_struct *mm, *oldmm = current->mm;
719         int err;
720
721         if (!oldmm)
722                 return NULL;
723
724         mm = allocate_mm();
725         if (!mm)
726                 goto fail_nomem;
727
728         memcpy(mm, oldmm, sizeof(*mm));
729         mm_init_cpumask(mm);
730
731         /* Initializing for Swap token stuff */
732         mm->token_priority = 0;
733         mm->last_interval = 0;
734
735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
736         mm->pmd_huge_pte = NULL;
737 #endif
738
739         if (!mm_init(mm, tsk))
740                 goto fail_nomem;
741
742         if (init_new_context(tsk, mm))
743                 goto fail_nocontext;
744
745         dup_mm_exe_file(oldmm, mm);
746
747         err = dup_mmap(mm, oldmm);
748         if (err)
749                 goto free_pt;
750
751         mm->hiwater_rss = get_mm_rss(mm);
752         mm->hiwater_vm = mm->total_vm;
753
754         if (mm->binfmt && !try_module_get(mm->binfmt->module))
755                 goto free_pt;
756
757         return mm;
758
759 free_pt:
760         /* don't put binfmt in mmput, we haven't got module yet */
761         mm->binfmt = NULL;
762         mmput(mm);
763
764 fail_nomem:
765         return NULL;
766
767 fail_nocontext:
768         /*
769          * If init_new_context() failed, we cannot use mmput() to free the mm
770          * because it calls destroy_context()
771          */
772         mm_free_pgd(mm);
773         free_mm(mm);
774         return NULL;
775 }
776
777 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
778 {
779         struct mm_struct *mm, *oldmm;
780         int retval;
781
782         tsk->min_flt = tsk->maj_flt = 0;
783         tsk->nvcsw = tsk->nivcsw = 0;
784 #ifdef CONFIG_DETECT_HUNG_TASK
785         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
786 #endif
787
788         tsk->mm = NULL;
789         tsk->active_mm = NULL;
790
791         /*
792          * Are we cloning a kernel thread?
793          *
794          * We need to steal a active VM for that..
795          */
796         oldmm = current->mm;
797         if (!oldmm)
798                 return 0;
799
800         if (clone_flags & CLONE_VM) {
801                 atomic_inc(&oldmm->mm_users);
802                 mm = oldmm;
803                 goto good_mm;
804         }
805
806         retval = -ENOMEM;
807         mm = dup_mm(tsk);
808         if (!mm)
809                 goto fail_nomem;
810
811 good_mm:
812         /* Initializing for Swap token stuff */
813         mm->token_priority = 0;
814         mm->last_interval = 0;
815
816         tsk->mm = mm;
817         tsk->active_mm = mm;
818         return 0;
819
820 fail_nomem:
821         return retval;
822 }
823
824 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
825 {
826         struct fs_struct *fs = current->fs;
827         if (clone_flags & CLONE_FS) {
828                 /* tsk->fs is already what we want */
829                 spin_lock(&fs->lock);
830                 if (fs->in_exec) {
831                         spin_unlock(&fs->lock);
832                         return -EAGAIN;
833                 }
834                 fs->users++;
835                 spin_unlock(&fs->lock);
836                 return 0;
837         }
838         tsk->fs = copy_fs_struct(fs);
839         if (!tsk->fs)
840                 return -ENOMEM;
841         return 0;
842 }
843
844 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
845 {
846         struct files_struct *oldf, *newf;
847         int error = 0;
848
849         /*
850          * A background process may not have any files ...
