2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
42 #include <asm/irq_regs.h>
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
51 static void remote_function(void *data)
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 tfc->ret = tfc->func(tfc->info);
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 struct remote_function_call data = {
85 .ret = -ESRCH, /* No such (running) process */
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 struct remote_function_call data = {
109 .ret = -ENXIO, /* No such CPU */
112 smp_call_function_single(cpu, remote_function, &data, 1);
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
122 EVENT_FLEXIBLE = 0x1,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
131 struct jump_label_key perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
149 int sysctl_perf_event_paranoid __read_mostly = 1;
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
155 * max perf event sample rate
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
176 static atomic64_t perf_event_id;
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
188 static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
191 void __weak perf_event_print_debug(void) { }
193 extern __weak const char *perf_pmu_name(void)
198 static inline u64 perf_clock(void)
200 return local_clock();
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
212 raw_spin_lock(&cpuctx->ctx.lock);
214 raw_spin_lock(&ctx->lock);
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
225 #ifdef CONFIG_CGROUP_PERF
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
240 perf_cgroup_match(struct perf_event *event)
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
248 static inline void perf_get_cgroup(struct perf_event *event)
250 css_get(&event->cgrp->css);
253 static inline void perf_put_cgroup(struct perf_event *event)
255 css_put(&event->cgrp->css);
258 static inline void perf_detach_cgroup(struct perf_event *event)
260 perf_put_cgroup(event);
264 static inline int is_cgroup_event(struct perf_event *event)
266 return event->cgrp != NULL;
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
271 struct perf_cgroup_info *t;
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
279 struct perf_cgroup_info *info;
284 info = this_cpu_ptr(cgrp->info);
286 info->time += now - info->timestamp;
287 info->timestamp = now;
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
294 __update_cgrp_time(cgrp_out);
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
299 struct perf_cgroup *cgrp;
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
305 if (!is_cgroup_event(event))
308 cgrp = perf_cgroup_from_task(current);
310 * Do not update time when cgroup is not active
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
328 if (!task || !ctx->nr_cgroups)
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
333 info->timestamp = ctx->timestamp;
336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
340 * reschedule events based on the cgroup constraint of task.
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
345 void perf_cgroup_switch(struct task_struct *task, int mode)
347 struct perf_cpu_context *cpuctx;
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
356 local_irq_save(flags);
359 * we reschedule only in the presence of cgroup
360 * constrained events.
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
374 if (cpuctx->ctx.nr_cgroups > 0) {
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
387 if (mode & PERF_CGROUP_SWIN) {
388 WARN_ON_ONCE(cpuctx->cgrp);
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
403 local_irq_restore(flags);
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
413 * we come here when we know perf_cgroup_events > 0
415 cgrp1 = perf_cgroup_from_task(task);
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
422 cgrp2 = perf_cgroup_from_task(next);
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
440 * we come here when we know perf_cgroup_events > 0
442 cgrp1 = perf_cgroup_from_task(task);
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
463 int ret = 0, fput_needed;
465 file = fget_light(fd, &fput_needed);
469 css = cgroup_css_from_dir(file, perf_subsys_id);
475 cgrp = container_of(css, struct perf_cgroup, css);
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
491 fput_light(file, fput_needed);
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
504 perf_cgroup_defer_enabled(struct perf_event *event)
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
523 if (!event->cgrp_defer_enabled)
526 event->cgrp_defer_enabled = 0;
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
536 #else /* !CONFIG_CGROUP_PERF */
539 perf_cgroup_match(struct perf_event *event)
544 static inline void perf_detach_cgroup(struct perf_event *event)
547 static inline int is_cgroup_event(struct perf_event *event)
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
604 perf_cgroup_defer_enabled(struct perf_event *event)
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
615 void perf_pmu_disable(struct pmu *pmu)
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
619 pmu->pmu_disable(pmu);
622 void perf_pmu_enable(struct pmu *pmu)
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
626 pmu->pmu_enable(pmu);
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
636 static void perf_pmu_rotate_start(struct pmu *pmu)
638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 struct list_head *head = &__get_cpu_var(rotation_list);
641 WARN_ON(!irqs_disabled());
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
647 static void get_ctx(struct perf_event_context *ctx)
649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
652 static void put_ctx(struct perf_event_context *ctx)
654 if (atomic_dec_and_test(&ctx->refcount)) {
656 put_ctx(ctx->parent_ctx);
658 put_task_struct(ctx->task);
659 kfree_rcu(ctx, rcu_head);
663 static void unclone_ctx(struct perf_event_context *ctx)
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
674 * only top level events have the pid namespace they were created in
677 event = event->parent;
679 return task_tgid_nr_ns(p, event->ns);
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
685 * only top level events have the pid namespace they were created in
688 event = event->parent;
690 return task_pid_nr_ns(p, event->ns);
694 * If we inherit events we want to return the parent event id
697 static u64 primary_event_id(struct perf_event *event)
702 id = event->parent->id;
708 * Get the perf_event_context for a task and lock it.
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
715 struct perf_event_context *ctx;
719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
724 * perf_event_task_sched_out, though the
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
731 raw_spin_lock_irqsave(&ctx->lock, *flags);
732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
754 struct perf_event_context *ctx;
757 ctx = perf_lock_task_context(task, ctxn, &flags);
760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
765 static void perf_unpin_context(struct perf_event_context *ctx)
769 raw_spin_lock_irqsave(&ctx->lock, flags);
771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
775 * Update the record of the current time in a context.
777 static void update_context_time(struct perf_event_context *ctx)
779 u64 now = perf_clock();
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
785 static u64 perf_event_time(struct perf_event *event)
787 struct perf_event_context *ctx = event->ctx;
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
792 return ctx ? ctx->time : 0;
796 * Update the total_time_enabled and total_time_running fields for a event.
797 * The caller of this function needs to hold the ctx->lock.
799 static void update_event_times(struct perf_event *event)
801 struct perf_event_context *ctx = event->ctx;
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
814 * That is why we treat cgroup events differently
817 if (is_cgroup_event(event))
818 run_end = perf_event_time(event);
819 else if (ctx->is_active)
822 run_end = event->tstamp_stopped;
824 event->total_time_enabled = run_end - event->tstamp_enabled;
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
829 run_end = perf_event_time(event);
831 event->total_time_running = run_end - event->tstamp_running;
836 * Update total_time_enabled and total_time_running for all events in a group.
838 static void update_group_times(struct perf_event *leader)
840 struct perf_event *event;
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
853 return &ctx->flexible_groups;
857 * Add a event from the lists for its context.
858 * Must be called with ctx->mutex and ctx->lock held.
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
871 if (event->group_leader == event) {
872 struct list_head *list;
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
881 if (is_cgroup_event(event))
884 list_add_rcu(&event->event_entry, &ctx->event_list);
886 perf_pmu_rotate_start(ctx->pmu);
888 if (event->attr.inherit_stat)
893 * Called at perf_event creation and when events are attached/detached from a
896 static void perf_event__read_size(struct perf_event *event)
898 int entry = sizeof(u64); /* value */
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
917 event->read_size = size;
920 static void perf_event__header_size(struct perf_event *event)
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
926 perf_event__read_size(event);
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
940 event->header_size = size;
943 static void perf_event__id_header_size(struct perf_event *event)
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
964 event->id_header_size = size;
967 static void perf_group_attach(struct perf_event *event)
969 struct perf_event *group_leader = event->group_leader, *pos;
972 * We can have double attach due to group movement in perf_event_open.
974 if (event->attach_state & PERF_ATTACH_GROUP)
977 event->attach_state |= PERF_ATTACH_GROUP;
979 if (group_leader == event)
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
989 perf_event__header_size(group_leader);
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
996 * Remove a event from the lists for its context.
997 * Must be called with ctx->mutex and ctx->lock held.
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1002 struct perf_cpu_context *cpuctx;
1004 * We can have double detach due to exit/hot-unplug + close.
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1011 if (is_cgroup_event(event)) {
1013 cpuctx = __get_cpu_context(ctx);
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1024 if (event->attr.inherit_stat)
1027 list_del_rcu(&event->event_entry);
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
1032 update_group_times(event);
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
1045 static void perf_group_detach(struct perf_event *event)
1047 struct perf_event *sibling, *tmp;
1048 struct list_head *list = NULL;
1051 * We can have double detach due to exit/hot-unplug + close.
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1059 * If this is a sibling, remove it from its group.
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
1073 * to whatever list we are on.
1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1077 list_move_tail(&sibling->group_entry, list);
1078 sibling->group_leader = sibling;
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
1085 perf_event__header_size(event->group_leader);
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
1092 event_filter_match(struct perf_event *event)
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
1099 event_sched_out(struct perf_event *event,
1100 struct perf_cpu_context *cpuctx,
1101 struct perf_event_context *ctx)
1103 u64 tstamp = perf_event_time(event);
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
1113 delta = tstamp - event->tstamp_stopped;
1114 event->tstamp_running += delta;
1115 event->tstamp_stopped = tstamp;
1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
1126 event->tstamp_stopped = tstamp;
1127 event->pmu->del(event, 0);
1130 if (!is_software_event(event))
1131 cpuctx->active_oncpu--;
1133 if (event->attr.exclusive || !cpuctx->active_oncpu)
1134 cpuctx->exclusive = 0;
1138 group_sched_out(struct perf_event *group_event,
1139 struct perf_cpu_context *cpuctx,
1140 struct perf_event_context *ctx)
1142 struct perf_event *event;
1143 int state = group_event->state;
1145 event_sched_out(group_event, cpuctx, ctx);
1148 * Schedule out siblings (if any):
1150 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1151 event_sched_out(event, cpuctx, ctx);
1153 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1154 cpuctx->exclusive = 0;
1158 * Cross CPU call to remove a performance event
1160 * We disable the event on the hardware level first. After that we
1161 * remove it from the context list.
1163 static int __perf_remove_from_context(void *info)
1165 struct perf_event *event = info;
1166 struct perf_event_context *ctx = event->ctx;
1167 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1169 raw_spin_lock(&ctx->lock);
1170 event_sched_out(event, cpuctx, ctx);
1171 list_del_event(event, ctx);
1172 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1174 cpuctx->task_ctx = NULL;
1176 raw_spin_unlock(&ctx->lock);
1183 * Remove the event from a task's (or a CPU's) list of events.
1185 * CPU events are removed with a smp call. For task events we only
1186 * call when the task is on a CPU.
1188 * If event->ctx is a cloned context, callers must make sure that
1189 * every task struct that event->ctx->task could possibly point to
1190 * remains valid. This is OK when called from perf_release since
1191 * that only calls us on the top-level context, which can't be a clone.
1192 * When called from perf_event_exit_task, it's OK because the
1193 * context has been detached from its task.
1195 static void perf_remove_from_context(struct perf_event *event)
1197 struct perf_event_context *ctx = event->ctx;
1198 struct task_struct *task = ctx->task;
1200 lockdep_assert_held(&ctx->mutex);
1204 * Per cpu events are removed via an smp call and
1205 * the removal is always successful.
1207 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1212 if (!task_function_call(task, __perf_remove_from_context, event))
1215 raw_spin_lock_irq(&ctx->lock);
1217 * If we failed to find a running task, but find the context active now
1218 * that we've acquired the ctx->lock, retry.
1220 if (ctx->is_active) {
1221 raw_spin_unlock_irq(&ctx->lock);
1226 * Since the task isn't running, its safe to remove the event, us
1227 * holding the ctx->lock ensures the task won't get scheduled in.
1229 list_del_event(event, ctx);
1230 raw_spin_unlock_irq(&ctx->lock);
1234 * Cross CPU call to disable a performance event
1236 static int __perf_event_disable(void *info)
1238 struct perf_event *event = info;
1239 struct perf_event_context *ctx = event->ctx;
1240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 * If this is a per-task event, need to check whether this
1244 * event's task is the current task on this cpu.
1246 * Can trigger due to concurrent perf_event_context_sched_out()
1247 * flipping contexts around.
1249 if (ctx->task && cpuctx->task_ctx != ctx)
1252 raw_spin_lock(&ctx->lock);
1255 * If the event is on, turn it off.
1256 * If it is in error state, leave it in error state.
1258 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1259 update_context_time(ctx);
1260 update_cgrp_time_from_event(event);
1261 update_group_times(event);
1262 if (event == event->group_leader)
1263 group_sched_out(event, cpuctx, ctx);
1265 event_sched_out(event, cpuctx, ctx);
1266 event->state = PERF_EVENT_STATE_OFF;
1269 raw_spin_unlock(&ctx->lock);
1277 * If event->ctx is a cloned context, callers must make sure that
1278 * every task struct that event->ctx->task could possibly point to
1279 * remains valid. This condition is satisifed when called through
1280 * perf_event_for_each_child or perf_event_for_each because they
1281 * hold the top-level event's child_mutex, so any descendant that
1282 * goes to exit will block in sync_child_event.
1283 * When called from perf_pending_event it's OK because event->ctx
1284 * is the current context on this CPU and preemption is disabled,
1285 * hence we can't get into perf_event_task_sched_out for this context.
1287 void perf_event_disable(struct perf_event *event)
1289 struct perf_event_context *ctx = event->ctx;
1290 struct task_struct *task = ctx->task;
1294 * Disable the event on the cpu that it's on
1296 cpu_function_call(event->cpu, __perf_event_disable, event);
1301 if (!task_function_call(task, __perf_event_disable, event))
1304 raw_spin_lock_irq(&ctx->lock);
1306 * If the event is still active, we need to retry the cross-call.
1308 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1309 raw_spin_unlock_irq(&ctx->lock);
1311 * Reload the task pointer, it might have been changed by
1312 * a concurrent perf_event_context_sched_out().
1319 * Since we have the lock this context can't be scheduled
1320 * in, so we can change the state safely.
1322 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1323 update_group_times(event);
1324 event->state = PERF_EVENT_STATE_OFF;
1326 raw_spin_unlock_irq(&ctx->lock);
1329 static void perf_set_shadow_time(struct perf_event *event,
1330 struct perf_event_context *ctx,
1334 * use the correct time source for the time snapshot
1336 * We could get by without this by leveraging the
1337 * fact that to get to this function, the caller
1338 * has most likely already called update_context_time()
1339 * and update_cgrp_time_xx() and thus both timestamp
1340 * are identical (or very close). Given that tstamp is,
1341 * already adjusted for cgroup, we could say that:
1342 * tstamp - ctx->timestamp
1344 * tstamp - cgrp->timestamp.
1346 * Then, in perf_output_read(), the calculation would
1347 * work with no changes because:
1348 * - event is guaranteed scheduled in
1349 * - no scheduled out in between
1350 * - thus the timestamp would be the same
1352 * But this is a bit hairy.
1354 * So instead, we have an explicit cgroup call to remain
1355 * within the time time source all along. We believe it
1356 * is cleaner and simpler to understand.
1358 if (is_cgroup_event(event))
1359 perf_cgroup_set_shadow_time(event, tstamp);
1361 event->shadow_ctx_time = tstamp - ctx->timestamp;
1364 #define MAX_INTERRUPTS (~0ULL)
1366 static void perf_log_throttle(struct perf_event *event, int enable);
1369 event_sched_in(struct perf_event *event,
1370 struct perf_cpu_context *cpuctx,
1371 struct perf_event_context *ctx)
1373 u64 tstamp = perf_event_time(event);
1375 if (event->state <= PERF_EVENT_STATE_OFF)
1378 event->state = PERF_EVENT_STATE_ACTIVE;
1379 event->oncpu = smp_processor_id();
1382 * Unthrottle events, since we scheduled we might have missed several
1383 * ticks already, also for a heavily scheduling task there is little
1384 * guarantee it'll get a tick in a timely manner.
1386 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1387 perf_log_throttle(event, 1);
1388 event->hw.interrupts = 0;
1392 * The new state must be visible before we turn it on in the hardware:
1396 if (event->pmu->add(event, PERF_EF_START)) {
1397 event->state = PERF_EVENT_STATE_INACTIVE;
1402 event->tstamp_running += tstamp - event->tstamp_stopped;
1404 perf_set_shadow_time(event, ctx, tstamp);
1406 if (!is_software_event(event))
1407 cpuctx->active_oncpu++;
1410 if (event->attr.exclusive)
1411 cpuctx->exclusive = 1;
1417 group_sched_in(struct perf_event *group_event,
1418 struct perf_cpu_context *cpuctx,
1419 struct perf_event_context *ctx)
1421 struct perf_event *event, *partial_group = NULL;
1422 struct pmu *pmu = group_event->pmu;
1423 u64 now = ctx->time;
1424 bool simulate = false;
1426 if (group_event->state == PERF_EVENT_STATE_OFF)
1429 pmu->start_txn(pmu);
1431 if (event_sched_in(group_event, cpuctx, ctx)) {
1432 pmu->cancel_txn(pmu);
1437 * Schedule in siblings as one group (if any):
1439 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1440 if (event_sched_in(event, cpuctx, ctx)) {
1441 partial_group = event;
1446 if (!pmu->commit_txn(pmu))
1451 * Groups can be scheduled in as one unit only, so undo any
1452 * partial group before returning:
1453 * The events up to the failed event are scheduled out normally,
1454 * tstamp_stopped will be updated.
