ext4: ignore EXT4_INODE_JOURNAL_DATA flag with delalloc
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         trace_ext4_begin_ordered_truncate(inode, new_size);
55         /*
56          * If jinode is zero, then we never opened the file for
57          * writing, so there's no need to call
58          * jbd2_journal_begin_ordered_truncate() since there's no
59          * outstanding writes we need to flush.
60          */
61         if (!EXT4_I(inode)->jinode)
62                 return 0;
63         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64                                                    EXT4_I(inode)->jinode,
65                                                    new_size);
66 }
67
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70                                    struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75
76 /*
77  * Test whether an inode is a fast symlink.
78  */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81         int ea_blocks = EXT4_I(inode)->i_file_acl ?
82                 (inode->i_sb->s_blocksize >> 9) : 0;
83
84         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86
87 /*
88  * Restart the transaction associated with *handle.  This does a commit,
89  * so before we call here everything must be consistently dirtied against
90  * this transaction.
91  */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93                                  int nblocks)
94 {
95         int ret;
96
97         /*
98          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99          * moment, get_block can be called only for blocks inside i_size since
100          * page cache has been already dropped and writes are blocked by
101          * i_mutex. So we can safely drop the i_data_sem here.
102          */
103         BUG_ON(EXT4_JOURNAL(inode) == NULL);
104         jbd_debug(2, "restarting handle %p\n", handle);
105         up_write(&EXT4_I(inode)->i_data_sem);
106         ret = ext4_journal_restart(handle, nblocks);
107         down_write(&EXT4_I(inode)->i_data_sem);
108         ext4_discard_preallocations(inode);
109
110         return ret;
111 }
112
113 /*
114  * Called at the last iput() if i_nlink is zero.
115  */
116 void ext4_evict_inode(struct inode *inode)
117 {
118         handle_t *handle;
119         int err;
120
121         trace_ext4_evict_inode(inode);
122
123         ext4_ioend_wait(inode);
124
125         if (inode->i_nlink) {
126                 /*
127                  * When journalling data dirty buffers are tracked only in the
128                  * journal. So although mm thinks everything is clean and
129                  * ready for reaping the inode might still have some pages to
130                  * write in the running transaction or waiting to be
131                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
132                  * (via truncate_inode_pages()) to discard these buffers can
133                  * cause data loss. Also even if we did not discard these
134                  * buffers, we would have no way to find them after the inode
135                  * is reaped and thus user could see stale data if he tries to
136                  * read them before the transaction is checkpointed. So be
137                  * careful and force everything to disk here... We use
138                  * ei->i_datasync_tid to store the newest transaction
139                  * containing inode's data.
140                  *
141                  * Note that directories do not have this problem because they
142                  * don't use page cache.
143                  */
144                 if (ext4_should_journal_data(inode) &&
145                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149                         jbd2_log_start_commit(journal, commit_tid);
150                         jbd2_log_wait_commit(journal, commit_tid);
151                         filemap_write_and_wait(&inode->i_data);
152                 }
153                 truncate_inode_pages(&inode->i_data, 0);
154                 goto no_delete;
155         }
156
157         if (!is_bad_inode(inode))
158                 dquot_initialize(inode);
159
160         if (ext4_should_order_data(inode))
161                 ext4_begin_ordered_truncate(inode, 0);
162         truncate_inode_pages(&inode->i_data, 0);
163
164         if (is_bad_inode(inode))
165                 goto no_delete;
166
167         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168         if (IS_ERR(handle)) {
169                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170                 /*
171                  * If we're going to skip the normal cleanup, we still need to
172                  * make sure that the in-core orphan linked list is properly
173                  * cleaned up.
174                  */
175                 ext4_orphan_del(NULL, inode);
176                 goto no_delete;
177         }
178
179         if (IS_SYNC(inode))
180                 ext4_handle_sync(handle);
181         inode->i_size = 0;
182         err = ext4_mark_inode_dirty(handle, inode);
183         if (err) {
184                 ext4_warning(inode->i_sb,
185                              "couldn't mark inode dirty (err %d)", err);
186                 goto stop_handle;
187         }
188         if (inode->i_blocks)
189                 ext4_truncate(inode);
190
191         /*
192          * ext4_ext_truncate() doesn't reserve any slop when it
193          * restarts journal transactions; therefore there may not be
194          * enough credits left in the handle to remove the inode from
195          * the orphan list and set the dtime field.