851          */
852         oldf = current->files;
853         if (!oldf)
854                 goto out;
855
856         if (clone_flags & CLONE_FILES) {
857                 atomic_inc(&oldf->count);
858                 goto out;
859         }
860
861         newf = dup_fd(oldf, &error);
862         if (!newf)
863                 goto out;
864
865         tsk->files = newf;
866         error = 0;
867 out:
868         return error;
869 }
870
871 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
872 {
873 #ifdef CONFIG_BLOCK
874         struct io_context *ioc = current->io_context;
875
876         if (!ioc)
877                 return 0;
878         /*
879          * Share io context with parent, if CLONE_IO is set
880          */
881         if (clone_flags & CLONE_IO) {
882                 tsk->io_context = ioc_task_link(ioc);
883                 if (unlikely(!tsk->io_context))
884                         return -ENOMEM;
885         } else if (ioprio_valid(ioc->ioprio)) {
886                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
887                 if (unlikely(!tsk->io_context))
888                         return -ENOMEM;
889
890                 tsk->io_context->ioprio = ioc->ioprio;
891         }
892 #endif
893         return 0;
894 }
895
896 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
897 {
898         struct sighand_struct *sig;
899
900         if (clone_flags & CLONE_SIGHAND) {
901                 atomic_inc(&current->sighand->count);
902                 return 0;
903         }
904         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
905         rcu_assign_pointer(tsk->sighand, sig);
906         if (!sig)
907                 return -ENOMEM;
908         atomic_set(&sig->count, 1);
909         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
910         return 0;
911 }
912
913 void __cleanup_sighand(struct sighand_struct *sighand)
914 {
915         if (atomic_dec_and_test(&sighand->count)) {
916                 signalfd_cleanup(sighand);
917                 kmem_cache_free(sighand_cachep, sighand);
918         }
919 }
920
921
922 /*
923  * Initialize POSIX timer handling for a thread group.
924  */
925 static void posix_cpu_timers_init_group(struct signal_struct *sig)
926 {
927         unsigned long cpu_limit;
928
929         /* Thread group counters. */
930         thread_group_cputime_init(sig);
931
932         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
933         if (cpu_limit != RLIM_INFINITY) {
934                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
935                 sig->cputimer.running = 1;
936         }
937
938         /* The timer lists. */
939         INIT_LIST_HEAD(&sig->cpu_timers[0]);
940         INIT_LIST_HEAD(&sig->cpu_timers[1]);
941         INIT_LIST_HEAD(&sig->cpu_timers[2]);
942 }
943
944 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
945 {
946         struct signal_struct *sig;
947
948         if (clone_flags & CLONE_THREAD)
949                 return 0;
950
951         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
952         tsk->signal = sig;
953         if (!sig)
954                 return -ENOMEM;
955
956         sig->nr_threads = 1;
957         atomic_set(&sig->live, 1);
958         atomic_set(&sig->sigcnt, 1);
959         init_waitqueue_head(&sig->wait_chldexit);
960         if (clone_flags & CLONE_NEWPID)
961                 sig->flags |= SIGNAL_UNKILLABLE;
962         sig->curr_target = tsk;
963         init_sigpending(&sig->shared_pending);
964         INIT_LIST_HEAD(&sig->posix_timers);
965
966         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
967         sig->real_timer.function = it_real_fn;
968
969         task_lock(current->group_leader);
970         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
971         task_unlock(current->group_leader);
972
973         posix_cpu_timers_init_group(sig);
974
975         tty_audit_fork(sig);
976         sched_autogroup_fork(sig);
977
978 #ifdef CONFIG_CGROUPS
979         init_rwsem(&sig->threadgroup_fork_lock);
980 #endif
981
982         sig->oom_adj = current->signal->oom_adj;
983         sig->oom_score_adj = current->signal->oom_score_adj;
984         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
985
986         mutex_init(&sig->cred_guard_mutex);
987
988         return 0;
989 }
990
991 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
992 {
993         unsigned long new_flags = p->flags;
994
995         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
996         new_flags |= PF_FORKNOEXEC;
997         new_flags |= PF_STARTING;
998         p->flags = new_flags;
999         clear_freeze_flag(p);
1000 }
1001
1002 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1003 {
1004         current->clear_child_tid = tidptr;
1005
1006         return task_pid_vnr(current);
1007 }
1008
1009 static void rt_mutex_init_task(struct task_struct *p)
1010 {
1011         raw_spin_lock_init(&p->pi_lock);
1012 #ifdef CONFIG_RT_MUTEXES
1013         plist_head_init(&p->pi_waiters);
1014         p->pi_blocked_on = NULL;
1015 #endif
1016 }
1017
1018 #ifdef CONFIG_MM_OWNER
1019 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1020 {
1021         mm->owner = p;
1022 }
1023 #endif /* CONFIG_MM_OWNER */
1024
1025 /*
1026  * Initialize POSIX timer handling for a single task.