1456 * The failed events and the remaining siblings need to have
1457 * their timings updated as if they had gone thru event_sched_in()
1458 * and event_sched_out(). This is required to get consistent timings
1459 * across the group. This also takes care of the case where the group
1460 * could never be scheduled by ensuring tstamp_stopped is set to mark
1461 * the time the event was actually stopped, such that time delta
1462 * calculation in update_event_times() is correct.
1464 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1465 if (event == partial_group)
1469 event->tstamp_running += now - event->tstamp_stopped;
1470 event->tstamp_stopped = now;
1472 event_sched_out(event, cpuctx, ctx);
1475 event_sched_out(group_event, cpuctx, ctx);
1477 pmu->cancel_txn(pmu);
1483 * Work out whether we can put this event group on the CPU now.
1485 static int group_can_go_on(struct perf_event *event,
1486 struct perf_cpu_context *cpuctx,
1490 * Groups consisting entirely of software events can always go on.
1492 if (event->group_flags & PERF_GROUP_SOFTWARE)
1495 * If an exclusive group is already on, no other hardware
1498 if (cpuctx->exclusive)
1501 * If this group is exclusive and there are already
1502 * events on the CPU, it can't go on.
1504 if (event->attr.exclusive && cpuctx->active_oncpu)
1507 * Otherwise, try to add it if all previous groups were able
1513 static void add_event_to_ctx(struct perf_event *event,
1514 struct perf_event_context *ctx)
1516 u64 tstamp = perf_event_time(event);
1518 list_add_event(event, ctx);
1519 perf_group_attach(event);
1520 event->tstamp_enabled = tstamp;
1521 event->tstamp_running = tstamp;
1522 event->tstamp_stopped = tstamp;
1525 static void task_ctx_sched_out(struct perf_event_context *ctx);
1527 ctx_sched_in(struct perf_event_context *ctx,
1528 struct perf_cpu_context *cpuctx,
1529 enum event_type_t event_type,
1530 struct task_struct *task);
1532 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1533 struct perf_event_context *ctx,
1534 struct task_struct *task)
1536 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1538 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1539 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1541 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1545 * Cross CPU call to install and enable a performance event
1547 * Must be called with ctx->mutex held
1549 static int __perf_install_in_context(void *info)
1551 struct perf_event *event = info;
1552 struct perf_event_context *ctx = event->ctx;
1553 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1554 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1555 struct task_struct *task = current;
1557 perf_ctx_lock(cpuctx, task_ctx);
1558 perf_pmu_disable(cpuctx->ctx.pmu);
1561 * If there was an active task_ctx schedule it out.
1564 task_ctx_sched_out(task_ctx);
1567 * If the context we're installing events in is not the
1568 * active task_ctx, flip them.
1570 if (ctx->task && task_ctx != ctx) {
1572 raw_spin_unlock(&task_ctx->lock);
1573 raw_spin_lock(&ctx->lock);
1578 cpuctx->task_ctx = task_ctx;
1579 task = task_ctx->task;
1582 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1584 update_context_time(ctx);
1586 * update cgrp time only if current cgrp
1587 * matches event->cgrp. Must be done before
1588 * calling add_event_to_ctx()
1590 update_cgrp_time_from_event(event);
1592 add_event_to_ctx(event, ctx);
1595 * Schedule everything back in
1597 perf_event_sched_in(cpuctx, task_ctx, task);
1599 perf_pmu_enable(cpuctx->ctx.pmu);
1600 perf_ctx_unlock(cpuctx, task_ctx);
1606 * Attach a performance event to a context
1608 * First we add the event to the list with the hardware enable bit
1609 * in event->hw_config cleared.
1611 * If the event is attached to a task which is on a CPU we use a smp
1612 * call to enable it in the task context. The task might have been
1613 * scheduled away, but we check this in the smp call again.
1616 perf_install_in_context(struct perf_event_context *ctx,
1617 struct perf_event *event,
1620 struct task_struct *task = ctx->task;
1622 lockdep_assert_held(&ctx->mutex);
1628 * Per cpu events are installed via an smp call and
1629 * the install is always successful.
1631 cpu_function_call(cpu, __perf_install_in_context, event);
1636 if (!task_function_call(task, __perf_install_in_context, event))
1639 raw_spin_lock_irq(&ctx->lock);
1641 * If we failed to find a running task, but find the context active now
1642 * that we've acquired the ctx->lock, retry.
1644 if (ctx->is_active) {
1645 raw_spin_unlock_irq(&ctx->lock);
1650 * Since the task isn't running, its safe to add the event, us holding
1651 * the ctx->lock ensures the task won't get scheduled in.
1653 add_event_to_ctx(event, ctx);
1654 raw_spin_unlock_irq(&ctx->lock);
1658 * Put a event into inactive state and update time fields.
1659 * Enabling the leader of a group effectively enables all
1660 * the group members that aren't explicitly disabled, so we
1661 * have to update their ->tstamp_enabled also.
1662 * Note: this works for group members as well as group leaders
1663 * since the non-leader members' sibling_lists will be empty.
1665 static void __perf_event_mark_enabled(struct perf_event *event,
1666 struct perf_event_context *ctx)
1668 struct perf_event *sub;
1669 u64 tstamp = perf_event_time(event);
1671 event->state = PERF_EVENT_STATE_INACTIVE;
1672 event->tstamp_enabled = tstamp - event->total_time_enabled;
1673 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1674 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1675 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 * Cross CPU call to enable a performance event
1682 static int __perf_event_enable(void *info)
1684 struct perf_event *event = info;
1685 struct perf_event_context *ctx = event->ctx;
1686 struct perf_event *leader = event->group_leader;
1687 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1690 if (WARN_ON_ONCE(!ctx->is_active))
1693 raw_spin_lock(&ctx->lock);
1694 update_context_time(ctx);
1696 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1700 * set current task's cgroup time reference point
1702 perf_cgroup_set_timestamp(current, ctx);
1704 __perf_event_mark_enabled(event, ctx);
1706 if (!event_filter_match(event)) {
1707 if (is_cgroup_event(event))
1708 perf_cgroup_defer_enabled(event);
1713 * If the event is in a group and isn't the group leader,
1714 * then don't put it on unless the group is on.
1716 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1719 if (!group_can_go_on(event, cpuctx, 1)) {
1722 if (event == leader)
1723 err = group_sched_in(event, cpuctx, ctx);
1725 err = event_sched_in(event, cpuctx, ctx);
1730 * If this event can't go on and it's part of a
1731 * group, then the whole group has to come off.
1733 if (leader != event)
1734 group_sched_out(leader, cpuctx, ctx);
1735 if (leader->attr.pinned) {
1736 update_group_times(leader);
1737 leader->state = PERF_EVENT_STATE_ERROR;
1742 raw_spin_unlock(&ctx->lock);
1750 * If event->ctx is a cloned context, callers must make sure that
1751 * every task struct that event->ctx->task could possibly point to
1752 * remains valid. This condition is satisfied when called through
1753 * perf_event_for_each_child or perf_event_for_each as described
1754 * for perf_event_disable.
1756 void perf_event_enable(struct perf_event *event)
1758 struct perf_event_context *ctx = event->ctx;
1759 struct task_struct *task = ctx->task;
1763 * Enable the event on the cpu that it's on
1765 cpu_function_call(event->cpu, __perf_event_enable, event);
1769 raw_spin_lock_irq(&ctx->lock);
1770 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1774 * If the event is in error state, clear that first.
1775 * That way, if we see the event in error state below, we
1776 * know that it has gone back into error state, as distinct
1777 * from the task having been scheduled away before the
1778 * cross-call arrived.
1780 if (event->state == PERF_EVENT_STATE_ERROR)
1781 event->state = PERF_EVENT_STATE_OFF;
1784 if (!ctx->is_active) {
1785 __perf_event_mark_enabled(event, ctx);
1789 raw_spin_unlock_irq(&ctx->lock);
1791 if (!task_function_call(task, __perf_event_enable, event))
1794 raw_spin_lock_irq(&ctx->lock);
1797 * If the context is active and the event is still off,
1798 * we need to retry the cross-call.
1800 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1802 * task could have been flipped by a concurrent
1803 * perf_event_context_sched_out()
1810 raw_spin_unlock_irq(&ctx->lock);
1813 int perf_event_refresh(struct perf_event *event, int refresh)
1816 * not supported on inherited events
1818 if (event->attr.inherit || !is_sampling_event(event))
1821 atomic_add(refresh, &event->event_limit);
1822 perf_event_enable(event);
1826 EXPORT_SYMBOL_GPL(perf_event_refresh);
1828 static void ctx_sched_out(struct perf_event_context *ctx,
1829 struct perf_cpu_context *cpuctx,
1830 enum event_type_t event_type)
1832 struct perf_event *event;
1833 int is_active = ctx->is_active;
1835 ctx->is_active &= ~event_type;
1836 if (likely(!ctx->nr_events))
1839 update_context_time(ctx);
1840 update_cgrp_time_from_cpuctx(cpuctx);
1841 if (!ctx->nr_active)
1844 perf_pmu_disable(ctx->pmu);
1845 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1846 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1847 group_sched_out(event, cpuctx, ctx);
1850 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1851 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
1854 perf_pmu_enable(ctx->pmu);
1858 * Test whether two contexts are equivalent, i.e. whether they
1859 * have both been cloned from the same version of the same context
1860 * and they both have the same number of enabled events.
1861 * If the number of enabled events is the same, then the set
1862 * of enabled events should be the same, because these are both
1863 * inherited contexts, therefore we can't access individual events
1864 * in them directly with an fd; we can only enable/disable all
1865 * events via prctl, or enable/disable all events in a family
1866 * via ioctl, which will have the same effect on both contexts.
1868 static int context_equiv(struct perf_event_context *ctx1,
1869 struct perf_event_context *ctx2)
1871 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1872 && ctx1->parent_gen == ctx2->parent_gen
1873 && !ctx1->pin_count && !ctx2->pin_count;
1876 static void __perf_event_sync_stat(struct perf_event *event,
1877 struct perf_event *next_event)
1881 if (!event->attr.inherit_stat)
1885 * Update the event value, we cannot use perf_event_read()
1886 * because we're in the middle of a context switch and have IRQs
1887 * disabled, which upsets smp_call_function_single(), however
1888 * we know the event must be on the current CPU, therefore we
1889 * don't need to use it.
1891 switch (event->state) {
1892 case PERF_EVENT_STATE_ACTIVE:
1893 event->pmu->read(event);
1896 case PERF_EVENT_STATE_INACTIVE:
1897 update_event_times(event);
1905 * In order to keep per-task stats reliable we need to flip the event
1906 * values when we flip the contexts.
1908 value = local64_read(&next_event->count);
1909 value = local64_xchg(&event->count, value);
1910 local64_set(&next_event->count, value);
1912 swap(event->total_time_enabled, next_event->total_time_enabled);
1913 swap(event->total_time_running, next_event->total_time_running);
1916 * Since we swizzled the values, update the user visible data too.
1918 perf_event_update_userpage(event);
1919 perf_event_update_userpage(next_event);
1922 #define list_next_entry(pos, member) \
1923 list_entry(pos->member.next, typeof(*pos), member)
1925 static void perf_event_sync_stat(struct perf_event_context *ctx,
1926 struct perf_event_context *next_ctx)
1928 struct perf_event *event, *next_event;
1933 update_context_time(ctx);
1935 event = list_first_entry(&ctx->event_list,
1936 struct perf_event, event_entry);
1938 next_event = list_first_entry(&next_ctx->event_list,
1939 struct perf_event, event_entry);
1941 while (&event->event_entry != &ctx->event_list &&
1942 &next_event->event_entry != &next_ctx->event_list) {
1944 __perf_event_sync_stat(event, next_event);
1946 event = list_next_entry(event, event_entry);
1947 next_event = list_next_entry(next_event, event_entry);
1951 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1952 struct task_struct *next)
1954 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1955 struct perf_event_context *next_ctx;
1956 struct perf_event_context *parent;
1957 struct perf_cpu_context *cpuctx;
1963 cpuctx = __get_cpu_context(ctx);
1964 if (!cpuctx->task_ctx)
1968 parent = rcu_dereference(ctx->parent_ctx);
1969 next_ctx = next->perf_event_ctxp[ctxn];
1970 if (parent && next_ctx &&
1971 rcu_dereference(next_ctx->parent_ctx) == parent) {
1973 * Looks like the two contexts are clones, so we might be
1974 * able to optimize the context switch. We lock both
1975 * contexts and check that they are clones under the
1976 * lock (including re-checking that neither has been
1977 * uncloned in the meantime). It doesn't matter which
1978 * order we take the locks because no other cpu could
1979 * be trying to lock both of these tasks.
1981 raw_spin_lock(&ctx->lock);
1982 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1983 if (context_equiv(ctx, next_ctx)) {
1985 * XXX do we need a memory barrier of sorts
1986 * wrt to rcu_dereference() of perf_event_ctxp
1988 task->perf_event_ctxp[ctxn] = next_ctx;
1989 next->perf_event_ctxp[ctxn] = ctx;
1991 next_ctx->task = task;
1994 perf_event_sync_stat(ctx, next_ctx);
1996 raw_spin_unlock(&next_ctx->lock);
1997 raw_spin_unlock(&ctx->lock);
2002 raw_spin_lock(&ctx->lock);
2003 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2004 cpuctx->task_ctx = NULL;
2005 raw_spin_unlock(&ctx->lock);
2009 #define for_each_task_context_nr(ctxn) \
2010 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2013 * Called from scheduler to remove the events of the current task,
2014 * with interrupts disabled.
2016 * We stop each event and update the event value in event->count.
2018 * This does not protect us against NMI, but disable()
2019 * sets the disabled bit in the control field of event _before_
2020 * accessing the event control register. If a NMI hits, then it will
2021 * not restart the event.
2023 void __perf_event_task_sched_out(struct task_struct *task,
2024 struct task_struct *next)
2028 for_each_task_context_nr(ctxn)
2029 perf_event_context_sched_out(task, ctxn, next);
2032 * if cgroup events exist on this CPU, then we need
2033 * to check if we have to switch out PMU state.
2034 * cgroup event are system-wide mode only
2036 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2037 perf_cgroup_sched_out(task, next);
2040 static void task_ctx_sched_out(struct perf_event_context *ctx)
2042 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2044 if (!cpuctx->task_ctx)
2047 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2050 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2051 cpuctx->task_ctx = NULL;
2055 * Called with IRQs disabled
2057 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2058 enum event_type_t event_type)
2060 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2064 ctx_pinned_sched_in(struct perf_event_context *ctx,
2065 struct perf_cpu_context *cpuctx)
2067 struct perf_event *event;
2069 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2070 if (event->state <= PERF_EVENT_STATE_OFF)
2072 if (!event_filter_match(event))
2075 /* may need to reset tstamp_enabled */
2076 if (is_cgroup_event(event))
2077 perf_cgroup_mark_enabled(event, ctx);
2079 if (group_can_go_on(event, cpuctx, 1))
2080 group_sched_in(event, cpuctx, ctx);
2083 * If this pinned group hasn't been scheduled,
2084 * put it in error state.
2086 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2087 update_group_times(event);
2088 event->state = PERF_EVENT_STATE_ERROR;
2094 ctx_flexible_sched_in(struct perf_event_context *ctx,
2095 struct perf_cpu_context *cpuctx)
2097 struct perf_event *event;
2100 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2101 /* Ignore events in OFF or ERROR state */
2102 if (event->state <= PERF_EVENT_STATE_OFF)
2105 * Listen to the 'cpu' scheduling filter constraint
2108 if (!event_filter_match(event))
2111 /* may need to reset tstamp_enabled */
2112 if (is_cgroup_event(event))
2113 perf_cgroup_mark_enabled(event, ctx);
2115 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2116 if (group_sched_in(event, cpuctx, ctx))
2123 ctx_sched_in(struct perf_event_context *ctx,
2124 struct perf_cpu_context *cpuctx,
2125 enum event_type_t event_type,
2126 struct task_struct *task)
2129 int is_active = ctx->is_active;
2131 ctx->is_active |= event_type;
2132 if (likely(!ctx->nr_events))
2136 ctx->timestamp = now;
2137 perf_cgroup_set_timestamp(task, ctx);
2139 * First go through the list and put on any pinned groups
2140 * in order to give them the best chance of going on.
2142 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2143 ctx_pinned_sched_in(ctx, cpuctx);
2145 /* Then walk through the lower prio flexible groups */
2146 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2147 ctx_flexible_sched_in(ctx, cpuctx);
2150 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2151 enum event_type_t event_type,
2152 struct task_struct *task)
2154 struct perf_event_context *ctx = &cpuctx->ctx;
2156 ctx_sched_in(ctx, cpuctx, event_type, task);
2159 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2160 struct task_struct *task)
2162 struct perf_cpu_context *cpuctx;
2164 cpuctx = __get_cpu_context(ctx);
2165 if (cpuctx->task_ctx == ctx)
2168 perf_ctx_lock(cpuctx, ctx);
2169 perf_pmu_disable(ctx->pmu);
2171 * We want to keep the following priority order:
2172 * cpu pinned (that don't need to move), task pinned,
2173 * cpu flexible, task flexible.