196          */
197         if (!ext4_handle_has_enough_credits(handle, 3)) {
198                 err = ext4_journal_extend(handle, 3);
199                 if (err > 0)
200                         err = ext4_journal_restart(handle, 3);
201                 if (err != 0) {
202                         ext4_warning(inode->i_sb,
203                                      "couldn't extend journal (err %d)", err);
204                 stop_handle:
205                         ext4_journal_stop(handle);
206                         ext4_orphan_del(NULL, inode);
207                         goto no_delete;
208                 }
209         }
210
211         /*
212          * Kill off the orphan record which ext4_truncate created.
213          * AKPM: I think this can be inside the above `if'.
214          * Note that ext4_orphan_del() has to be able to cope with the
215          * deletion of a non-existent orphan - this is because we don't
216          * know if ext4_truncate() actually created an orphan record.
217          * (Well, we could do this if we need to, but heck - it works)
218          */
219         ext4_orphan_del(handle, inode);
220         EXT4_I(inode)->i_dtime  = get_seconds();
221
222         /*
223          * One subtle ordering requirement: if anything has gone wrong
224          * (transaction abort, IO errors, whatever), then we can still
225          * do these next steps (the fs will already have been marked as
226          * having errors), but we can't free the inode if the mark_dirty
227          * fails.
228          */
229         if (ext4_mark_inode_dirty(handle, inode))
230                 /* If that failed, just do the required in-core inode clear. */
231                 ext4_clear_inode(inode);
232         else
233                 ext4_free_inode(handle, inode);
234         ext4_journal_stop(handle);
235         return;
236 no_delete:
237         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243         return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254                 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256         return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264                                         int used, int quota_claim)
265 {
266         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267         struct ext4_inode_info *ei = EXT4_I(inode);
268
269         spin_lock(&ei->i_block_reservation_lock);
270         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271         if (unlikely(used > ei->i_reserved_data_blocks)) {
272                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273                          "with only %d reserved data blocks\n",
274                          __func__, inode->i_ino, used,
275                          ei->i_reserved_data_blocks);
276                 WARN_ON(1);
277                 used = ei->i_reserved_data_blocks;
278         }
279
280         /* Update per-inode reservations */
281         ei->i_reserved_data_blocks -= used;
282         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284                            used + ei->i_allocated_meta_blocks);
285         ei->i_allocated_meta_blocks = 0;
286
287         if (ei->i_reserved_data_blocks == 0) {
288                 /*
289                  * We can release all of the reserved metadata blocks
290                  * only when we have written all of the delayed
291                  * allocation blocks.
292                  */
293                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294                                    ei->i_reserved_meta_blocks);
295                 ei->i_reserved_meta_blocks = 0;
296                 ei->i_da_metadata_calc_len = 0;
297         }
298         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299
300         /* Update quota subsystem for data blocks */
301         if (quota_claim)
302                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303         else {
304                 /*
305                  * We did fallocate with an offset that is already delayed
306                  * allocated. So on delayed allocated writeback we should
307                  * not re-claim the quota for fallocated blocks.
308                  */
309                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310         }
311
312         /*
313          * If we have done all the pending block allocations and if
314          * there aren't any writers on the inode, we can discard the
315          * inode's preallocations.
316          */
317         if ((ei->i_reserved_data_blocks == 0) &&
318             (atomic_read(&inode->i_writecount) == 0))
319                 ext4_discard_preallocations(inode);
320 }
321
322 static int __check_block_validity(struct inode *inode, const char *func,
323                                 unsigned int line,
324                                 struct ext4_map_blocks *map)
325 {
326         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327                                    map->m_len)) {
328                 ext4_error_inode(inode, func, line, map->m_pblk,
329                                  "lblock %lu mapped to illegal pblock "
330                                  "(length %d)", (unsigned long) map->m_lblk,
331                                  map->m_len);
332                 return -EIO;
333         }
334         return 0;
335 }
336
337 #define check_block_validity(inode, map)        \
338         __check_block_validity((inode), __func__, __LINE__, (map))
339
340 /*
341  * Return the number of contiguous dirty pages in a given inode
342  * starting at page frame idx.