1027  */
1028 static void posix_cpu_timers_init(struct task_struct *tsk)
1029 {
1030         tsk->cputime_expires.prof_exp = cputime_zero;
1031         tsk->cputime_expires.virt_exp = cputime_zero;
1032         tsk->cputime_expires.sched_exp = 0;
1033         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1034         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1035         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1036 }
1037
1038 /*
1039  * This creates a new process as a copy of the old one,
1040  * but does not actually start it yet.
1041  *
1042  * It copies the registers, and all the appropriate
1043  * parts of the process environment (as per the clone
1044  * flags). The actual kick-off is left to the caller.
1045  */
1046 static struct task_struct *copy_process(unsigned long clone_flags,
1047                                         unsigned long stack_start,
1048                                         struct pt_regs *regs,
1049                                         unsigned long stack_size,
1050                                         int __user *child_tidptr,
1051                                         struct pid *pid,
1052                                         int trace)
1053 {
1054         int retval;
1055         struct task_struct *p;
1056         int cgroup_callbacks_done = 0;
1057
1058         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1059                 return ERR_PTR(-EINVAL);
1060
1061         /*
1062          * Thread groups must share signals as well, and detached threads
1063          * can only be started up within the thread group.
1064          */
1065         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1066                 return ERR_PTR(-EINVAL);
1067
1068         /*
1069          * Shared signal handlers imply shared VM. By way of the above,
1070          * thread groups also imply shared VM. Blocking this case allows
1071          * for various simplifications in other code.
1072          */
1073         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1074                 return ERR_PTR(-EINVAL);
1075
1076         /*
1077          * Siblings of global init remain as zombies on exit since they are
1078          * not reaped by their parent (swapper). To solve this and to avoid
1079          * multi-rooted process trees, prevent global and container-inits
1080          * from creating siblings.
1081          */
1082         if ((clone_flags & CLONE_PARENT) &&
1083                                 current->signal->flags & SIGNAL_UNKILLABLE)
1084                 return ERR_PTR(-EINVAL);
1085
1086         retval = security_task_create(clone_flags);
1087         if (retval)
1088                 goto fork_out;
1089
1090         retval = -ENOMEM;
1091         p = dup_task_struct(current);
1092         if (!p)
1093                 goto fork_out;
1094
1095         ftrace_graph_init_task(p);
1096
1097         rt_mutex_init_task(p);
1098
1099 #ifdef CONFIG_PROVE_LOCKING
1100         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1101         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1102 #endif
1103         retval = -EAGAIN;
1104         if (atomic_read(&p->real_cred->user->processes) >=
1105                         task_rlimit(p, RLIMIT_NPROC)) {
1106                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1107                     p->real_cred->user != INIT_USER)
1108                         goto bad_fork_free;
1109         }
1110         current->flags &= ~PF_NPROC_EXCEEDED;
1111
1112         retval = copy_creds(p, clone_flags);
1113         if (retval < 0)
1114                 goto bad_fork_free;
1115
1116         /*
1117          * If multiple threads are within copy_process(), then this check
1118          * triggers too late. This doesn't hurt, the check is only there
1119          * to stop root fork bombs.