2175 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2178 cpuctx->task_ctx = ctx;
2180 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2182 perf_pmu_enable(ctx->pmu);
2183 perf_ctx_unlock(cpuctx, ctx);
2186 * Since these rotations are per-cpu, we need to ensure the
2187 * cpu-context we got scheduled on is actually rotating.
2189 perf_pmu_rotate_start(ctx->pmu);
2193 * Called from scheduler to add the events of the current task
2194 * with interrupts disabled.
2196 * We restore the event value and then enable it.
2198 * This does not protect us against NMI, but enable()
2199 * sets the enabled bit in the control field of event _before_
2200 * accessing the event control register. If a NMI hits, then it will
2201 * keep the event running.
2203 void __perf_event_task_sched_in(struct task_struct *prev,
2204 struct task_struct *task)
2206 struct perf_event_context *ctx;
2209 for_each_task_context_nr(ctxn) {
2210 ctx = task->perf_event_ctxp[ctxn];
2214 perf_event_context_sched_in(ctx, task);
2217 * if cgroup events exist on this CPU, then we need
2218 * to check if we have to switch in PMU state.
2219 * cgroup event are system-wide mode only
2221 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2222 perf_cgroup_sched_in(prev, task);
2225 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2227 u64 frequency = event->attr.sample_freq;
2228 u64 sec = NSEC_PER_SEC;
2229 u64 divisor, dividend;
2231 int count_fls, nsec_fls, frequency_fls, sec_fls;
2233 count_fls = fls64(count);
2234 nsec_fls = fls64(nsec);
2235 frequency_fls = fls64(frequency);
2239 * We got @count in @nsec, with a target of sample_freq HZ
2240 * the target period becomes:
2243 * period = -------------------
2244 * @nsec * sample_freq
2249 * Reduce accuracy by one bit such that @a and @b converge
2250 * to a similar magnitude.
2252 #define REDUCE_FLS(a, b) \
2254 if (a##_fls > b##_fls) { \
2264 * Reduce accuracy until either term fits in a u64, then proceed with
2265 * the other, so that finally we can do a u64/u64 division.
2267 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2268 REDUCE_FLS(nsec, frequency);
2269 REDUCE_FLS(sec, count);
2272 if (count_fls + sec_fls > 64) {
2273 divisor = nsec * frequency;
2275 while (count_fls + sec_fls > 64) {
2276 REDUCE_FLS(count, sec);
2280 dividend = count * sec;
2282 dividend = count * sec;
2284 while (nsec_fls + frequency_fls > 64) {
2285 REDUCE_FLS(nsec, frequency);
2289 divisor = nsec * frequency;
2295 return div64_u64(dividend, divisor);
2298 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2300 struct hw_perf_event *hwc = &event->hw;
2301 s64 period, sample_period;
2304 period = perf_calculate_period(event, nsec, count);
2306 delta = (s64)(period - hwc->sample_period);
2307 delta = (delta + 7) / 8; /* low pass filter */
2309 sample_period = hwc->sample_period + delta;
2314 hwc->sample_period = sample_period;
2316 if (local64_read(&hwc->period_left) > 8*sample_period) {
2317 event->pmu->stop(event, PERF_EF_UPDATE);
2318 local64_set(&hwc->period_left, 0);
2319 event->pmu->start(event, PERF_EF_RELOAD);
2323 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2325 struct perf_event *event;
2326 struct hw_perf_event *hwc;
2327 u64 interrupts, now;
2330 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2331 if (event->state != PERF_EVENT_STATE_ACTIVE)
2334 if (!event_filter_match(event))
2339 interrupts = hwc->interrupts;
2340 hwc->interrupts = 0;
2343 * unthrottle events on the tick
2345 if (interrupts == MAX_INTERRUPTS) {
2346 perf_log_throttle(event, 1);
2347 event->pmu->start(event, 0);
2350 if (!event->attr.freq || !event->attr.sample_freq)
2353 event->pmu->read(event);
2354 now = local64_read(&event->count);
2355 delta = now - hwc->freq_count_stamp;
2356 hwc->freq_count_stamp = now;
2359 perf_adjust_period(event, period, delta);
2364 * Round-robin a context's events:
2366 static void rotate_ctx(struct perf_event_context *ctx)
2369 * Rotate the first entry last of non-pinned groups. Rotation might be
2370 * disabled by the inheritance code.
2372 if (!ctx->rotate_disable)
2373 list_rotate_left(&ctx->flexible_groups);
2377 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2378 * because they're strictly cpu affine and rotate_start is called with IRQs
2379 * disabled, while rotate_context is called from IRQ context.
2381 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2383 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2384 struct perf_event_context *ctx = NULL;
2385 int rotate = 0, remove = 1;
2387 if (cpuctx->ctx.nr_events) {
2389 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2393 ctx = cpuctx->task_ctx;
2394 if (ctx && ctx->nr_events) {
2396 if (ctx->nr_events != ctx->nr_active)
2400 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2401 perf_pmu_disable(cpuctx->ctx.pmu);
2402 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2404 perf_ctx_adjust_freq(ctx, interval);
2409 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2411 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2413 rotate_ctx(&cpuctx->ctx);
2417 perf_event_sched_in(cpuctx, ctx, current);
2421 list_del_init(&cpuctx->rotation_list);
2423 perf_pmu_enable(cpuctx->ctx.pmu);
2424 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2427 void perf_event_task_tick(void)
2429 struct list_head *head = &__get_cpu_var(rotation_list);
2430 struct perf_cpu_context *cpuctx, *tmp;
2432 WARN_ON(!irqs_disabled());
2434 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2435 if (cpuctx->jiffies_interval == 1 ||
2436 !(jiffies % cpuctx->jiffies_interval))
2437 perf_rotate_context(cpuctx);
2441 static int event_enable_on_exec(struct perf_event *event,
2442 struct perf_event_context *ctx)
2444 if (!event->attr.enable_on_exec)
2447 event->attr.enable_on_exec = 0;
2448 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2451 __perf_event_mark_enabled(event, ctx);
2457 * Enable all of a task's events that have been marked enable-on-exec.
2458 * This expects task == current.
2460 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2462 struct perf_event *event;
2463 unsigned long flags;
2467 local_irq_save(flags);
2468 if (!ctx || !ctx->nr_events)
2472 * We must ctxsw out cgroup events to avoid conflict
2473 * when invoking perf_task_event_sched_in() later on
2474 * in this function. Otherwise we end up trying to
2475 * ctxswin cgroup events which are already scheduled
2478 perf_cgroup_sched_out(current, NULL);
2480 raw_spin_lock(&ctx->lock);
2481 task_ctx_sched_out(ctx);
2483 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2484 ret = event_enable_on_exec(event, ctx);
2489 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2490 ret = event_enable_on_exec(event, ctx);
2496 * Unclone this context if we enabled any event.
2501 raw_spin_unlock(&ctx->lock);
2504 * Also calls ctxswin for cgroup events, if any:
2506 perf_event_context_sched_in(ctx, ctx->task);
2508 local_irq_restore(flags);
2512 * Cross CPU call to read the hardware event
2514 static void __perf_event_read(void *info)
2516 struct perf_event *event = info;
2517 struct perf_event_context *ctx = event->ctx;
2518 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2521 * If this is a task context, we need to check whether it is
2522 * the current task context of this cpu. If not it has been
2523 * scheduled out before the smp call arrived. In that case
2524 * event->count would have been updated to a recent sample
2525 * when the event was scheduled out.
2527 if (ctx->task && cpuctx->task_ctx != ctx)
2530 raw_spin_lock(&ctx->lock);
2531 if (ctx->is_active) {
2532 update_context_time(ctx);
2533 update_cgrp_time_from_event(event);
2535 update_event_times(event);
2536 if (event->state == PERF_EVENT_STATE_ACTIVE)
2537 event->pmu->read(event);
2538 raw_spin_unlock(&ctx->lock);
2541 static inline u64 perf_event_count(struct perf_event *event)
2543 return local64_read(&event->count) + atomic64_read(&event->child_count);
2546 static u64 perf_event_read(struct perf_event *event)
2549 * If event is enabled and currently active on a CPU, update the
2550 * value in the event structure:
2552 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2553 smp_call_function_single(event->oncpu,
2554 __perf_event_read, event, 1);
2555 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2556 struct perf_event_context *ctx = event->ctx;
2557 unsigned long flags;
2559 raw_spin_lock_irqsave(&ctx->lock, flags);
2561 * may read while context is not active
2562 * (e.g., thread is blocked), in that case
2563 * we cannot update context time
2565 if (ctx->is_active) {
2566 update_context_time(ctx);
2567 update_cgrp_time_from_event(event);
2569 update_event_times(event);
2570 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2573 return perf_event_count(event);
2580 struct callchain_cpus_entries {
2581 struct rcu_head rcu_head;
2582 struct perf_callchain_entry *cpu_entries[0];
2585 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2586 static atomic_t nr_callchain_events;
2587 static DEFINE_MUTEX(callchain_mutex);
2588 struct callchain_cpus_entries *callchain_cpus_entries;
2591 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2592 struct pt_regs *regs)
2596 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2597 struct pt_regs *regs)
2601 static void release_callchain_buffers_rcu(struct rcu_head *head)
2603 struct callchain_cpus_entries *entries;
2606 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2608 for_each_possible_cpu(cpu)
2609 kfree(entries->cpu_entries[cpu]);
2614 static void release_callchain_buffers(void)
2616 struct callchain_cpus_entries *entries;
2618 entries = callchain_cpus_entries;
2619 rcu_assign_pointer(callchain_cpus_entries, NULL);
2620 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2623 static int alloc_callchain_buffers(void)
2627 struct callchain_cpus_entries *entries;
2630 * We can't use the percpu allocation API for data that can be
2631 * accessed from NMI. Use a temporary manual per cpu allocation
2632 * until that gets sorted out.
2634 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2636 entries = kzalloc(size, GFP_KERNEL);
2640 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2642 for_each_possible_cpu(cpu) {
2643 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2645 if (!entries->cpu_entries[cpu])
2649 rcu_assign_pointer(callchain_cpus_entries, entries);
2654 for_each_possible_cpu(cpu)
2655 kfree(entries->cpu_entries[cpu]);
2661 static int get_callchain_buffers(void)
2666 mutex_lock(&callchain_mutex);
2668 count = atomic_inc_return(&nr_callchain_events);
2669 if (WARN_ON_ONCE(count < 1)) {
2675 /* If the allocation failed, give up */
2676 if (!callchain_cpus_entries)
2681 err = alloc_callchain_buffers();
2683 release_callchain_buffers();
2685 mutex_unlock(&callchain_mutex);
2690 static void put_callchain_buffers(void)
2692 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2693 release_callchain_buffers();
2694 mutex_unlock(&callchain_mutex);
2698 static int get_recursion_context(int *recursion)
2706 else if (in_softirq())
2711 if (recursion[rctx])
2720 static inline void put_recursion_context(int *recursion, int rctx)
2726 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2729 struct callchain_cpus_entries *entries;
2731 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2735 entries = rcu_dereference(callchain_cpus_entries);
2739 cpu = smp_processor_id();
2741 return &entries->cpu_entries[cpu][*rctx];
2745 put_callchain_entry(int rctx)
2747 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2750 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2753 struct perf_callchain_entry *entry;
2756 entry = get_callchain_entry(&rctx);
2765 if (!user_mode(regs)) {
2766 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2767 perf_callchain_kernel(entry, regs);
2769 regs = task_pt_regs(current);
2775 perf_callchain_store(entry, PERF_CONTEXT_USER);
2776 perf_callchain_user(entry, regs);
2780 put_callchain_entry(rctx);
2786 * Initialize the perf_event context in a task_struct:
2788 static void __perf_event_init_context(struct perf_event_context *ctx)
2790 raw_spin_lock_init(&ctx->lock);
2791 mutex_init(&ctx->mutex);
2792 INIT_LIST_HEAD(&ctx->pinned_groups);
2793 INIT_LIST_HEAD(&ctx->flexible_groups);
2794 INIT_LIST_HEAD(&ctx->event_list);
2795 atomic_set(&ctx->refcount, 1);
2798 static struct perf_event_context *
2799 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2801 struct perf_event_context *ctx;
2803 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2807 __perf_event_init_context(ctx);
2810 get_task_struct(task);
2817 static struct task_struct *
2818 find_lively_task_by_vpid(pid_t vpid)
2820 struct task_struct *task;
2827 task = find_task_by_vpid(vpid);
2829 get_task_struct(task);
2833 return ERR_PTR(-ESRCH);
2835 /* Reuse ptrace permission checks for now. */
2837 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2842 put_task_struct(task);
2843 return ERR_PTR(err);
2848 * Returns a matching context with refcount and pincount.
2850 static struct perf_event_context *
2851 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2853 struct perf_event_context *ctx;
2854 struct perf_cpu_context *cpuctx;
2855 unsigned long flags;
2859 /* Must be root to operate on a CPU event: */
2860 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2861 return ERR_PTR(-EACCES);
2864 * We could be clever and allow to attach a event to an
2865 * offline CPU and activate it when the CPU comes up, but
2868 if (!cpu_online(cpu))
2869 return ERR_PTR(-ENODEV);
2871 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2880 ctxn = pmu->task_ctx_nr;
2885 ctx = perf_lock_task_context(task, ctxn, &flags);
2889 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2891 ctx = alloc_perf_context(pmu, task);
2897 mutex_lock(&task->perf_event_mutex);
2899 * If it has already passed perf_event_exit_task().
2900 * we must see PF_EXITING, it takes this mutex too.
2902 if (task->flags & PF_EXITING)
2904 else if (task->perf_event_ctxp[ctxn])
2909 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2911 mutex_unlock(&task->perf_event_mutex);
2913 if (unlikely(err)) {
2925 return ERR_PTR(err);
2928 static void perf_event_free_filter(struct perf_event *event);
2930 static void free_event_rcu(struct rcu_head *head)
2932 struct perf_event *event;
2934 event = container_of(head, struct perf_event, rcu_head);
2936 put_pid_ns(event->ns);
2937 perf_event_free_filter(event);
2941 static void ring_buffer_put(struct ring_buffer *rb);
2943 static void free_event(struct perf_event *event)
2945 irq_work_sync(&event->pending);
2947 if (!event->parent) {
2948 if (event->attach_state & PERF_ATTACH_TASK)
2949 jump_label_dec(&perf_sched_events);
2950 if (event->attr.mmap || event->attr.mmap_data)
2951 atomic_dec(&nr_mmap_events);
2952 if (event->attr.comm)
2953 atomic_dec(&nr_comm_events);
2954 if (event->attr.task)
2955 atomic_dec(&nr_task_events);
2956 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2957 put_callchain_buffers();
2958 if (is_cgroup_event(event)) {
2959 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2960 jump_label_dec(&perf_sched_events);
2965 ring_buffer_put(event->rb);
2969 if (is_cgroup_event(event))
2970 perf_detach_cgroup(event);
2973 event->destroy(event);
2976 put_ctx(event->ctx);
2978 call_rcu(&event->rcu_head, free_event_rcu);
2981 int perf_event_release_kernel(struct perf_event *event)
2983 struct perf_event_context *ctx = event->ctx;
2985 WARN_ON_ONCE(ctx->parent_ctx);
2987 * There are two ways this annotation is useful:
2989 * 1) there is a lock recursion from perf_event_exit_task
2990 * see the comment there.
2992 * 2) there is a lock-inversion with mmap_sem through
2993 * perf_event_read_group(), which takes faults while
2994 * holding ctx->mutex, however this is called after
2995 * the last filedesc died, so there is no possibility
2996 * to trigger the AB-BA case.
2998 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2999 raw_spin_lock_irq(&ctx->lock);
3000 perf_group_detach(event);
3001 raw_spin_unlock_irq(&ctx->lock);
3002 perf_remove_from_context(event);
3003 mutex_unlock(&ctx->mutex);
3009 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3012 * Called when the last reference to the file is gone.
3014 static int perf_release(struct inode *inode, struct file *file)
3016 struct perf_event *event = file->private_data;
3017 struct task_struct *owner;
3019 file->private_data = NULL;
3022 owner = ACCESS_ONCE(event->owner);
3024 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3025 * !owner it means the list deletion is complete and we can indeed
3026 * free this event, otherwise we need to serialize on
3027 * owner->perf_event_mutex.
3029 smp_read_barrier_depends();
3032 * Since delayed_put_task_struct() also drops the last
3033 * task reference we can safely take a new reference
3034 * while holding the rcu_read_lock().