1120          */
1121         retval = -EAGAIN;
1122         if (nr_threads >= max_threads)
1123                 goto bad_fork_cleanup_count;
1124
1125         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1126                 goto bad_fork_cleanup_count;
1127
1128         p->did_exec = 0;
1129         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1130         copy_flags(clone_flags, p);
1131         INIT_LIST_HEAD(&p->children);
1132         INIT_LIST_HEAD(&p->sibling);
1133         rcu_copy_process(p);
1134         p->vfork_done = NULL;
1135         spin_lock_init(&p->alloc_lock);
1136
1137         init_sigpending(&p->pending);
1138
1139         p->utime = cputime_zero;
1140         p->stime = cputime_zero;
1141         p->gtime = cputime_zero;
1142         p->utimescaled = cputime_zero;
1143         p->stimescaled = cputime_zero;
1144 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1145         p->prev_utime = cputime_zero;
1146         p->prev_stime = cputime_zero;
1147 #endif
1148 #if defined(SPLIT_RSS_COUNTING)
1149         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1150 #endif
1151
1152         p->default_timer_slack_ns = current->timer_slack_ns;
1153
1154         task_io_accounting_init(&p->ioac);
1155         acct_clear_integrals(p);
1156
1157         posix_cpu_timers_init(p);
1158
1159         do_posix_clock_monotonic_gettime(&p->start_time);
1160         p->real_start_time = p->start_time;
1161         monotonic_to_bootbased(&p->real_start_time);
1162         p->io_context = NULL;
1163         p->audit_context = NULL;
1164         if (clone_flags & CLONE_THREAD)
1165                 threadgroup_fork_read_lock(current);
1166         cgroup_fork(p);
1167 #ifdef CONFIG_NUMA
1168         p->mempolicy = mpol_dup(p->mempolicy);
1169         if (IS_ERR(p->mempolicy)) {
1170                 retval = PTR_ERR(p->mempolicy);
1171                 p->mempolicy = NULL;
1172                 goto bad_fork_cleanup_cgroup;
1173         }
1174         mpol_fix_fork_child_flag(p);
1175 #endif
1176 #ifdef CONFIG_CPUSETS
1177         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1178         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1179 #endif
1180 #ifdef CONFIG_TRACE_IRQFLAGS
1181         p->irq_events = 0;
1182 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1183         p->hardirqs_enabled = 1;
1184 #else
1185         p->hardirqs_enabled = 0;
1186 #endif
1187         p->hardirq_enable_ip = 0;
1188         p->hardirq_enable_event = 0;
1189         p->hardirq_disable_ip = _THIS_IP_;
1190         p->hardirq_disable_event = 0;
1191         p->softirqs_enabled = 1;
1192         p->softirq_enable_ip = _THIS_IP_;
1193         p->softirq_enable_event = 0;
1194         p->softirq_disable_ip = 0;
1195         p->softirq_disable_event = 0;
1196         p->hardirq_context = 0;
1197         p->softirq_context = 0;
1198 #endif
1199 #ifdef CONFIG_LOCKDEP
1200         p->lockdep_depth = 0; /* no locks held yet */
1201         p->curr_chain_key = 0;
1202         p->lockdep_recursion = 0;
1203 #endif
1204
1205 #ifdef CONFIG_DEBUG_MUTEXES
1206         p->blocked_on = NULL; /* not blocked yet */
1207 #endif
1208 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1209         p->memcg_batch.do_batch = 0;
1210         p->memcg_batch.memcg = NULL;
1211 #endif
1212
1213         /* Perform scheduler related setup. Assign this task to a CPU. */
1214         sched_fork(p);
1215
1216         retval = perf_event_init_task(p);
1217         if (retval)
1218                 goto bad_fork_cleanup_policy;
1219         retval = audit_alloc(p);
1220         if (retval)
1221                 goto bad_fork_cleanup_policy;
1222         /* copy all the process information */
1223         retval = copy_semundo(clone_flags, p);
1224         if (retval)
1225                 goto bad_fork_cleanup_audit;
1226         retval = copy_files(clone_flags, p);
1227         if (retval)
1228                 goto bad_fork_cleanup_semundo;
1229         retval = copy_fs(clone_flags, p);
1230         if (retval)
1231                 goto bad_fork_cleanup_files;
1232         retval = copy_sighand(clone_flags, p);
1233         if (retval)
1234                 goto bad_fork_cleanup_fs;
1235         retval = copy_signal(clone_flags, p);
1236         if (retval)
1237                 goto bad_fork_cleanup_sighand;
1238         retval = copy_mm(clone_flags, p);
1239         if (retval)
1240                 goto bad_fork_cleanup_signal;
1241         retval = copy_namespaces(clone_flags, p);
1242         if (retval)
1243                 goto bad_fork_cleanup_mm;
1244         retval = copy_io(clone_flags, p);
1245         if (retval)
1246                 goto bad_fork_cleanup_namespaces;
1247         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1248         if (retval)
1249                 goto bad_fork_cleanup_io;
1250
1251         if (pid != &init_struct_pid) {
1252                 retval = -ENOMEM;
1253                 pid = alloc_pid(p->nsproxy->pid_ns);
1254                 if (!pid)
1255                         goto bad_fork_cleanup_io;
1256         }
1257
1258         p->pid = pid_nr(pid);
1259         p->tgid = p->pid;
1260         if (clone_flags & CLONE_THREAD)
1261                 p->tgid = current->tgid;
1262
1263         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1264         /*
1265          * Clear TID on mm_release()?
1266          */
1267         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1268 #ifdef CONFIG_BLOCK
1269         p->plug = NULL;
1270 #endif
1271 #ifdef CONFIG_FUTEX
1272         p->robust_list = NULL;
1273 #ifdef CONFIG_COMPAT
1274         p->compat_robust_list = NULL;
1275 #endif
1276         INIT_LIST_HEAD(&p->pi_state_list);
1277         p->pi_state_cache = NULL;
1278 #endif
1279         /*
1280          * sigaltstack should be cleared when sharing the same VM
1281          */
1282         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1283                 p->sas_ss_sp = p->sas_ss_size = 0;
1284
1285         /*
1286          * Syscall tracing and stepping should be turned off in the
1287          * child regardless of CLONE_PTRACE.
1288          */
1289         user_disable_single_step(p);
1290         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1291 #ifdef TIF_SYSCALL_EMU
1292         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1293 #endif
1294         clear_all_latency_tracing(p);
1295
1296         /* ok, now we should be set up.. */
1297         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1298         p->pdeath_signal = 0;
1299         p->exit_state = 0;
1300
1301         p->nr_dirtied = 0;
1302         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1303
1304         /*
1305          * Ok, make it visible to the rest of the system.
1306          * We dont wake it up yet.
1307          */
1308         p->group_leader = p;
1309         INIT_LIST_HEAD(&p->thread_group);
1310
1311         /* Now that the task is set up, run cgroup callbacks if
1312          * necessary. We need to run them before the task is visible
1313          * on the tasklist. */
1314         cgroup_fork_callbacks(p);
1315         cgroup_callbacks_done = 1;
1316
1317         /* Need tasklist lock for parent etc handling! */
1318         write_lock_irq(&tasklist_lock);
1319
1320         /* CLONE_PARENT re-uses the old parent */
1321         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1322                 p->real_parent = current->real_parent;
1323                 p->parent_exec_id = current->parent_exec_id;
1324         } else {
1325                 p->real_parent = current;
1326                 p->parent_exec_id = current->self_exec_id;
1327         }
1328
1329         spin_lock(&current->sighand->siglock);
1330
1331         /*
1332          * Process group and session signals need to be delivered to just the
1333          * parent before the fork or both the parent and the child after the
1334          * fork. Restart if a signal comes in before we add the new process to
1335          * it's process group.
1336          * A fatal signal pending means that current will exit, so the new
1337          * thread can't slip out of an OOM kill (or normal SIGKILL).
1338         */
1339         recalc_sigpending();
1340         if (signal_pending(current)) {
1341                 spin_unlock(&current->sighand->siglock);
1342                 write_unlock_irq(&tasklist_lock);
1343                 retval = -ERESTARTNOINTR;
1344                 goto bad_fork_free_pid;
1345         }
1346
1347         if (clone_flags & CLONE_THREAD) {
1348                 current->signal->nr_threads++;
1349                 atomic_inc(&current->signal->live);
1350                 atomic_inc(&current->signal->sigcnt);
1351                 p->group_leader = current->group_leader;
1352                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1353         }
1354
1355         if (likely(p->pid)) {
1356                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1357
1358                 if (thread_group_leader(p)) {
1359                         if (is_child_reaper(pid))
1360                                 p->nsproxy->pid_ns->child_reaper = p;
1361
1362                         p->signal->leader_pid = pid;
1363                         p->signal->tty = tty_kref_get(current->signal->tty);
1364                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1365                         attach_pid(p, PIDTYPE_SID, task_session(current));
1366                         list_add_tail(&p->sibling, &p->real_parent->children);
1367                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1368                         __this_cpu_inc(process_counts);
1369                 }
1370                 attach_pid(p, PIDTYPE_PID, pid);