3036 get_task_struct(owner);
3041 mutex_lock(&owner->perf_event_mutex);
3043 * We have to re-check the event->owner field, if it is cleared
3044 * we raced with perf_event_exit_task(), acquiring the mutex
3045 * ensured they're done, and we can proceed with freeing the
3049 list_del_init(&event->owner_entry);
3050 mutex_unlock(&owner->perf_event_mutex);
3051 put_task_struct(owner);
3054 return perf_event_release_kernel(event);
3057 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3059 struct perf_event *child;
3065 mutex_lock(&event->child_mutex);
3066 total += perf_event_read(event);
3067 *enabled += event->total_time_enabled +
3068 atomic64_read(&event->child_total_time_enabled);
3069 *running += event->total_time_running +
3070 atomic64_read(&event->child_total_time_running);
3072 list_for_each_entry(child, &event->child_list, child_list) {
3073 total += perf_event_read(child);
3074 *enabled += child->total_time_enabled;
3075 *running += child->total_time_running;
3077 mutex_unlock(&event->child_mutex);
3081 EXPORT_SYMBOL_GPL(perf_event_read_value);
3083 static int perf_event_read_group(struct perf_event *event,
3084 u64 read_format, char __user *buf)
3086 struct perf_event *leader = event->group_leader, *sub;
3087 int n = 0, size = 0, ret = -EFAULT;
3088 struct perf_event_context *ctx = leader->ctx;
3090 u64 count, enabled, running;
3092 mutex_lock(&ctx->mutex);
3093 count = perf_event_read_value(leader, &enabled, &running);
3095 values[n++] = 1 + leader->nr_siblings;
3096 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3097 values[n++] = enabled;
3098 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3099 values[n++] = running;
3100 values[n++] = count;
3101 if (read_format & PERF_FORMAT_ID)
3102 values[n++] = primary_event_id(leader);
3104 size = n * sizeof(u64);
3106 if (copy_to_user(buf, values, size))
3111 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3114 values[n++] = perf_event_read_value(sub, &enabled, &running);
3115 if (read_format & PERF_FORMAT_ID)
3116 values[n++] = primary_event_id(sub);
3118 size = n * sizeof(u64);
3120 if (copy_to_user(buf + ret, values, size)) {
3128 mutex_unlock(&ctx->mutex);
3133 static int perf_event_read_one(struct perf_event *event,
3134 u64 read_format, char __user *buf)
3136 u64 enabled, running;
3140 values[n++] = perf_event_read_value(event, &enabled, &running);
3141 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3142 values[n++] = enabled;
3143 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3144 values[n++] = running;
3145 if (read_format & PERF_FORMAT_ID)
3146 values[n++] = primary_event_id(event);
3148 if (copy_to_user(buf, values, n * sizeof(u64)))
3151 return n * sizeof(u64);
3155 * Read the performance event - simple non blocking version for now
3158 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3160 u64 read_format = event->attr.read_format;
3164 * Return end-of-file for a read on a event that is in
3165 * error state (i.e. because it was pinned but it couldn't be
3166 * scheduled on to the CPU at some point).
3168 if (event->state == PERF_EVENT_STATE_ERROR)
3171 if (count < event->read_size)
3174 WARN_ON_ONCE(event->ctx->parent_ctx);
3175 if (read_format & PERF_FORMAT_GROUP)
3176 ret = perf_event_read_group(event, read_format, buf);
3178 ret = perf_event_read_one(event, read_format, buf);
3184 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3186 struct perf_event *event = file->private_data;
3188 return perf_read_hw(event, buf, count);
3191 static unsigned int perf_poll(struct file *file, poll_table *wait)
3193 struct perf_event *event = file->private_data;
3194 struct ring_buffer *rb;
3195 unsigned int events = POLL_HUP;
3198 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3199 * grabs the rb reference but perf_event_set_output() overrides it.
3200 * Here is the timeline for two threads T1, T2:
3201 * t0: T1, rb = rcu_dereference(event->rb)
3202 * t1: T2, old_rb = event->rb
3203 * t2: T2, event->rb = new rb
3204 * t3: T2, ring_buffer_detach(old_rb)
3205 * t4: T1, ring_buffer_attach(rb1)
3206 * t5: T1, poll_wait(event->waitq)
3208 * To avoid this problem, we grab mmap_mutex in perf_poll()
3209 * thereby ensuring that the assignment of the new ring buffer
3210 * and the detachment of the old buffer appear atomic to perf_poll()
3212 mutex_lock(&event->mmap_mutex);
3215 rb = rcu_dereference(event->rb);
3217 ring_buffer_attach(event, rb);
3218 events = atomic_xchg(&rb->poll, 0);
3222 mutex_unlock(&event->mmap_mutex);
3224 poll_wait(file, &event->waitq, wait);
3229 static void perf_event_reset(struct perf_event *event)
3231 (void)perf_event_read(event);
3232 local64_set(&event->count, 0);
3233 perf_event_update_userpage(event);
3237 * Holding the top-level event's child_mutex means that any
3238 * descendant process that has inherited this event will block
3239 * in sync_child_event if it goes to exit, thus satisfying the
3240 * task existence requirements of perf_event_enable/disable.
3242 static void perf_event_for_each_child(struct perf_event *event,
3243 void (*func)(struct perf_event *))
3245 struct perf_event *child;
3247 WARN_ON_ONCE(event->ctx->parent_ctx);
3248 mutex_lock(&event->child_mutex);
3250 list_for_each_entry(child, &event->child_list, child_list)
3252 mutex_unlock(&event->child_mutex);
3255 static void perf_event_for_each(struct perf_event *event,
3256 void (*func)(struct perf_event *))
3258 struct perf_event_context *ctx = event->ctx;
3259 struct perf_event *sibling;
3261 WARN_ON_ONCE(ctx->parent_ctx);
3262 mutex_lock(&ctx->mutex);
3263 event = event->group_leader;
3265 perf_event_for_each_child(event, func);
3267 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3268 perf_event_for_each_child(event, func);
3269 mutex_unlock(&ctx->mutex);
3272 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3274 struct perf_event_context *ctx = event->ctx;
3278 if (!is_sampling_event(event))
3281 if (copy_from_user(&value, arg, sizeof(value)))
3287 raw_spin_lock_irq(&ctx->lock);
3288 if (event->attr.freq) {
3289 if (value > sysctl_perf_event_sample_rate) {
3294 event->attr.sample_freq = value;
3296 event->attr.sample_period = value;
3297 event->hw.sample_period = value;
3300 raw_spin_unlock_irq(&ctx->lock);
3305 static const struct file_operations perf_fops;
3307 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3311 file = fget_light(fd, fput_needed);
3313 return ERR_PTR(-EBADF);
3315 if (file->f_op != &perf_fops) {
3316 fput_light(file, *fput_needed);
3318 return ERR_PTR(-EBADF);
3321 return file->private_data;
3324 static int perf_event_set_output(struct perf_event *event,
3325 struct perf_event *output_event);
3326 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3328 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3330 struct perf_event *event = file->private_data;
3331 void (*func)(struct perf_event *);
3335 case PERF_EVENT_IOC_ENABLE:
3336 func = perf_event_enable;
3338 case PERF_EVENT_IOC_DISABLE:
3339 func = perf_event_disable;
3341 case PERF_EVENT_IOC_RESET:
3342 func = perf_event_reset;
3345 case PERF_EVENT_IOC_REFRESH:
3346 return perf_event_refresh(event, arg);
3348 case PERF_EVENT_IOC_PERIOD:
3349 return perf_event_period(event, (u64 __user *)arg);
3351 case PERF_EVENT_IOC_SET_OUTPUT:
3353 struct perf_event *output_event = NULL;
3354 int fput_needed = 0;
3358 output_event = perf_fget_light(arg, &fput_needed);
3359 if (IS_ERR(output_event))
3360 return PTR_ERR(output_event);
3363 ret = perf_event_set_output(event, output_event);
3365 fput_light(output_event->filp, fput_needed);
3370 case PERF_EVENT_IOC_SET_FILTER:
3371 return perf_event_set_filter(event, (void __user *)arg);
3377 if (flags & PERF_IOC_FLAG_GROUP)
3378 perf_event_for_each(event, func);
3380 perf_event_for_each_child(event, func);
3385 int perf_event_task_enable(void)
3387 struct perf_event *event;
3389 mutex_lock(¤t->perf_event_mutex);
3390 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3391 perf_event_for_each_child(event, perf_event_enable);
3392 mutex_unlock(¤t->perf_event_mutex);
3397 int perf_event_task_disable(void)
3399 struct perf_event *event;
3401 mutex_lock(¤t->perf_event_mutex);
3402 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3403 perf_event_for_each_child(event, perf_event_disable);
3404 mutex_unlock(¤t->perf_event_mutex);
3409 #ifndef PERF_EVENT_INDEX_OFFSET
3410 # define PERF_EVENT_INDEX_OFFSET 0
3413 static int perf_event_index(struct perf_event *event)
3415 if (event->hw.state & PERF_HES_STOPPED)
3418 if (event->state != PERF_EVENT_STATE_ACTIVE)
3421 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3424 static void calc_timer_values(struct perf_event *event,
3431 ctx_time = event->shadow_ctx_time + now;
3432 *enabled = ctx_time - event->tstamp_enabled;
3433 *running = ctx_time - event->tstamp_running;
3437 * Callers need to ensure there can be no nesting of this function, otherwise
3438 * the seqlock logic goes bad. We can not serialize this because the arch
3439 * code calls this from NMI context.
3441 void perf_event_update_userpage(struct perf_event *event)
3443 struct perf_event_mmap_page *userpg;
3444 struct ring_buffer *rb;
3445 u64 enabled, running;
3449 * compute total_time_enabled, total_time_running
3450 * based on snapshot values taken when the event
3451 * was last scheduled in.
3453 * we cannot simply called update_context_time()
3454 * because of locking issue as we can be called in
3457 calc_timer_values(event, &enabled, &running);
3458 rb = rcu_dereference(event->rb);
3462 userpg = rb->user_page;
3465 * Disable preemption so as to not let the corresponding user-space
3466 * spin too long if we get preempted.
3471 userpg->index = perf_event_index(event);
3472 userpg->offset = perf_event_count(event);
3473 if (event->state == PERF_EVENT_STATE_ACTIVE)
3474 userpg->offset -= local64_read(&event->hw.prev_count);
3476 userpg->time_enabled = enabled +
3477 atomic64_read(&event->child_total_time_enabled);
3479 userpg->time_running = running +
3480 atomic64_read(&event->child_total_time_running);
3489 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3491 struct perf_event *event = vma->vm_file->private_data;
3492 struct ring_buffer *rb;
3493 int ret = VM_FAULT_SIGBUS;
3495 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3496 if (vmf->pgoff == 0)
3502 rb = rcu_dereference(event->rb);
3506 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3509 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3513 get_page(vmf->page);
3514 vmf->page->mapping = vma->vm_file->f_mapping;
3515 vmf->page->index = vmf->pgoff;
3524 static void ring_buffer_attach(struct perf_event *event,
3525 struct ring_buffer *rb)
3527 unsigned long flags;
3529 if (!list_empty(&event->rb_entry))
3532 spin_lock_irqsave(&rb->event_lock, flags);
3533 if (!list_empty(&event->rb_entry))
3536 list_add(&event->rb_entry, &rb->event_list);
3538 spin_unlock_irqrestore(&rb->event_lock, flags);
3541 static void ring_buffer_detach(struct perf_event *event,
3542 struct ring_buffer *rb)
3544 unsigned long flags;
3546 if (list_empty(&event->rb_entry))
3549 spin_lock_irqsave(&rb->event_lock, flags);
3550 list_del_init(&event->rb_entry);
3551 wake_up_all(&event->waitq);
3552 spin_unlock_irqrestore(&rb->event_lock, flags);
3555 static void ring_buffer_wakeup(struct perf_event *event)
3557 struct ring_buffer *rb;
3560 rb = rcu_dereference(event->rb);
3564 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3565 wake_up_all(&event->waitq);
3571 static void rb_free_rcu(struct rcu_head *rcu_head)
3573 struct ring_buffer *rb;
3575 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3579 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3581 struct ring_buffer *rb;
3584 rb = rcu_dereference(event->rb);
3586 if (!atomic_inc_not_zero(&rb->refcount))
3594 static void ring_buffer_put(struct ring_buffer *rb)
3596 struct perf_event *event, *n;
3597 unsigned long flags;
3599 if (!atomic_dec_and_test(&rb->refcount))
3602 spin_lock_irqsave(&rb->event_lock, flags);
3603 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3604 list_del_init(&event->rb_entry);
3605 wake_up_all(&event->waitq);
3607 spin_unlock_irqrestore(&rb->event_lock, flags);
3609 call_rcu(&rb->rcu_head, rb_free_rcu);
3612 static void perf_mmap_open(struct vm_area_struct *vma)
3614 struct perf_event *event = vma->vm_file->private_data;
3616 atomic_inc(&event->mmap_count);
3619 static void perf_mmap_close(struct vm_area_struct *vma)
3621 struct perf_event *event = vma->vm_file->private_data;
3623 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3624 unsigned long size = perf_data_size(event->rb);
3625 struct user_struct *user = event->mmap_user;
3626 struct ring_buffer *rb = event->rb;
3628 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3629 vma->vm_mm->pinned_vm -= event->mmap_locked;
3630 rcu_assign_pointer(event->rb, NULL);
3631 ring_buffer_detach(event, rb);
3632 mutex_unlock(&event->mmap_mutex);
3634 ring_buffer_put(rb);
3639 static const struct vm_operations_struct perf_mmap_vmops = {
3640 .open = perf_mmap_open,
3641 .close = perf_mmap_close,
3642 .fault = perf_mmap_fault,
3643 .page_mkwrite = perf_mmap_fault,
3646 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3648 struct perf_event *event = file->private_data;
3649 unsigned long user_locked, user_lock_limit;
3650 struct user_struct *user = current_user();
3651 unsigned long locked, lock_limit;
3652 struct ring_buffer *rb;
3653 unsigned long vma_size;
3654 unsigned long nr_pages;
3655 long user_extra, extra;
3656 int ret = 0, flags = 0;
3659 * Don't allow mmap() of inherited per-task counters. This would
3660 * create a performance issue due to all children writing to the
3663 if (event->cpu == -1 && event->attr.inherit)
3666 if (!(vma->vm_flags & VM_SHARED))
3669 vma_size = vma->vm_end - vma->vm_start;
3670 nr_pages = (vma_size / PAGE_SIZE) - 1;
3673 * If we have rb pages ensure they're a power-of-two number, so we
3674 * can do bitmasks instead of modulo.
3676 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3679 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3682 if (vma->vm_pgoff != 0)
3685 WARN_ON_ONCE(event->ctx->parent_ctx);
3686 mutex_lock(&event->mmap_mutex);
3688 if (event->rb->nr_pages == nr_pages)
3689 atomic_inc(&event->rb->refcount);
3695 user_extra = nr_pages + 1;
3696 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3699 * Increase the limit linearly with more CPUs:
3701 user_lock_limit *= num_online_cpus();
3703 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3706 if (user_locked > user_lock_limit)
3707 extra = user_locked - user_lock_limit;
3709 lock_limit = rlimit(RLIMIT_MEMLOCK);
3710 lock_limit >>= PAGE_SHIFT;
3711 locked = vma->vm_mm->pinned_vm + extra;
3713 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3714 !capable(CAP_IPC_LOCK)) {
3721 if (vma->vm_flags & VM_WRITE)
3722 flags |= RING_BUFFER_WRITABLE;
3724 rb = rb_alloc(nr_pages,
3725 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3732 rcu_assign_pointer(event->rb, rb);
3734 atomic_long_add(user_extra, &user->locked_vm);
3735 event->mmap_locked = extra;
3736 event->mmap_user = get_current_user();
3737 vma->vm_mm->pinned_vm += event->mmap_locked;
3741 atomic_inc(&event->mmap_count);
3742 mutex_unlock(&event->mmap_mutex);
3744 vma->vm_flags |= VM_RESERVED;
3745 vma->vm_ops = &perf_mmap_vmops;
3750 static int perf_fasync(int fd, struct file *filp, int on)
3752 struct inode *inode = filp->f_path.dentry->d_inode;
3753 struct perf_event *event = filp->private_data;
3756 mutex_lock(&inode->i_mutex);
3757 retval = fasync_helper(fd, filp, on, &event->fasync);
3758 mutex_unlock(&inode->i_mutex);
3766 static const struct file_operations perf_fops = {
3767 .llseek = no_llseek,
3768 .release = perf_release,
3771 .unlocked_ioctl = perf_ioctl,
3772 .compat_ioctl = perf_ioctl,
3774 .fasync = perf_fasync,
3780 * If there's data, ensure we set the poll() state and publish everything
3781 * to user-space before waking everybody up.
3784 void perf_event_wakeup(struct perf_event *event)
3786 ring_buffer_wakeup(event);
3788 if (event->pending_kill) {
3789 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3790 event->pending_kill = 0;
3794 static void perf_pending_event(struct irq_work *entry)
3796 struct perf_event *event = container_of(entry,
3797 struct perf_event, pending);
3799 if (event->pending_disable) {
3800 event->pending_disable = 0;
3801 __perf_event_disable(event);
3804 if (event->pending_wakeup) {
3805 event->pending_wakeup = 0;
3806 perf_event_wakeup(event);
3811 * We assume there is only KVM supporting the callbacks.
3812 * Later on, we might change it to a list if there is
3813 * another virtualization implementation supporting the callbacks.