1371                 nr_threads++;
1372         }
1373
1374         total_forks++;
1375         spin_unlock(&current->sighand->siglock);
1376         write_unlock_irq(&tasklist_lock);
1377         proc_fork_connector(p);
1378         cgroup_post_fork(p);
1379         if (clone_flags & CLONE_THREAD)
1380                 threadgroup_fork_read_unlock(current);
1381         perf_event_fork(p);
1382         return p;
1383
1384 bad_fork_free_pid:
1385         if (pid != &init_struct_pid)
1386                 free_pid(pid);
1387 bad_fork_cleanup_io:
1388         if (p->io_context)
1389                 exit_io_context(p);
1390 bad_fork_cleanup_namespaces:
1391         if (unlikely(clone_flags & CLONE_NEWPID))
1392                 pid_ns_release_proc(p->nsproxy->pid_ns);
1393         exit_task_namespaces(p);
1394 bad_fork_cleanup_mm:
1395         if (p->mm)
1396                 mmput(p->mm);
1397 bad_fork_cleanup_signal:
1398         if (!(clone_flags & CLONE_THREAD))
1399                 free_signal_struct(p->signal);
1400 bad_fork_cleanup_sighand:
1401         __cleanup_sighand(p->sighand);
1402 bad_fork_cleanup_fs:
1403         exit_fs(p); /* blocking */
1404 bad_fork_cleanup_files:
1405         exit_files(p); /* blocking */
1406 bad_fork_cleanup_semundo:
1407         exit_sem(p);
1408 bad_fork_cleanup_audit:
1409         audit_free(p);
1410 bad_fork_cleanup_policy:
1411         perf_event_free_task(p);
1412 #ifdef CONFIG_NUMA
1413         mpol_put(p->mempolicy);
1414 bad_fork_cleanup_cgroup:
1415 #endif
1416         if (clone_flags & CLONE_THREAD)
1417                 threadgroup_fork_read_unlock(current);
1418         cgroup_exit(p, cgroup_callbacks_done);
1419         delayacct_tsk_free(p);
1420         module_put(task_thread_info(p)->exec_domain->module);
1421 bad_fork_cleanup_count:
1422         atomic_dec(&p->cred->user->processes);
1423         exit_creds(p);
1424 bad_fork_free:
1425         free_task(p);
1426 fork_out:
1427         return ERR_PTR(retval);
1428 }
1429
1430 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1431 {
1432         memset(regs, 0, sizeof(struct pt_regs));
1433         return regs;
1434 }
1435
1436 static inline void init_idle_pids(struct pid_link *links)
1437 {
1438         enum pid_type type;
1439
1440         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1441                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1442                 links[type].pid = &init_struct_pid;
1443         }
1444 }
1445
1446 struct task_struct * __cpuinit fork_idle(int cpu)
1447 {
1448         struct task_struct *task;
1449         struct pt_regs regs;
1450
1451         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1452                             &init_struct_pid, 0);
1453         if (!IS_ERR(task)) {
1454                 init_idle_pids(task->pids);
1455                 init_idle(task, cpu);
1456         }
1457
1458         return task;
1459 }
1460
1461 /*
1462  *  Ok, this is the main fork-routine.
1463  *
1464  * It copies the process, and if successful kick-starts
1465  * it and waits for it to finish using the VM if required.
1466  */
1467 long do_fork(unsigned long clone_flags,
1468               unsigned long stack_start,
1469               struct pt_regs *regs,
1470               unsigned long stack_size,
1471               int __user *parent_tidptr,
1472               int __user *child_tidptr)
1473 {
1474         struct task_struct *p;
1475         int trace = 0;
1476         long nr;
1477
1478         /*
1479          * Do some preliminary argument and permissions checking before we
1480          * actually start allocating stuff
1481          */
1482         if (clone_flags & CLONE_NEWUSER) {
1483                 if (clone_flags & CLONE_THREAD)
1484                         return -EINVAL;
1485                 /* hopefully this check will go away when userns support is
1486                  * complete
1487                  */
1488                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1489                                 !capable(CAP_SETGID))
1490                         return -EPERM;
1491         }
1492
1493         /*
1494          * Determine whether and which event to report to ptracer.  When
1495          * called from kernel_thread or CLONE_UNTRACED is explicitly
1496          * requested, no event is reported; otherwise, report if the event
1497          * for the type of forking is enabled.
1498          */
1499         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1500                 if (clone_flags & CLONE_VFORK)
1501                         trace = PTRACE_EVENT_VFORK;
1502                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1503                         trace = PTRACE_EVENT_CLONE;
1504                 else
1505                         trace = PTRACE_EVENT_FORK;
1506
1507                 if (likely(!ptrace_event_enabled(current, trace)))
1508                         trace = 0;
1509         }
1510
1511         p = copy_process(clone_flags, stack_start, regs, stack_size,
1512                          child_tidptr, NULL, trace);
1513         /*
1514          * Do this prior waking up the new thread - the thread pointer
1515          * might get invalid after that point, if the thread exits quickly.
1516          */
1517         if (!IS_ERR(p)) {
1518                 struct completion vfork;
1519
1520                 trace_sched_process_fork(current, p);
1521
1522                 nr = task_pid_vnr(p);
1523
1524                 if (clone_flags & CLONE_PARENT_SETTID)
1525                         put_user(nr, parent_tidptr);
1526
1527                 if (clone_flags & CLONE_VFORK) {
1528                         p->vfork_done = &vfork;
1529                         init_completion(&vfork);
1530                 }
1531
1532                 audit_finish_fork(p);
1533
1534                 /*
1535                  * We set PF_STARTING at creation in case tracing wants to
1536                  * use this to distinguish a fully live task from one that
1537                  * hasn't finished SIGSTOP raising yet.  Now we clear it
1538                  * and set the child going.
1539                  */
1540                 p->flags &= ~PF_STARTING;
1541
1542                 wake_up_new_task(p);
1543
1544                 /* forking complete and child started to run, tell ptracer */
1545                 if (unlikely(trace))
1546                         ptrace_event(trace, nr);
1547
1548                 if (clone_flags & CLONE_VFORK) {
1549                         freezer_do_not_count();
1550                         wait_for_completion(&vfork);
1551                         freezer_count();
1552                         ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1553                 }
1554         } else {
1555                 nr = PTR_ERR(p);
1556         }
1557         return nr;
1558 }
1559
1560 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1561 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1562 #endif
1563
1564 static void sighand_ctor(void *data)
1565 {
1566         struct sighand_struct *sighand = data;
1567
1568         spin_lock_init(&sighand->siglock);
1569         init_waitqueue_head(&sighand->signalfd_wqh);
1570 }
1571
1572 void __init proc_caches_init(void)
1573 {
1574         sighand_cachep = kmem_cache_create("sighand_cache",
1575                         sizeof(struct sighand_struct), 0,
1576                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1577                         SLAB_NOTRACK, sighand_ctor);
1578         signal_cachep = kmem_cache_create("signal_cache",
1579                         sizeof(struct signal_struct), 0,
1580                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1581         files_cachep = kmem_cache_create("files_cache",
1582                         sizeof(struct files_struct), 0,
1583                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1584         fs_cachep = kmem_cache_create("fs_cache",
1585                         sizeof(struct fs_struct), 0,
1586                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1587         /*
1588          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1589          * whole struct cpumask for the OFFSTACK case. We could change
1590          * this to *only* allocate as much of it as required by the
1591          * maximum number of CPU's we can ever have.  The cpumask_allocation
1592          * is at the end of the structure, exactly for that reason.
1593          */
1594         mm_cachep = kmem_cache_create("mm_struct",
1595                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1596                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1597         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1598         mmap_init();
1599         nsproxy_cache_init();
1600 }
1601
1602 /*
1603  * Check constraints on flags passed to the unshare system call.
1604  */
1605 static int check_unshare_flags(unsigned long unshare_flags)
1606 {
1607         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1608                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1609                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1610                 return -EINVAL;
1611         /*
1612          * Not implemented, but pretend it works if there is nothing to
1613          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1614          * needs to unshare vm.