3815 struct perf_guest_info_callbacks *perf_guest_cbs;
3817 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3819 perf_guest_cbs = cbs;
3822 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3824 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3826 perf_guest_cbs = NULL;
3829 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3831 static void __perf_event_header__init_id(struct perf_event_header *header,
3832 struct perf_sample_data *data,
3833 struct perf_event *event)
3835 u64 sample_type = event->attr.sample_type;
3837 data->type = sample_type;
3838 header->size += event->id_header_size;
3840 if (sample_type & PERF_SAMPLE_TID) {
3841 /* namespace issues */
3842 data->tid_entry.pid = perf_event_pid(event, current);
3843 data->tid_entry.tid = perf_event_tid(event, current);
3846 if (sample_type & PERF_SAMPLE_TIME)
3847 data->time = perf_clock();
3849 if (sample_type & PERF_SAMPLE_ID)
3850 data->id = primary_event_id(event);
3852 if (sample_type & PERF_SAMPLE_STREAM_ID)
3853 data->stream_id = event->id;
3855 if (sample_type & PERF_SAMPLE_CPU) {
3856 data->cpu_entry.cpu = raw_smp_processor_id();
3857 data->cpu_entry.reserved = 0;
3861 void perf_event_header__init_id(struct perf_event_header *header,
3862 struct perf_sample_data *data,
3863 struct perf_event *event)
3865 if (event->attr.sample_id_all)
3866 __perf_event_header__init_id(header, data, event);
3869 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3870 struct perf_sample_data *data)
3872 u64 sample_type = data->type;
3874 if (sample_type & PERF_SAMPLE_TID)
3875 perf_output_put(handle, data->tid_entry);
3877 if (sample_type & PERF_SAMPLE_TIME)
3878 perf_output_put(handle, data->time);
3880 if (sample_type & PERF_SAMPLE_ID)
3881 perf_output_put(handle, data->id);
3883 if (sample_type & PERF_SAMPLE_STREAM_ID)
3884 perf_output_put(handle, data->stream_id);
3886 if (sample_type & PERF_SAMPLE_CPU)
3887 perf_output_put(handle, data->cpu_entry);
3890 void perf_event__output_id_sample(struct perf_event *event,
3891 struct perf_output_handle *handle,
3892 struct perf_sample_data *sample)
3894 if (event->attr.sample_id_all)
3895 __perf_event__output_id_sample(handle, sample);
3898 static void perf_output_read_one(struct perf_output_handle *handle,
3899 struct perf_event *event,
3900 u64 enabled, u64 running)
3902 u64 read_format = event->attr.read_format;
3906 values[n++] = perf_event_count(event);
3907 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3908 values[n++] = enabled +
3909 atomic64_read(&event->child_total_time_enabled);
3911 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3912 values[n++] = running +
3913 atomic64_read(&event->child_total_time_running);
3915 if (read_format & PERF_FORMAT_ID)
3916 values[n++] = primary_event_id(event);
3918 __output_copy(handle, values, n * sizeof(u64));
3922 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3924 static void perf_output_read_group(struct perf_output_handle *handle,
3925 struct perf_event *event,
3926 u64 enabled, u64 running)
3928 struct perf_event *leader = event->group_leader, *sub;
3929 u64 read_format = event->attr.read_format;
3933 values[n++] = 1 + leader->nr_siblings;
3935 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3936 values[n++] = enabled;
3938 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3939 values[n++] = running;
3941 if (leader != event)
3942 leader->pmu->read(leader);
3944 values[n++] = perf_event_count(leader);
3945 if (read_format & PERF_FORMAT_ID)
3946 values[n++] = primary_event_id(leader);
3948 __output_copy(handle, values, n * sizeof(u64));
3950 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3954 sub->pmu->read(sub);
3956 values[n++] = perf_event_count(sub);
3957 if (read_format & PERF_FORMAT_ID)
3958 values[n++] = primary_event_id(sub);
3960 __output_copy(handle, values, n * sizeof(u64));
3964 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3965 PERF_FORMAT_TOTAL_TIME_RUNNING)
3967 static void perf_output_read(struct perf_output_handle *handle,
3968 struct perf_event *event)
3970 u64 enabled = 0, running = 0;
3971 u64 read_format = event->attr.read_format;
3974 * compute total_time_enabled, total_time_running
3975 * based on snapshot values taken when the event
3976 * was last scheduled in.
3978 * we cannot simply called update_context_time()
3979 * because of locking issue as we are called in
3982 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3983 calc_timer_values(event, &enabled, &running);
3985 if (event->attr.read_format & PERF_FORMAT_GROUP)
3986 perf_output_read_group(handle, event, enabled, running);
3988 perf_output_read_one(handle, event, enabled, running);
3991 void perf_output_sample(struct perf_output_handle *handle,
3992 struct perf_event_header *header,
3993 struct perf_sample_data *data,
3994 struct perf_event *event)
3996 u64 sample_type = data->type;
3998 perf_output_put(handle, *header);
4000 if (sample_type & PERF_SAMPLE_IP)
4001 perf_output_put(handle, data->ip);
4003 if (sample_type & PERF_SAMPLE_TID)
4004 perf_output_put(handle, data->tid_entry);
4006 if (sample_type & PERF_SAMPLE_TIME)
4007 perf_output_put(handle, data->time);
4009 if (sample_type & PERF_SAMPLE_ADDR)
4010 perf_output_put(handle, data->addr);
4012 if (sample_type & PERF_SAMPLE_ID)
4013 perf_output_put(handle, data->id);
4015 if (sample_type & PERF_SAMPLE_STREAM_ID)
4016 perf_output_put(handle, data->stream_id);
4018 if (sample_type & PERF_SAMPLE_CPU)
4019 perf_output_put(handle, data->cpu_entry);
4021 if (sample_type & PERF_SAMPLE_PERIOD)
4022 perf_output_put(handle, data->period);
4024 if (sample_type & PERF_SAMPLE_READ)
4025 perf_output_read(handle, event);
4027 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4028 if (data->callchain) {
4031 if (data->callchain)
4032 size += data->callchain->nr;
4034 size *= sizeof(u64);
4036 __output_copy(handle, data->callchain, size);
4039 perf_output_put(handle, nr);
4043 if (sample_type & PERF_SAMPLE_RAW) {
4045 perf_output_put(handle, data->raw->size);
4046 __output_copy(handle, data->raw->data,
4053 .size = sizeof(u32),
4056 perf_output_put(handle, raw);
4060 if (!event->attr.watermark) {
4061 int wakeup_events = event->attr.wakeup_events;
4063 if (wakeup_events) {
4064 struct ring_buffer *rb = handle->rb;
4065 int events = local_inc_return(&rb->events);
4067 if (events >= wakeup_events) {
4068 local_sub(wakeup_events, &rb->events);
4069 local_inc(&rb->wakeup);
4075 void perf_prepare_sample(struct perf_event_header *header,
4076 struct perf_sample_data *data,
4077 struct perf_event *event,
4078 struct pt_regs *regs)
4080 u64 sample_type = event->attr.sample_type;
4082 header->type = PERF_RECORD_SAMPLE;
4083 header->size = sizeof(*header) + event->header_size;
4086 header->misc |= perf_misc_flags(regs);
4088 __perf_event_header__init_id(header, data, event);
4090 if (sample_type & PERF_SAMPLE_IP)
4091 data->ip = perf_instruction_pointer(regs);
4093 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4096 data->callchain = perf_callchain(regs);
4098 if (data->callchain)
4099 size += data->callchain->nr;
4101 header->size += size * sizeof(u64);
4104 if (sample_type & PERF_SAMPLE_RAW) {
4105 int size = sizeof(u32);
4108 size += data->raw->size;
4110 size += sizeof(u32);
4112 WARN_ON_ONCE(size & (sizeof(u64)-1));
4113 header->size += size;
4117 static void perf_event_output(struct perf_event *event,
4118 struct perf_sample_data *data,
4119 struct pt_regs *regs)
4121 struct perf_output_handle handle;
4122 struct perf_event_header header;
4124 /* protect the callchain buffers */
4127 perf_prepare_sample(&header, data, event, regs);
4129 if (perf_output_begin(&handle, event, header.size))
4132 perf_output_sample(&handle, &header, data, event);
4134 perf_output_end(&handle);
4144 struct perf_read_event {
4145 struct perf_event_header header;
4152 perf_event_read_event(struct perf_event *event,
4153 struct task_struct *task)
4155 struct perf_output_handle handle;
4156 struct perf_sample_data sample;
4157 struct perf_read_event read_event = {
4159 .type = PERF_RECORD_READ,
4161 .size = sizeof(read_event) + event->read_size,
4163 .pid = perf_event_pid(event, task),
4164 .tid = perf_event_tid(event, task),
4168 perf_event_header__init_id(&read_event.header, &sample, event);
4169 ret = perf_output_begin(&handle, event, read_event.header.size);
4173 perf_output_put(&handle, read_event);
4174 perf_output_read(&handle, event);
4175 perf_event__output_id_sample(event, &handle, &sample);
4177 perf_output_end(&handle);
4181 * task tracking -- fork/exit
4183 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4186 struct perf_task_event {
4187 struct task_struct *task;
4188 struct perf_event_context *task_ctx;
4191 struct perf_event_header header;
4201 static void perf_event_task_output(struct perf_event *event,
4202 struct perf_task_event *task_event)
4204 struct perf_output_handle handle;
4205 struct perf_sample_data sample;
4206 struct task_struct *task = task_event->task;
4207 int ret, size = task_event->event_id.header.size;
4209 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4211 ret = perf_output_begin(&handle, event,
4212 task_event->event_id.header.size);
4216 task_event->event_id.pid = perf_event_pid(event, task);
4217 task_event->event_id.ppid = perf_event_pid(event, current);
4219 task_event->event_id.tid = perf_event_tid(event, task);
4220 task_event->event_id.ptid = perf_event_tid(event, current);
4222 perf_output_put(&handle, task_event->event_id);
4224 perf_event__output_id_sample(event, &handle, &sample);
4226 perf_output_end(&handle);
4228 task_event->event_id.header.size = size;
4231 static int perf_event_task_match(struct perf_event *event)
4233 if (event->state < PERF_EVENT_STATE_INACTIVE)
4236 if (!event_filter_match(event))
4239 if (event->attr.comm || event->attr.mmap ||
4240 event->attr.mmap_data || event->attr.task)
4246 static void perf_event_task_ctx(struct perf_event_context *ctx,
4247 struct perf_task_event *task_event)
4249 struct perf_event *event;
4251 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4252 if (perf_event_task_match(event))
4253 perf_event_task_output(event, task_event);
4257 static void perf_event_task_event(struct perf_task_event *task_event)
4259 struct perf_cpu_context *cpuctx;
4260 struct perf_event_context *ctx;
4265 list_for_each_entry_rcu(pmu, &pmus, entry) {
4266 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4267 if (cpuctx->active_pmu != pmu)
4269 perf_event_task_ctx(&cpuctx->ctx, task_event);
4271 ctx = task_event->task_ctx;
4273 ctxn = pmu->task_ctx_nr;
4276 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4279 perf_event_task_ctx(ctx, task_event);
4281 put_cpu_ptr(pmu->pmu_cpu_context);
4286 static void perf_event_task(struct task_struct *task,
4287 struct perf_event_context *task_ctx,
4290 struct perf_task_event task_event;
4292 if (!atomic_read(&nr_comm_events) &&
4293 !atomic_read(&nr_mmap_events) &&
4294 !atomic_read(&nr_task_events))
4297 task_event = (struct perf_task_event){
4299 .task_ctx = task_ctx,
4302 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4304 .size = sizeof(task_event.event_id),
4310 .time = perf_clock(),
4314 perf_event_task_event(&task_event);
4317 void perf_event_fork(struct task_struct *task)
4319 perf_event_task(task, NULL, 1);
4326 struct perf_comm_event {
4327 struct task_struct *task;
4332 struct perf_event_header header;
4339 static void perf_event_comm_output(struct perf_event *event,
4340 struct perf_comm_event *comm_event)
4342 struct perf_output_handle handle;
4343 struct perf_sample_data sample;
4344 int size = comm_event->event_id.header.size;
4347 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4348 ret = perf_output_begin(&handle, event,
4349 comm_event->event_id.header.size);
4354 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4355 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4357 perf_output_put(&handle, comm_event->event_id);
4358 __output_copy(&handle, comm_event->comm,
4359 comm_event->comm_size);
4361 perf_event__output_id_sample(event, &handle, &sample);
4363 perf_output_end(&handle);
4365 comm_event->event_id.header.size = size;
4368 static int perf_event_comm_match(struct perf_event *event)
4370 if (event->state < PERF_EVENT_STATE_INACTIVE)
4373 if (!event_filter_match(event))
4376 if (event->attr.comm)
4382 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4383 struct perf_comm_event *comm_event)
4385 struct perf_event *event;
4387 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4388 if (perf_event_comm_match(event))
4389 perf_event_comm_output(event, comm_event);
4393 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4395 struct perf_cpu_context *cpuctx;
4396 struct perf_event_context *ctx;
4397 char comm[TASK_COMM_LEN];
4402 memset(comm, 0, sizeof(comm));
4403 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4404 size = ALIGN(strlen(comm)+1, sizeof(u64));
4406 comm_event->comm = comm;
4407 comm_event->comm_size = size;
4409 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4411 list_for_each_entry_rcu(pmu, &pmus, entry) {
4412 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4413 if (cpuctx->active_pmu != pmu)
4415 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4417 ctxn = pmu->task_ctx_nr;
4421 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4423 perf_event_comm_ctx(ctx, comm_event);
4425 put_cpu_ptr(pmu->pmu_cpu_context);
4430 void perf_event_comm(struct task_struct *task)
4432 struct perf_comm_event comm_event;
4433 struct perf_event_context *ctx;
4436 for_each_task_context_nr(ctxn) {
4437 ctx = task->perf_event_ctxp[ctxn];
4441 perf_event_enable_on_exec(ctx);
4444 if (!atomic_read(&nr_comm_events))
4447 comm_event = (struct perf_comm_event){
4453 .type = PERF_RECORD_COMM,
4462 perf_event_comm_event(&comm_event);
4469 struct perf_mmap_event {
4470 struct vm_area_struct *vma;
4472 const char *file_name;
4476 struct perf_event_header header;
4486 static void perf_event_mmap_output(struct perf_event *event,
4487 struct perf_mmap_event *mmap_event)
4489 struct perf_output_handle handle;
4490 struct perf_sample_data sample;
4491 int size = mmap_event->event_id.header.size;
4494 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4495 ret = perf_output_begin(&handle, event,
4496 mmap_event->event_id.header.size);
4500 mmap_event->event_id.pid = perf_event_pid(event, current);
4501 mmap_event->event_id.tid = perf_event_tid(event, current);
4503 perf_output_put(&handle, mmap_event->event_id);
4504 __output_copy(&handle, mmap_event->file_name,
4505 mmap_event->file_size);
4507 perf_event__output_id_sample(event, &handle, &sample);
4509 perf_output_end(&handle);
4511 mmap_event->event_id.header.size = size;
4514 static int perf_event_mmap_match(struct perf_event *event,
4515 struct perf_mmap_event *mmap_event,
4518 if (event->state < PERF_EVENT_STATE_INACTIVE)
4521 if (!event_filter_match(event))
4524 if ((!executable && event->attr.mmap_data) ||
4525 (executable && event->attr.mmap))
4531 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4532 struct perf_mmap_event *mmap_event,
4535 struct perf_event *event;
4537 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4538 if (perf_event_mmap_match(event, mmap_event, executable))
4539 perf_event_mmap_output(event, mmap_event);
4543 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4545 struct perf_cpu_context *cpuctx;
4546 struct perf_event_context *ctx;
4547 struct vm_area_struct *vma = mmap_event->vma;
4548 struct file *file = vma->vm_file;
4556 memset(tmp, 0, sizeof(tmp));
4560 * d_path works from the end of the rb backwards, so we
4561 * need to add enough zero bytes after the string to handle
4562 * the 64bit alignment we do later.
4564 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4566 name = strncpy(tmp, "//enomem", sizeof(tmp));
4569 name = d_path(&file->f_path, buf, PATH_MAX);
4571 name = strncpy(tmp, "//toolong", sizeof(tmp));
4575 if (arch_vma_name(mmap_event->vma)) {
4576 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4582 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4584 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4585 vma->vm_end >= vma->vm_mm->brk) {
4586 name = strncpy(tmp, "[heap]", sizeof(tmp));
4588 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4589 vma->vm_end >= vma->vm_mm->start_stack) {
4590 name = strncpy(tmp, "[stack]", sizeof(tmp));
4594 name = strncpy(tmp, "//anon", sizeof(tmp));
4599 size = ALIGN(strlen(name)+1, sizeof(u64));
4601 mmap_event->file_name = name;
4602 mmap_event->file_size = size;
4604 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4607 list_for_each_entry_rcu(pmu, &pmus, entry) {
4608 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4609 if (cpuctx->active_pmu != pmu)
4611 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4612 vma->vm_flags & VM_EXEC);
4614 ctxn = pmu->task_ctx_nr;
4618 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4620 perf_event_mmap_ctx(ctx, mmap_event,
4621 vma->vm_flags & VM_EXEC);
4624 put_cpu_ptr(pmu->pmu_cpu_context);
4631 void perf_event_mmap(struct vm_area_struct *vma)
4633 struct perf_mmap_event mmap_event;
4635 if (!atomic_read(&nr_mmap_events))
4638 mmap_event = (struct perf_mmap_event){
4644 .type = PERF_RECORD_MMAP,
4645 .misc = PERF_RECORD_MISC_USER,
4650 .start = vma->vm_start,
4651 .len = vma->vm_end - vma->vm_start,
4652 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4656 perf_event_mmap_event(&mmap_event);
4660 * IRQ throttle logging
4663 static void perf_log_throttle(struct perf_event *event, int enable)
4665 struct perf_output_handle handle;
4666 struct perf_sample_data sample;
4670 struct perf_event_header header;
4674 } throttle_event = {
4676 .type = PERF_RECORD_THROTTLE,
4678 .size = sizeof(throttle_event),
4680 .time = perf_clock(),
4681 .id = primary_event_id(event),
4682 .stream_id = event->id,
4686 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4688 perf_event_header__init_id(&throttle_event.header, &sample, event);
4690 ret = perf_output_begin(&handle, event,
4691 throttle_event.header.size);
4695 perf_output_put(&handle, throttle_event);
4696 perf_event__output_id_sample(event, &handle, &sample);
4697 perf_output_end(&handle);
4701 * Generic event overflow handling, sampling.