1615          */
1616         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1617                 /* FIXME: get_task_mm() increments ->mm_users */
1618                 if (atomic_read(&current->mm->mm_users) > 1)
1619                         return -EINVAL;
1620         }
1621
1622         return 0;
1623 }
1624
1625 /*
1626  * Unshare the filesystem structure if it is being shared
1627  */
1628 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1629 {
1630         struct fs_struct *fs = current->fs;
1631
1632         if (!(unshare_flags & CLONE_FS) || !fs)
1633                 return 0;
1634
1635         /* don't need lock here; in the worst case we'll do useless copy */
1636         if (fs->users == 1)
1637                 return 0;
1638
1639         *new_fsp = copy_fs_struct(fs);
1640         if (!*new_fsp)
1641                 return -ENOMEM;
1642
1643         return 0;
1644 }
1645
1646 /*
1647  * Unshare file descriptor table if it is being shared
1648  */
1649 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1650 {
1651         struct files_struct *fd = current->files;
1652         int error = 0;
1653
1654         if ((unshare_flags & CLONE_FILES) &&
1655             (fd && atomic_read(&fd->count) > 1)) {
1656                 *new_fdp = dup_fd(fd, &error);
1657                 if (!*new_fdp)
1658                         return error;
1659         }
1660
1661         return 0;
1662 }
1663
1664 /*
1665  * unshare allows a process to 'unshare' part of the process
1666  * context which was originally shared using clone.  copy_*
1667  * functions used by do_fork() cannot be used here directly
1668  * because they modify an inactive task_struct that is being
1669  * constructed. Here we are modifying the current, active,
1670  * task_struct.
1671  */
1672 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1673 {
1674         struct fs_struct *fs, *new_fs = NULL;
1675         struct files_struct *fd, *new_fd = NULL;
1676         struct nsproxy *new_nsproxy = NULL;
1677         int do_sysvsem = 0;
1678         int err;
1679
1680         err = check_unshare_flags(unshare_flags);
1681         if (err)
1682                 goto bad_unshare_out;
1683
1684         /*
1685          * If unsharing namespace, must also unshare filesystem information.
1686          */
1687         if (unshare_flags & CLONE_NEWNS)
1688                 unshare_flags |= CLONE_FS;
1689         /*
1690          * CLONE_NEWIPC must also detach from the undolist: after switching
1691          * to a new ipc namespace, the semaphore arrays from the old
1692          * namespace are unreachable.
1693          */
1694         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1695                 do_sysvsem = 1;
1696         err = unshare_fs(unshare_flags, &new_fs);
1697         if (err)
1698                 goto bad_unshare_out;
1699         err = unshare_fd(unshare_flags, &new_fd);
1700         if (err)
1701                 goto bad_unshare_cleanup_fs;
1702         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1703         if (err)
1704                 goto bad_unshare_cleanup_fd;
1705
1706         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1707                 if (do_sysvsem) {
1708                         /*
1709                          * CLONE_SYSVSEM is equivalent to sys_exit().
1710                          */
1711                         exit_sem(current);
1712                 }
1713
1714                 if (new_nsproxy) {
1715                         switch_task_namespaces(current, new_nsproxy);
1716                         new_nsproxy = NULL;
1717                 }
1718
1719                 task_lock(current);
1720
1721                 if (new_fs) {
1722                         fs = current->fs;
1723                         spin_lock(&fs->lock);
1724                         current->fs = new_fs;
1725                         if (--fs->users)
1726                                 new_fs = NULL;
1727                         else
1728                                 new_fs = fs;
1729                         spin_unlock(&fs->lock);
1730                 }
1731
1732                 if (new_fd) {
1733                         fd = current->files;
1734                         current->files = new_fd;
1735                         new_fd = fd;
1736                 }
1737
1738                 task_unlock(current);
1739         }
1740
1741         if (new_nsproxy)
1742                 put_nsproxy(new_nsproxy);
1743
1744 bad_unshare_cleanup_fd:
1745         if (new_fd)
1746                 put_files_struct(new_fd);
1747
1748 bad_unshare_cleanup_fs:
1749         if (new_fs)
1750                 free_fs_struct(new_fs);
1751
1752 bad_unshare_out:
1753         return err;
1754 }
1755
1756 /*
1757  *      Helper to unshare the files of the current task.
1758  *      We don't want to expose copy_files internals to
1759  *      the exec layer of the kernel.
1760  */
1761
1762 int unshare_files(struct files_struct **displaced)
1763 {
1764         struct task_struct *task = current;
1765         struct files_struct *copy = NULL;
1766         int error;
1767
1768         error = unshare_fd(CLONE_FILES, &copy);
1769         if (error || !copy) {
1770                 *displaced = NULL;
1771                 return error;
1772         }
1773         *displaced = task->files;
1774         task_lock(task);
1775         task->files = copy;
1776         task_unlock(task);
1777         return 0;
1778 }