4704 static int __perf_event_overflow(struct perf_event *event,
4705 int throttle, struct perf_sample_data *data,
4706 struct pt_regs *regs)
4708 int events = atomic_read(&event->event_limit);
4709 struct hw_perf_event *hwc = &event->hw;
4713 * Non-sampling counters might still use the PMI to fold short
4714 * hardware counters, ignore those.
4716 if (unlikely(!is_sampling_event(event)))
4719 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4721 hwc->interrupts = MAX_INTERRUPTS;
4722 perf_log_throttle(event, 0);
4728 if (event->attr.freq) {
4729 u64 now = perf_clock();
4730 s64 delta = now - hwc->freq_time_stamp;
4732 hwc->freq_time_stamp = now;
4734 if (delta > 0 && delta < 2*TICK_NSEC)
4735 perf_adjust_period(event, delta, hwc->last_period);
4739 * XXX event_limit might not quite work as expected on inherited
4743 event->pending_kill = POLL_IN;
4744 if (events && atomic_dec_and_test(&event->event_limit)) {
4746 event->pending_kill = POLL_HUP;
4747 event->pending_disable = 1;
4748 irq_work_queue(&event->pending);
4751 if (event->overflow_handler)
4752 event->overflow_handler(event, data, regs);
4754 perf_event_output(event, data, regs);
4756 if (event->fasync && event->pending_kill) {
4757 event->pending_wakeup = 1;
4758 irq_work_queue(&event->pending);
4764 int perf_event_overflow(struct perf_event *event,
4765 struct perf_sample_data *data,
4766 struct pt_regs *regs)
4768 return __perf_event_overflow(event, 1, data, regs);
4772 * Generic software event infrastructure
4775 struct swevent_htable {
4776 struct swevent_hlist *swevent_hlist;
4777 struct mutex hlist_mutex;
4780 /* Recursion avoidance in each contexts */
4781 int recursion[PERF_NR_CONTEXTS];
4784 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4787 * We directly increment event->count and keep a second value in
4788 * event->hw.period_left to count intervals. This period event
4789 * is kept in the range [-sample_period, 0] so that we can use the
4793 static u64 perf_swevent_set_period(struct perf_event *event)
4795 struct hw_perf_event *hwc = &event->hw;
4796 u64 period = hwc->last_period;
4800 hwc->last_period = hwc->sample_period;
4803 old = val = local64_read(&hwc->period_left);
4807 nr = div64_u64(period + val, period);
4808 offset = nr * period;
4810 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4816 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4817 struct perf_sample_data *data,
4818 struct pt_regs *regs)
4820 struct hw_perf_event *hwc = &event->hw;
4823 data->period = event->hw.last_period;
4825 overflow = perf_swevent_set_period(event);
4827 if (hwc->interrupts == MAX_INTERRUPTS)
4830 for (; overflow; overflow--) {
4831 if (__perf_event_overflow(event, throttle,
4834 * We inhibit the overflow from happening when
4835 * hwc->interrupts == MAX_INTERRUPTS.
4843 static void perf_swevent_event(struct perf_event *event, u64 nr,
4844 struct perf_sample_data *data,
4845 struct pt_regs *regs)
4847 struct hw_perf_event *hwc = &event->hw;
4849 local64_add(nr, &event->count);
4854 if (!is_sampling_event(event))
4857 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4858 return perf_swevent_overflow(event, 1, data, regs);
4860 if (local64_add_negative(nr, &hwc->period_left))
4863 perf_swevent_overflow(event, 0, data, regs);
4866 static int perf_exclude_event(struct perf_event *event,
4867 struct pt_regs *regs)
4869 if (event->hw.state & PERF_HES_STOPPED)
4873 if (event->attr.exclude_user && user_mode(regs))
4876 if (event->attr.exclude_kernel && !user_mode(regs))
4883 static int perf_swevent_match(struct perf_event *event,
4884 enum perf_type_id type,
4886 struct perf_sample_data *data,
4887 struct pt_regs *regs)
4889 if (event->attr.type != type)
4892 if (event->attr.config != event_id)
4895 if (perf_exclude_event(event, regs))
4901 static inline u64 swevent_hash(u64 type, u32 event_id)
4903 u64 val = event_id | (type << 32);
4905 return hash_64(val, SWEVENT_HLIST_BITS);
4908 static inline struct hlist_head *
4909 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4911 u64 hash = swevent_hash(type, event_id);
4913 return &hlist->heads[hash];
4916 /* For the read side: events when they trigger */
4917 static inline struct hlist_head *
4918 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4920 struct swevent_hlist *hlist;
4922 hlist = rcu_dereference(swhash->swevent_hlist);
4926 return __find_swevent_head(hlist, type, event_id);
4929 /* For the event head insertion and removal in the hlist */
4930 static inline struct hlist_head *
4931 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4933 struct swevent_hlist *hlist;
4934 u32 event_id = event->attr.config;
4935 u64 type = event->attr.type;
4938 * Event scheduling is always serialized against hlist allocation
4939 * and release. Which makes the protected version suitable here.
4940 * The context lock guarantees that.
4942 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4943 lockdep_is_held(&event->ctx->lock));
4947 return __find_swevent_head(hlist, type, event_id);
4950 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4952 struct perf_sample_data *data,
4953 struct pt_regs *regs)
4955 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4956 struct perf_event *event;
4957 struct hlist_node *node;
4958 struct hlist_head *head;
4961 head = find_swevent_head_rcu(swhash, type, event_id);
4965 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4966 if (perf_swevent_match(event, type, event_id, data, regs))
4967 perf_swevent_event(event, nr, data, regs);
4973 int perf_swevent_get_recursion_context(void)
4975 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4977 return get_recursion_context(swhash->recursion);
4979 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4981 inline void perf_swevent_put_recursion_context(int rctx)
4983 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4985 put_recursion_context(swhash->recursion, rctx);
4988 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4990 struct perf_sample_data data;
4993 preempt_disable_notrace();
4994 rctx = perf_swevent_get_recursion_context();
4998 perf_sample_data_init(&data, addr);
5000 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5002 perf_swevent_put_recursion_context(rctx);
5003 preempt_enable_notrace();
5006 static void perf_swevent_read(struct perf_event *event)
5010 static int perf_swevent_add(struct perf_event *event, int flags)
5012 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5013 struct hw_perf_event *hwc = &event->hw;
5014 struct hlist_head *head;
5016 if (is_sampling_event(event)) {
5017 hwc->last_period = hwc->sample_period;
5018 perf_swevent_set_period(event);
5021 hwc->state = !(flags & PERF_EF_START);
5023 head = find_swevent_head(swhash, event);
5024 if (WARN_ON_ONCE(!head))
5027 hlist_add_head_rcu(&event->hlist_entry, head);
5032 static void perf_swevent_del(struct perf_event *event, int flags)
5034 hlist_del_rcu(&event->hlist_entry);
5037 static void perf_swevent_start(struct perf_event *event, int flags)
5039 event->hw.state = 0;
5042 static void perf_swevent_stop(struct perf_event *event, int flags)
5044 event->hw.state = PERF_HES_STOPPED;
5047 /* Deref the hlist from the update side */
5048 static inline struct swevent_hlist *
5049 swevent_hlist_deref(struct swevent_htable *swhash)
5051 return rcu_dereference_protected(swhash->swevent_hlist,
5052 lockdep_is_held(&swhash->hlist_mutex));
5055 static void swevent_hlist_release(struct swevent_htable *swhash)
5057 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5062 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5063 kfree_rcu(hlist, rcu_head);
5066 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5068 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5070 mutex_lock(&swhash->hlist_mutex);
5072 if (!--swhash->hlist_refcount)
5073 swevent_hlist_release(swhash);
5075 mutex_unlock(&swhash->hlist_mutex);
5078 static void swevent_hlist_put(struct perf_event *event)
5082 if (event->cpu != -1) {
5083 swevent_hlist_put_cpu(event, event->cpu);
5087 for_each_possible_cpu(cpu)
5088 swevent_hlist_put_cpu(event, cpu);
5091 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5093 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5096 mutex_lock(&swhash->hlist_mutex);
5098 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5099 struct swevent_hlist *hlist;
5101 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5106 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5108 swhash->hlist_refcount++;
5110 mutex_unlock(&swhash->hlist_mutex);
5115 static int swevent_hlist_get(struct perf_event *event)
5118 int cpu, failed_cpu;
5120 if (event->cpu != -1)
5121 return swevent_hlist_get_cpu(event, event->cpu);
5124 for_each_possible_cpu(cpu) {
5125 err = swevent_hlist_get_cpu(event, cpu);
5135 for_each_possible_cpu(cpu) {
5136 if (cpu == failed_cpu)
5138 swevent_hlist_put_cpu(event, cpu);
5145 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5147 static void sw_perf_event_destroy(struct perf_event *event)
5149 u64 event_id = event->attr.config;
5151 WARN_ON(event->parent);
5153 jump_label_dec(&perf_swevent_enabled[event_id]);
5154 swevent_hlist_put(event);
5157 static int perf_swevent_init(struct perf_event *event)
5159 int event_id = event->attr.config;
5161 if (event->attr.type != PERF_TYPE_SOFTWARE)
5165 case PERF_COUNT_SW_CPU_CLOCK:
5166 case PERF_COUNT_SW_TASK_CLOCK:
5173 if (event_id >= PERF_COUNT_SW_MAX)
5176 if (!event->parent) {
5179 err = swevent_hlist_get(event);
5183 jump_label_inc(&perf_swevent_enabled[event_id]);
5184 event->destroy = sw_perf_event_destroy;
5190 static struct pmu perf_swevent = {
5191 .task_ctx_nr = perf_sw_context,
5193 .event_init = perf_swevent_init,
5194 .add = perf_swevent_add,
5195 .del = perf_swevent_del,
5196 .start = perf_swevent_start,
5197 .stop = perf_swevent_stop,
5198 .read = perf_swevent_read,
5201 #ifdef CONFIG_EVENT_TRACING
5203 static int perf_tp_filter_match(struct perf_event *event,
5204 struct perf_sample_data *data)
5206 void *record = data->raw->data;
5208 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5213 static int perf_tp_event_match(struct perf_event *event,
5214 struct perf_sample_data *data,
5215 struct pt_regs *regs)
5217 if (event->hw.state & PERF_HES_STOPPED)
5220 * All tracepoints are from kernel-space.
5222 if (event->attr.exclude_kernel)
5225 if (!perf_tp_filter_match(event, data))
5231 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5232 struct pt_regs *regs, struct hlist_head *head, int rctx)
5234 struct perf_sample_data data;
5235 struct perf_event *event;
5236 struct hlist_node *node;
5238 struct perf_raw_record raw = {
5243 perf_sample_data_init(&data, addr);
5246 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5247 if (perf_tp_event_match(event, &data, regs))
5248 perf_swevent_event(event, count, &data, regs);
5251 perf_swevent_put_recursion_context(rctx);
5253 EXPORT_SYMBOL_GPL(perf_tp_event);
5255 static void tp_perf_event_destroy(struct perf_event *event)
5257 perf_trace_destroy(event);
5260 static int perf_tp_event_init(struct perf_event *event)
5264 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5267 err = perf_trace_init(event);
5271 event->destroy = tp_perf_event_destroy;
5276 static struct pmu perf_tracepoint = {
5277 .task_ctx_nr = perf_sw_context,
5279 .event_init = perf_tp_event_init,
5280 .add = perf_trace_add,
5281 .del = perf_trace_del,
5282 .start = perf_swevent_start,
5283 .stop = perf_swevent_stop,
5284 .read = perf_swevent_read,
5287 static inline void perf_tp_register(void)
5289 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5292 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5297 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5300 filter_str = strndup_user(arg, PAGE_SIZE);
5301 if (IS_ERR(filter_str))
5302 return PTR_ERR(filter_str);
5304 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5310 static void perf_event_free_filter(struct perf_event *event)
5312 ftrace_profile_free_filter(event);
5317 static inline void perf_tp_register(void)
5321 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5326 static void perf_event_free_filter(struct perf_event *event)
5330 #endif /* CONFIG_EVENT_TRACING */
5332 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5333 void perf_bp_event(struct perf_event *bp, void *data)
5335 struct perf_sample_data sample;
5336 struct pt_regs *regs = data;
5338 perf_sample_data_init(&sample, bp->attr.bp_addr);
5340 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5341 perf_swevent_event(bp, 1, &sample, regs);
5346 * hrtimer based swevent callback
5349 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5351 enum hrtimer_restart ret = HRTIMER_RESTART;
5352 struct perf_sample_data data;
5353 struct pt_regs *regs;
5354 struct perf_event *event;
5357 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5359 if (event->state != PERF_EVENT_STATE_ACTIVE)
5360 return HRTIMER_NORESTART;
5362 event->pmu->read(event);
5364 perf_sample_data_init(&data, 0);
5365 data.period = event->hw.last_period;
5366 regs = get_irq_regs();
5368 if (regs && !perf_exclude_event(event, regs)) {
5369 if (!(event->attr.exclude_idle && current->pid == 0))
5370 if (perf_event_overflow(event, &data, regs))
5371 ret = HRTIMER_NORESTART;
5374 period = max_t(u64, 10000, event->hw.sample_period);
5375 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5380 static void perf_swevent_start_hrtimer(struct perf_event *event)
5382 struct hw_perf_event *hwc = &event->hw;
5385 if (!is_sampling_event(event))
5388 period = local64_read(&hwc->period_left);
5393 local64_set(&hwc->period_left, 0);
5395 period = max_t(u64, 10000, hwc->sample_period);
5397 __hrtimer_start_range_ns(&hwc->hrtimer,
5398 ns_to_ktime(period), 0,
5399 HRTIMER_MODE_REL_PINNED, 0);
5402 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5404 struct hw_perf_event *hwc = &event->hw;
5406 if (is_sampling_event(event)) {
5407 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5408 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5410 hrtimer_cancel(&hwc->hrtimer);
5414 static void perf_swevent_init_hrtimer(struct perf_event *event)
5416 struct hw_perf_event *hwc = &event->hw;
5418 if (!is_sampling_event(event))
5421 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5422 hwc->hrtimer.function = perf_swevent_hrtimer;
5425 * Since hrtimers have a fixed rate, we can do a static freq->period
5426 * mapping and avoid the whole period adjust feedback stuff.
5428 if (event->attr.freq) {
5429 long freq = event->attr.sample_freq;
5431 event->attr.sample_period = NSEC_PER_SEC / freq;
5432 hwc->sample_period = event->attr.sample_period;
5433 local64_set(&hwc->period_left, hwc->sample_period);
5434 event->attr.freq = 0;
5439 * Software event: cpu wall time clock
5442 static void cpu_clock_event_update(struct perf_event *event)
5447 now = local_clock();
5448 prev = local64_xchg(&event->hw.prev_count, now);
5449 local64_add(now - prev, &event->count);
5452 static void cpu_clock_event_start(struct perf_event *event, int flags)
5454 local64_set(&event->hw.prev_count, local_clock());
5455 perf_swevent_start_hrtimer(event);
5458 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5460 perf_swevent_cancel_hrtimer(event);
5461 cpu_clock_event_update(event);
5464 static int cpu_clock_event_add(struct perf_event *event, int flags)
5466 if (flags & PERF_EF_START)
5467 cpu_clock_event_start(event, flags);
5472 static void cpu_clock_event_del(struct perf_event *event, int flags)
5474 cpu_clock_event_stop(event, flags);
5477 static void cpu_clock_event_read(struct perf_event *event)
5479 cpu_clock_event_update(event);
5482 static int cpu_clock_event_init(struct perf_event *event)
5484 if (event->attr.type != PERF_TYPE_SOFTWARE)
5487 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5490 perf_swevent_init_hrtimer(event);
5495 static struct pmu perf_cpu_clock = {
5496 .task_ctx_nr = perf_sw_context,
5498 .event_init = cpu_clock_event_init,
5499 .add = cpu_clock_event_add,
5500 .del = cpu_clock_event_del,
5501 .start = cpu_clock_event_start,
5502 .stop = cpu_clock_event_stop,
5503 .read = cpu_clock_event_read,
5507 * Software event: task time clock
5510 static void task_clock_event_update(struct perf_event *event, u64 now)
5515 prev = local64_xchg(&event->hw.prev_count, now);
5517 local64_add(delta, &event->count);
5520 static void task_clock_event_start(struct perf_event *event, int flags)
5522 local64_set(&event->hw.prev_count, event->ctx->time);
5523 perf_swevent_start_hrtimer(event);
5526 static void task_clock_event_stop(struct perf_event *event, int flags)
5528 perf_swevent_cancel_hrtimer(event);
5529 task_clock_event_update(event, event->ctx->time);
5532 static int task_clock_event_add(struct perf_event *event, int flags)
5534 if (flags & PERF_EF_START)
5535 task_clock_event_start(event, flags);
5540 static void task_clock_event_del(struct perf_event *event, int flags)
5542 task_clock_event_stop(event, PERF_EF_UPDATE);
5545 static void task_clock_event_read(struct perf_event *event)
5547 u64 now = perf_clock();
5548 u64 delta = now - event->ctx->timestamp;
5549 u64 time = event->ctx->time + delta;
5551 task_clock_event_update(event, time);
5554 static int task_clock_event_init(struct perf_event *event)
5556 if (event->attr.type != PERF_TYPE_SOFTWARE)
5559 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5562 perf_swevent_init_hrtimer(event);
5567 static struct pmu perf_task_clock = {
5568 .task_ctx_nr = perf_sw_context,
5570 .event_init = task_clock_event_init,
5571 .add = task_clock_event_add,
5572 .del = task_clock_event_del,
5573 .start = task_clock_event_start,
5574 .stop = task_clock_event_stop,
5575 .read = task_clock_event_read,
5578 static void perf_pmu_nop_void(struct pmu *pmu)
5582 static int perf_pmu_nop_int(struct pmu *pmu)
5587 static void perf_pmu_start_txn(struct pmu *pmu)
5589 perf_pmu_disable(pmu);
5592 static int perf_pmu_commit_txn(struct pmu *pmu)
5594 perf_pmu_enable(pmu);
5598 static void perf_pmu_cancel_txn(struct pmu *pmu)
5600 perf_pmu_enable(pmu);
5604 * Ensures all contexts with the same task_ctx_nr have the same
5605 * pmu_cpu_context too.
5607 static void *find_pmu_context(int ctxn)
5614 list_for_each_entry(pmu, &pmus, entry) {
5615 if (pmu->task_ctx_nr == ctxn)
5616 return pmu->pmu_cpu_context;
5622 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5626 for_each_possible_cpu(cpu) {
5627 struct perf_cpu_context *cpuctx;
5629 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5631 if (cpuctx->active_pmu == old_pmu)
5632 cpuctx->active_pmu = pmu;
5636 static void free_pmu_context(struct pmu *pmu)
5640 mutex_lock(&pmus_lock);
5642 * Like a real lame refcount.
5644 list_for_each_entry(i, &pmus, entry) {
5645 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5646 update_pmu_context(i, pmu);
5651 free_percpu(pmu->pmu_cpu_context);
5653 mutex_unlock(&pmus_lock);
5655 static struct idr pmu_idr;
5658 type_show(struct device *dev, struct device_attribute *attr, char *page)
5660 struct pmu *pmu = dev_get_drvdata(dev);
5662 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5665 static struct device_attribute pmu_dev_attrs[] = {
5670 static int pmu_bus_running;
5671 static struct bus_type pmu_bus = {
5672 .name = "event_source",
5673 .dev_attrs = pmu_dev_attrs,
5676 static void pmu_dev_release(struct device *dev)
5681 static int pmu_dev_alloc(struct pmu *pmu)
5685 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5689 device_initialize(pmu->dev);
5690 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5694 dev_set_drvdata(pmu->dev, pmu);
5695 pmu->dev->bus = &pmu_bus;
5696 pmu->dev->release = pmu_dev_release;
5697 ret = device_add(pmu->dev);
5705 put_device(pmu->dev);
5709 static struct lock_class_key cpuctx_mutex;
5710 static struct lock_class_key cpuctx_lock;
5712 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5716 mutex_lock(&pmus_lock);
5718 pmu->pmu_disable_count = alloc_percpu(int);
5719 if (!pmu->pmu_disable_count)
5728 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5732 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5740 if (pmu_bus_running) {
5741 ret = pmu_dev_alloc(pmu);
5747 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5748 if (pmu->pmu_cpu_context)
5749 goto got_cpu_context;
5751 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5752 if (!pmu->pmu_cpu_context)
5755 for_each_possible_cpu(cpu) {
5756 struct perf_cpu_context *cpuctx;
5758 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5759 __perf_event_init_context(&cpuctx->ctx);
5760 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5761 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5762 cpuctx->ctx.type = cpu_context;
5763 cpuctx->ctx.pmu = pmu;
5764 cpuctx->jiffies_interval = 1;
5765 INIT_LIST_HEAD(&cpuctx->rotation_list);
5766 cpuctx->active_pmu = pmu;
5770 if (!pmu->start_txn) {
5771 if (pmu->pmu_enable) {
5773 * If we have pmu_enable/pmu_disable calls, install
5774 * transaction stubs that use that to try and batch
5775 * hardware accesses.
5777 pmu->start_txn = perf_pmu_start_txn;
5778 pmu->commit_txn = perf_pmu_commit_txn;
5779 pmu->cancel_txn = perf_pmu_cancel_txn;
5781 pmu->start_txn = perf_pmu_nop_void;
5782 pmu->commit_txn = perf_pmu_nop_int;
5783 pmu->cancel_txn = perf_pmu_nop_void;
5787 if (!pmu->pmu_enable) {
5788 pmu->pmu_enable = perf_pmu_nop_void;
5789 pmu->pmu_disable = perf_pmu_nop_void;
5792 list_add_rcu(&pmu->entry, &pmus);
5795 mutex_unlock(&pmus_lock);
5800 device_del(pmu->dev);
5801 put_device(pmu->dev);
5804 if (pmu->type >= PERF_TYPE_MAX)
5805 idr_remove(&pmu_idr, pmu->type);
5808 free_percpu(pmu->pmu_disable_count);
5812 void perf_pmu_unregister(struct pmu *pmu)
5814 mutex_lock(&pmus_lock);
5815 list_del_rcu(&pmu->entry);
5816 mutex_unlock(&pmus_lock);
5819 * We dereference the pmu list under both SRCU and regular RCU, so
5820 * synchronize against both of those.
5822 synchronize_srcu(&pmus_srcu);
5825 free_percpu(pmu->pmu_disable_count);
5826 if (pmu->type >= PERF_TYPE_MAX)
5827 idr_remove(&pmu_idr, pmu->type);
5828 device_del(pmu->dev);
5829 put_device(pmu->dev);
5830 free_pmu_context(pmu);
5833 struct pmu *perf_init_event(struct perf_event *event)
5835 struct pmu *pmu = NULL;
5839 idx = srcu_read_lock(&pmus_srcu);
5842 pmu = idr_find(&pmu_idr, event->attr.type);
5846 ret = pmu->event_init(event);
5852 list_for_each_entry_rcu(pmu, &pmus, entry) {
5854 ret = pmu->event_init(event);
5858 if (ret != -ENOENT) {
5863 pmu = ERR_PTR(-ENOENT);
5865 srcu_read_unlock(&pmus_srcu, idx);
5871 * Allocate and initialize a event structure
5873 static struct perf_event *
5874 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5875 struct task_struct *task,
5876 struct perf_event *group_leader,
5877 struct perf_event *parent_event,
5878 perf_overflow_handler_t overflow_handler,
5882 struct perf_event *event;
5883 struct hw_perf_event *hwc;
5886 if ((unsigned)cpu >= nr_cpu_ids) {
5887 if (!task || cpu != -1)
5888 return ERR_PTR(-EINVAL);
5891 event = kzalloc(sizeof(*event), GFP_KERNEL);
5893 return ERR_PTR(-ENOMEM);
5896 * Single events are their own group leaders, with an
5897 * empty sibling list:
5900 group_leader = event;
5902 mutex_init(&event->child_mutex);
5903 INIT_LIST_HEAD(&event->child_list);
5905 INIT_LIST_HEAD(&event->group_entry);
5906 INIT_LIST_HEAD(&event->event_entry);
5907 INIT_LIST_HEAD(&event->sibling_list);
5908 INIT_LIST_HEAD(&event->rb_entry);
5910 init_waitqueue_head(&event->waitq);
5911 init_irq_work(&event->pending, perf_pending_event);
5913 mutex_init(&event->mmap_mutex);
5916 event->attr = *attr;
5917 event->group_leader = group_leader;
5921 event->parent = parent_event;
5923 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5924 event->id = atomic64_inc_return(&perf_event_id);
5926 event->state = PERF_EVENT_STATE_INACTIVE;
5929 event->attach_state = PERF_ATTACH_TASK;
5930 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5932 * hw_breakpoint is a bit difficult here..
5934 if (attr->type == PERF_TYPE_BREAKPOINT)
5935 event->hw.bp_target = task;
5939 if (!overflow_handler && parent_event) {
5940 overflow_handler = parent_event->overflow_handler;
5941 context = parent_event->overflow_handler_context;
5944 event->overflow_handler = overflow_handler;
5945 event->overflow_handler_context = context;
5948 event->state = PERF_EVENT_STATE_OFF;
5953 hwc->sample_period = attr->sample_period;
5954 if (attr->freq && attr->sample_freq)
5955 hwc->sample_period = 1;
5956 hwc->last_period = hwc->sample_period;
5958 local64_set(&hwc->period_left, hwc->sample_period);
5961 * we currently do not support PERF_FORMAT_GROUP on inherited events
5963 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5966 pmu = perf_init_event(event);
5972 else if (IS_ERR(pmu))
5977 put_pid_ns(event->ns);
5979 return ERR_PTR(err);
5982 if (!event->parent) {
5983 if (event->attach_state & PERF_ATTACH_TASK)
5984 jump_label_inc(&perf_sched_events);
5985 if (event->attr.mmap || event->attr.mmap_data)
5986 atomic_inc(&nr_mmap_events);
5987 if (event->attr.comm)
5988 atomic_inc(&nr_comm_events);
5989 if (event->attr.task)
5990 atomic_inc(&nr_task_events);
5991 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5992 err = get_callchain_buffers();
5995 return ERR_PTR(err);
6003 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6004 struct perf_event_attr *attr)
6009 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6013 * zero the full structure, so that a short copy will be nice.
6015 memset(attr, 0, sizeof(*attr));
6017 ret = get_user(size, &uattr->size);
6021 if (size > PAGE_SIZE) /* silly large */
6024 if (!size) /* abi compat */
6025 size = PERF_ATTR_SIZE_VER0;
6027 if (size < PERF_ATTR_SIZE_VER0)
6031 * If we're handed a bigger struct than we know of,
6032 * ensure all the unknown bits are 0 - i.e. new
6033 * user-space does not rely on any kernel feature
6034 * extensions we dont know about yet.
6036 if (size > sizeof(*attr)) {
6037 unsigned char __user *addr;
6038 unsigned char __user *end;
6041 addr = (void __user *)uattr + sizeof(*attr);
6042 end = (void __user *)uattr + size;
6044 for (; addr < end; addr++) {
6045 ret = get_user(val, addr);
6051 size = sizeof(*attr);
6054 ret = copy_from_user(attr, uattr, size);
6058 if (attr->__reserved_1)
6061 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6064 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6071 put_user(sizeof(*attr), &uattr->size);
6077 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6079 struct ring_buffer *rb = NULL, *old_rb = NULL;
6085 /* don't allow circular references */
6086 if (event == output_event)
6090 * Don't allow cross-cpu buffers
6092 if (output_event->cpu != event->cpu)
6096 * If its not a per-cpu rb, it must be the same task.
6098 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6102 mutex_lock(&event->mmap_mutex);
6103 /* Can't redirect output if we've got an active mmap() */
6104 if (atomic_read(&event->mmap_count))
6108 /* get the rb we want to redirect to */
6109 rb = ring_buffer_get(output_event);
6115 rcu_assign_pointer(event->rb, rb);
6117 ring_buffer_detach(event, old_rb);
6120 mutex_unlock(&event->mmap_mutex);
6123 ring_buffer_put(old_rb);
6129 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6131 * @attr_uptr: event_id type attributes for monitoring/sampling
6134 * @group_fd: group leader event fd
6136 SYSCALL_DEFINE5(perf_event_open,
6137 struct perf_event_attr __user *, attr_uptr,
6138 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6140 struct perf_event *group_leader = NULL, *output_event = NULL;
6141 struct perf_event *event, *sibling;
6142 struct perf_event_attr attr;
6143 struct perf_event_context *ctx;
6144 struct file *event_file = NULL;
6145 struct file *group_file = NULL;
6146 struct task_struct *task = NULL;
6150 int fput_needed = 0;
6153 /* for future expandability... */
6154 if (flags & ~PERF_FLAG_ALL)
6157 err = perf_copy_attr(attr_uptr, &attr);
6161 if (!attr.exclude_kernel) {
6162 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6167 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6172 * In cgroup mode, the pid argument is used to pass the fd
6173 * opened to the cgroup directory in cgroupfs. The cpu argument
6174 * designates the cpu on which to monitor threads from that
6177 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6180 event_fd = get_unused_fd_flags(O_RDWR);
6184 if (group_fd != -1) {
6185 group_leader = perf_fget_light(group_fd, &fput_needed);
6186 if (IS_ERR(group_leader)) {
6187 err = PTR_ERR(group_leader);
6190 group_file = group_leader->filp;
6191 if (flags & PERF_FLAG_FD_OUTPUT)
6192 output_event = group_leader;
6193 if (flags & PERF_FLAG_FD_NO_GROUP)
6194 group_leader = NULL;
6197 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6198 task = find_lively_task_by_vpid(pid);
6200 err = PTR_ERR(task);
6205 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6207 if (IS_ERR(event)) {
6208 err = PTR_ERR(event);
6212 if (flags & PERF_FLAG_PID_CGROUP) {
6213 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6218 * - that has cgroup constraint on event->cpu
6219 * - that may need work on context switch
6221 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6222 jump_label_inc(&perf_sched_events);
6226 * Special case software events and allow them to be part of
6227 * any hardware group.
6232 (is_software_event(event) != is_software_event(group_leader))) {
6233 if (is_software_event(event)) {
6235 * If event and group_leader are not both a software
6236 * event, and event is, then group leader is not.
6238 * Allow the addition of software events to !software
6239 * groups, this is safe because software events never
6242 pmu = group_leader->pmu;
6243 } else if (is_software_event(group_leader) &&
6244 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6246 * In case the group is a pure software group, and we
6247 * try to add a hardware event, move the whole group to
6248 * the hardware context.
6255 * Get the target context (task or percpu):
6257 ctx = find_get_context(pmu, task, cpu);
6264 put_task_struct(task);
6269 * Look up the group leader (we will attach this event to it):
6275 * Do not allow a recursive hierarchy (this new sibling
6276 * becoming part of another group-sibling):
6278 if (group_leader->group_leader != group_leader)
6281 * Do not allow to attach to a group in a different
6282 * task or CPU context:
6285 if (group_leader->ctx->type != ctx->type)
6288 if (group_leader->ctx != ctx)
6293 * Only a group leader can be exclusive or pinned
6295 if (attr.exclusive || attr.pinned)
6300 err = perf_event_set_output(event, output_event);
6305 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6306 if (IS_ERR(event_file)) {
6307 err = PTR_ERR(event_file);
6312 struct perf_event_context *gctx = group_leader->ctx;
6314 mutex_lock(&gctx->mutex);
6315 perf_remove_from_context(group_leader);
6316 list_for_each_entry(sibling, &group_leader->sibling_list,
6318 perf_remove_from_context(sibling);
6321 mutex_unlock(&gctx->mutex);
6325 event->filp = event_file;
6326 WARN_ON_ONCE(ctx->parent_ctx);
6327 mutex_lock(&ctx->mutex);
6330 perf_install_in_context(ctx, group_leader, cpu);
6332 list_for_each_entry(sibling, &group_leader->sibling_list,
6334 perf_install_in_context(ctx, sibling, cpu);
6339 perf_install_in_context(ctx, event, cpu);
6341 perf_unpin_context(ctx);
6342 mutex_unlock(&ctx->mutex);
6344 event->owner = current;
6346 mutex_lock(¤t->perf_event_mutex);
6347 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
6348 mutex_unlock(¤t->perf_event_mutex);
6351 * Precalculate sample_data sizes
6353 perf_event__header_size(event);
6354 perf_event__id_header_size(event);
6357 * Drop the reference on the group_event after placing the
6358 * new event on the sibling_list. This ensures destruction
6359 * of the group leader will find the pointer to itself in
6360 * perf_group_detach().
6362 fput_light(group_file, fput_needed);
6363 fd_install(event_fd, event_file);
6367 perf_unpin_context(ctx);
6373 put_task_struct(task);
6375 fput_light(group_file, fput_needed);
6377 put_unused_fd(event_fd);
6382 * perf_event_create_kernel_counter
6384 * @attr: attributes of the counter to create
6385 * @cpu: cpu in which the counter is bound
6386 * @task: task to profile (NULL for percpu)
6389 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6390 struct task_struct *task,
6391 perf_overflow_handler_t overflow_handler,
6394 struct perf_event_context *ctx;
6395 struct perf_event *event;
6399 * Get the target context (task or percpu):
6402 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6403 overflow_handler, context);
6404 if (IS_ERR(event)) {
6405 err = PTR_ERR(event);
6409 ctx = find_get_context(event->pmu, task, cpu);
6416 WARN_ON_ONCE(ctx->parent_ctx);
6417 mutex_lock(&ctx->mutex);
6418 perf_install_in_context(ctx, event, cpu);
6420 perf_unpin_context(ctx);
6421 mutex_unlock(&ctx->mutex);
6428 return ERR_PTR(err);
6430 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6432 static void sync_child_event(struct perf_event *child_event,
6433 struct task_struct *child)
6435 struct perf_event *parent_event = child_event->parent;
6438 if (child_event->attr.inherit_stat)
6439 perf_event_read_event(child_event, child);
6441 child_val = perf_event_count(child_event);
6444 * Add back the child's count to the parent's count:
6446 atomic64_add(child_val, &parent_event->child_count);
6447 atomic64_add(child_event->total_time_enabled,
6448 &parent_event->child_total_time_enabled);
6449 atomic64_add(child_event->total_time_running,
6450 &parent_event->child_total_time_running);
6453 * Remove this event from the parent's list
6455 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6456 mutex_lock(&parent_event->child_mutex);
6457 list_del_init(&child_event->child_list);
6458 mutex_unlock(&parent_event->child_mutex);
6461 * Release the parent event, if this was the last
6464 fput(parent_event->filp);
6468 __perf_event_exit_task(struct perf_event *child_event,
6469 struct perf_event_context *child_ctx,
6470 struct task_struct *child)
6472 if (child_event->parent) {
6473 raw_spin_lock_irq(&child_ctx->lock);
6474 perf_group_detach(child_event);
6475 raw_spin_unlock_irq(&child_ctx->lock);
6478 perf_remove_from_context(child_event);
6481 * It can happen that the parent exits first, and has events
6482 * that are still around due to the child reference. These
6483 * events need to be zapped.
6485 if (child_event->parent) {
6486 sync_child_event(child_event, child);
6487 free_event(child_event);
6491 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6493 struct perf_event *child_event, *tmp;
6494 struct perf_event_context *child_ctx;
6495 unsigned long flags;
6497 if (likely(!child->perf_event_ctxp[ctxn])) {
6498 perf_event_task(child, NULL, 0);
6502 local_irq_save(flags);
6504 * We can't reschedule here because interrupts are disabled,
6505 * and either child is current or it is a task that can't be
6506 * scheduled, so we are now safe from rescheduling changing
6509 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6512 * Take the context lock here so that if find_get_context is
6513 * reading child->perf_event_ctxp, we wait until it has
6514 * incremented the context's refcount before we do put_ctx below.
6516 raw_spin_lock(&child_ctx->lock);
6517 task_ctx_sched_out(child_ctx);
6518 child->perf_event_ctxp[ctxn] = NULL;
6520 * If this context is a clone; unclone it so it can't get
6521 * swapped to another process while we're removing all
6522 * the events from it.
6524 unclone_ctx(child_ctx);
6525 update_context_time(child_ctx);
6526 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6529 * Report the task dead after unscheduling the events so that we
6530 * won't get any samples after PERF_RECORD_EXIT. We can however still
6531 * get a few PERF_RECORD_READ events.
6533 perf_event_task(child, child_ctx, 0);
6536 * We can recurse on the same lock type through:
6538 * __perf_event_exit_task()
6539 * sync_child_event()
6540 * fput(parent_event->filp)
6542 * mutex_lock(&ctx->mutex)
6544 * But since its the parent context it won't be the same instance.
6546 mutex_lock(&child_ctx->mutex);
6549 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6551 __perf_event_exit_task(child_event, child_ctx, child);
6553 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6555 __perf_event_exit_task(child_event, child_ctx, child);
6558 * If the last event was a group event, it will have appended all
6559 * its siblings to the list, but we obtained 'tmp' before that which
6560 * will still point to the list head terminating the iteration.
6562 if (!list_empty(&child_ctx->pinned_groups) ||
6563 !list_empty(&child_ctx->flexible_groups))
6566 mutex_unlock(&child_ctx->mutex);
6572 * When a child task exits, feed back event values to parent events.
6574 void perf_event_exit_task(struct task_struct *child)
6576 struct perf_event *event, *tmp;
6579 mutex_lock(&child->perf_event_mutex);
6580 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6582 list_del_init(&event->owner_entry);
6585 * Ensure the list deletion is visible before we clear
6586 * the owner, closes a race against perf_release() where
6587 * we need to serialize on the owner->perf_event_mutex.
6590 event->owner = NULL;
6592 mutex_unlock(&child->perf_event_mutex);
6594 for_each_task_context_nr(ctxn)
6595 perf_event_exit_task_context(child, ctxn);
6598 static void perf_free_event(struct perf_event *event,
6599 struct perf_event_context *ctx)
6601 struct perf_event *parent = event->parent;
6603 if (WARN_ON_ONCE(!parent))
6606 mutex_lock(&parent->child_mutex);
6607 list_del_init(&event->child_list);
6608 mutex_unlock(&parent->child_mutex);
6612 perf_group_detach(event);
6613 list_del_event(event, ctx);
6618 * free an unexposed, unused context as created by inheritance by
6619 * perf_event_init_task below, used by fork() in case of fail.
6621 void perf_event_free_task(struct task_struct *task)
6623 struct perf_event_context *ctx;
6624 struct perf_event *event, *tmp;
6627 for_each_task_context_nr(ctxn) {
6628 ctx = task->perf_event_ctxp[ctxn];
6632 mutex_lock(&ctx->mutex);
6634 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6636 perf_free_event(event, ctx);
6638 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6640 perf_free_event(event, ctx);
6642 if (!list_empty(&ctx->pinned_groups) ||
6643 !list_empty(&ctx->flexible_groups))
6646 mutex_unlock(&ctx->mutex);
6652 void perf_event_delayed_put(struct task_struct *task)
6656 for_each_task_context_nr(ctxn)
6657 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6661 * inherit a event from parent task to child task:
6663 static struct perf_event *
6664 inherit_event(struct perf_event *parent_event,
6665 struct task_struct *parent,
6666 struct perf_event_context *parent_ctx,
6667 struct task_struct *child,
6668 struct perf_event *group_leader,
6669 struct perf_event_context *child_ctx)
6671 struct perf_event *child_event;
6672 unsigned long flags;
6675 * Instead of creating recursive hierarchies of events,
6676 * we link inherited events back to the original parent,
6677 * which has a filp for sure, which we use as the reference
6680 if (parent_event->parent)
6681 parent_event = parent_event->parent;
6683 child_event = perf_event_alloc(&parent_event->attr,
6686 group_leader, parent_event,
6688 if (IS_ERR(child_event))
6693 * Make the child state follow the state of the parent event,
6694 * not its attr.disabled bit. We hold the parent's mutex,
6695 * so we won't race with perf_event_{en, dis}able_family.
6697 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6698 child_event->state = PERF_EVENT_STATE_INACTIVE;
6700 child_event->state = PERF_EVENT_STATE_OFF;
6702 if (parent_event->attr.freq) {
6703 u64 sample_period = parent_event->hw.sample_period;
6704 struct hw_perf_event *hwc = &child_event->hw;
6706 hwc->sample_period = sample_period;
6707 hwc->last_period = sample_period;
6709 local64_set(&hwc->period_left, sample_period);
6712 child_event->ctx = child_ctx;
6713 child_event->overflow_handler = parent_event->overflow_handler;
6714 child_event->overflow_handler_context
6715 = parent_event->overflow_handler_context;
6718 * Precalculate sample_data sizes
6720 perf_event__header_size(child_event);
6721 perf_event__id_header_size(child_event);
6724 * Link it up in the child's context:
6726 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6727 add_event_to_ctx(child_event, child_ctx);
6728 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6731 * Get a reference to the parent filp - we will fput it
6732 * when the child event exits. This is safe to do because
6733 * we are in the parent and we know that the filp still
6734 * exists and has a nonzero count:
6736 atomic_long_inc(&parent_event->filp->f_count);
6739 * Link this into the parent event's child list
6741 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6742 mutex_lock(&parent_event->child_mutex);
6743 list_add_tail(&child_event->child_list, &parent_event->child_list);
6744 mutex_unlock(&parent_event->child_mutex);
6749 static int inherit_group(struct perf_event *parent_event,
6750 struct task_struct *parent,
6751 struct perf_event_context *parent_ctx,
6752 struct task_struct *child,
6753 struct perf_event_context *child_ctx)
6755 struct perf_event *leader;
6756 struct perf_event *sub;
6757 struct perf_event *child_ctr;
6759 leader = inherit_event(parent_event, parent, parent_ctx,
6760 child, NULL, child_ctx);
6762 return PTR_ERR(leader);
6763 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6764 child_ctr = inherit_event(sub, parent, parent_ctx,
6765 child, leader, child_ctx);
6766 if (IS_ERR(child_ctr))
6767 return PTR_ERR(child_ctr);
6773 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6774 struct perf_event_context *parent_ctx,
6775 struct task_struct *child, int ctxn,
6779 struct perf_event_context *child_ctx;
6781 if (!event->attr.inherit) {
6786 child_ctx = child->perf_event_ctxp[ctxn];
6789 * This is executed from the parent task context, so
6790 * inherit events that have been marked for cloning.
6791 * First allocate and initialize a context for the
6795 child_ctx = alloc_perf_context(event->pmu, child);
6799 child->perf_event_ctxp[ctxn] = child_ctx;
6802 ret = inherit_group(event, parent, parent_ctx,
6812 * Initialize the perf_event context in task_struct
6814 int perf_event_init_context(struct task_struct *child, int ctxn)
6816 struct perf_event_context *child_ctx, *parent_ctx;
6817 struct perf_event_context *cloned_ctx;
6818 struct perf_event *event;
6819 struct task_struct *parent = current;
6820 int inherited_all = 1;
6821 unsigned long flags;
6824 if (likely(!parent->perf_event_ctxp[ctxn]))
6828 * If the parent's context is a clone, pin it so it won't get
6831 parent_ctx = perf_pin_task_context(parent, ctxn);
6834 * No need to check if parent_ctx != NULL here; since we saw
6835 * it non-NULL earlier, the only reason for it to become NULL
6836 * is if we exit, and since we're currently in the middle of
6837 * a fork we can't be exiting at the same time.
6841 * Lock the parent list. No need to lock the child - not PID
6842 * hashed yet and not running, so nobody can access it.
6844 mutex_lock(&parent_ctx->mutex);
6847 * We dont have to disable NMIs - we are only looking at
6848 * the list, not manipulating it:
6850 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6851 ret = inherit_task_group(event, parent, parent_ctx,
6852 child, ctxn, &inherited_all);
6858 * We can't hold ctx->lock when iterating the ->flexible_group list due
6859 * to allocations, but we need to prevent rotation because
6860 * rotate_ctx() will change the list from interrupt context.
6862 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6863 parent_ctx->rotate_disable = 1;
6864 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6866 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6867 ret = inherit_task_group(event, parent, parent_ctx,
6868 child, ctxn, &inherited_all);
6873 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6874 parent_ctx->rotate_disable = 0;
6876 child_ctx = child->perf_event_ctxp[ctxn];
6878 if (child_ctx && inherited_all) {
6880 * Mark the child context as a clone of the parent
6881 * context, or of whatever the parent is a clone of.
6883 * Note that if the parent is a clone, the holding of
6884 * parent_ctx->lock avoids it from being uncloned.
6886 cloned_ctx = parent_ctx->parent_ctx;
6888 child_ctx->parent_ctx = cloned_ctx;
6889 child_ctx->parent_gen = parent_ctx->parent_gen;
6891 child_ctx->parent_ctx = parent_ctx;
6892 child_ctx->parent_gen = parent_ctx->generation;
6894 get_ctx(child_ctx->parent_ctx);
6897 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6898 mutex_unlock(&parent_ctx->mutex);
6900 perf_unpin_context(parent_ctx);
6901 put_ctx(parent_ctx);
6907 * Initialize the perf_event context in task_struct
6909 int perf_event_init_task(struct task_struct *child)
6913 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6914 mutex_init(&child->perf_event_mutex);
6915 INIT_LIST_HEAD(&child->perf_event_list);
6917 for_each_task_context_nr(ctxn) {
6918 ret = perf_event_init_context(child, ctxn);
6926 static void __init perf_event_init_all_cpus(void)
6928 struct swevent_htable *swhash;
6931 for_each_possible_cpu(cpu) {
6932 swhash = &per_cpu(swevent_htable, cpu);
6933 mutex_init(&swhash->hlist_mutex);
6934 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6938 static void __cpuinit perf_event_init_cpu(int cpu)
6940 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6942 mutex_lock(&swhash->hlist_mutex);
6943 if (swhash->hlist_refcount > 0) {
6944 struct swevent_hlist *hlist;
6946 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6948 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6950 mutex_unlock(&swhash->hlist_mutex);
6953 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6954 static void perf_pmu_rotate_stop(struct pmu *pmu)
6956 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6958 WARN_ON(!irqs_disabled());
6960 list_del_init(&cpuctx->rotation_list);
6963 static void __perf_event_exit_context(void *__info)
6965 struct perf_event_context *ctx = __info;
6966 struct perf_event *event, *tmp;
6968 perf_pmu_rotate_stop(ctx->pmu);
6970 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6971 __perf_remove_from_context(event);
6972 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6973 __perf_remove_from_context(event);
6976 static void perf_event_exit_cpu_context(int cpu)
6978 struct perf_event_context *ctx;
6982 idx = srcu_read_lock(&pmus_srcu);
6983 list_for_each_entry_rcu(pmu, &pmus, entry) {
6984 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6986 mutex_lock(&ctx->mutex);
6987 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6988 mutex_unlock(&ctx->mutex);
6990 srcu_read_unlock(&pmus_srcu, idx);
6993 static void perf_event_exit_cpu(int cpu)
6995 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6997 mutex_lock(&swhash->hlist_mutex);
6998 swevent_hlist_release(swhash);
6999 mutex_unlock(&swhash->hlist_mutex);
7001 perf_event_exit_cpu_context(cpu);
7004 static inline void perf_event_exit_cpu(int cpu) { }
7008 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7012 for_each_online_cpu(cpu)
7013 perf_event_exit_cpu(cpu);
7019 * Run the perf reboot notifier at the very last possible moment so that
7020 * the generic watchdog code runs as long as possible.
7022 static struct notifier_block perf_reboot_notifier = {
7023 .notifier_call = perf_reboot,
7024 .priority = INT_MIN,
7027 static int __cpuinit
7028 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7030 unsigned int cpu = (long)hcpu;
7032 switch (action & ~CPU_TASKS_FROZEN) {
7034 case CPU_UP_PREPARE:
7035 case CPU_DOWN_FAILED:
7036 perf_event_init_cpu(cpu);
7039 case CPU_UP_CANCELED:
7040 case CPU_DOWN_PREPARE:
7041 perf_event_exit_cpu(cpu);
7051 void __init perf_event_init(void)
7057 perf_event_init_all_cpus();
7058 init_srcu_struct(&pmus_srcu);
7059 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7060 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7061 perf_pmu_register(&perf_task_clock, NULL, -1);
7063 perf_cpu_notifier(perf_cpu_notify);
7064 register_reboot_notifier(&perf_reboot_notifier);
7066 ret = init_hw_breakpoint();
7067 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7070 static int __init perf_event_sysfs_init(void)
7075 mutex_lock(&pmus_lock);
7077 ret = bus_register(&pmu_bus);
7081 list_for_each_entry(pmu, &pmus, entry) {
7082 if (!pmu->name || pmu->type < 0)
7085 ret = pmu_dev_alloc(pmu);
7086 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7088 pmu_bus_running = 1;
7092 mutex_unlock(&pmus_lock);
7096 device_initcall(perf_event_sysfs_init);
7098 #ifdef CONFIG_CGROUP_PERF
7099 static struct cgroup_subsys_state *perf_cgroup_create(
7100 struct cgroup_subsys *ss, struct cgroup *cont)
7102 struct perf_cgroup *jc;
7104 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7106 return ERR_PTR(-ENOMEM);
7108 jc->info = alloc_percpu(struct perf_cgroup_info);
7111 return ERR_PTR(-ENOMEM);
7117 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7118 struct cgroup *cont)
7120 struct perf_cgroup *jc;
7121 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7122 struct perf_cgroup, css);
7123 free_percpu(jc->info);
7127 static int __perf_cgroup_move(void *info)
7129 struct task_struct *task = info;
7130 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7135 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7137 task_function_call(task, __perf_cgroup_move, task);
7140 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7141 struct cgroup *old_cgrp, struct task_struct *task)
7144 * cgroup_exit() is called in the copy_process() failure path.
7145 * Ignore this case since the task hasn't ran yet, this avoids
7146 * trying to poke a half freed task state from generic code.
7148 if (!(task->flags & PF_EXITING))
7151 perf_cgroup_attach_task(cgrp, task);
7154 struct cgroup_subsys perf_subsys = {
7155 .name = "perf_event",
7156 .subsys_id = perf_subsys_id,
7157 .create = perf_cgroup_create,
7158 .destroy = perf_cgroup_destroy,
7159 .exit = perf_cgroup_exit,
7160 .attach_task = perf_cgroup_attach_task,
7162 #endif /* CONFIG_CGROUP_PERF */