343  */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345                                     unsigned int max_pages)
346 {
347         struct address_space *mapping = inode->i_mapping;
348         pgoff_t index;
349         struct pagevec pvec;
350         pgoff_t num = 0;
351         int i, nr_pages, done = 0;
352
353         if (max_pages == 0)
354                 return 0;
355         pagevec_init(&pvec, 0);
356         while (!done) {
357                 index = idx;
358                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359                                               PAGECACHE_TAG_DIRTY,
360                                               (pgoff_t)PAGEVEC_SIZE);
361                 if (nr_pages == 0)
362                         break;
363                 for (i = 0; i < nr_pages; i++) {
364                         struct page *page = pvec.pages[i];
365                         struct buffer_head *bh, *head;
366
367                         lock_page(page);
368                         if (unlikely(page->mapping != mapping) ||
369                             !PageDirty(page) ||
370                             PageWriteback(page) ||
371                             page->index != idx) {
372                                 done = 1;
373                                 unlock_page(page);
374                                 break;
375                         }
376                         if (page_has_buffers(page)) {
377                                 bh = head = page_buffers(page);
378                                 do {
379                                         if (!buffer_delay(bh) &&
380                                             !buffer_unwritten(bh))
381                                                 done = 1;
382                                         bh = bh->b_this_page;
383                                 } while (!done && (bh != head));
384                         }
385                         unlock_page(page);
386                         if (done)
387                                 break;
388                         idx++;
389                         num++;
390                         if (num >= max_pages) {
391                                 done = 1;
392                                 break;
393                         }
394                 }
395                 pagevec_release(&pvec);
396         }
397         return num;
398 }
399
400 /*
401  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402  */
403 static void set_buffers_da_mapped(struct inode *inode,
404                                    struct ext4_map_blocks *map)
405 {
406         struct address_space *mapping = inode->i_mapping;
407         struct pagevec pvec;
408         int i, nr_pages;
409         pgoff_t index, end;
410
411         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412         end = (map->m_lblk + map->m_len - 1) >>
413                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415         pagevec_init(&pvec, 0);
416         while (index <= end) {
417                 nr_pages = pagevec_lookup(&pvec, mapping, index,
418                                           min(end - index + 1,
419                                               (pgoff_t)PAGEVEC_SIZE));
420                 if (nr_pages == 0)
421                         break;
422                 for (i = 0; i < nr_pages; i++) {
423                         struct page *page = pvec.pages[i];
424                         struct buffer_head *bh, *head;
425
426                         if (unlikely(page->mapping != mapping) ||
427                             !PageDirty(page))
428                                 break;
429
430                         if (page_has_buffers(page)) {
431                                 bh = head = page_buffers(page);
432                                 do {
433                                         set_buffer_da_mapped(bh);
434                                         bh = bh->b_this_page;
435                                 } while (bh != head);
436                         }
437                         index++;
438                 }
439                 pagevec_release(&pvec);
440         }
441 }
442
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocate.
456  * if create==0 and the blocks are pre-allocated and uninitialized block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466                     struct ext4_map_blocks *map, int flags)
467 {
468         int retval;
469
470         map->m_flags = 0;
471         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
473                   (unsigned long) map->m_lblk);
474         /*
475          * Try to see if we can get the block without requesting a new
476          * file system block.
477          */
478         down_read((&EXT4_I(inode)->i_data_sem));
479         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
481                                              EXT4_GET_BLOCKS_KEEP_SIZE);
482         } else {
483                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
484                                              EXT4_GET_BLOCKS_KEEP_SIZE);
485         }
486         up_read((&EXT4_I(inode)->i_data_sem));
487
488         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
489                 int ret = check_block_validity(inode, map);
490                 if (ret != 0)
491                         return ret;
492         }
493
494         /* If it is only a block(s) look up */
495         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
496                 return retval;
497
498         /*
499          * Returns if the blocks have already allocated
500          *
501          * Note that if blocks have been preallocated
502          * ext4_ext_get_block() returns the create = 0
503          * with buffer head unmapped.
504          */
505         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
506                 return retval;
507
508         /*
509          * When we call get_blocks without the create flag, the
510          * BH_Unwritten flag could have gotten set if the blocks
511          * requested were part of a uninitialized extent.  We need to
512          * clear this flag now that we are committed to convert all or
513          * part of the uninitialized extent to be an initialized
514          * extent.  This is because we need to avoid the combination
515          * of BH_Unwritten and BH_Mapped flags being simultaneously
516          * set on the buffer_head.
517          */
518         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
519
520         /*
521          * New blocks allocate and/or writing to uninitialized extent
522          * will possibly result in updating i_data, so we take
523          * the write lock of i_data_sem, and call get_blocks()
524          * with create == 1 flag.
525          */
526         down_write((&EXT4_I(inode)->i_data_sem));
527
528         /*
529          * if the caller is from delayed allocation writeout path
530          * we have already reserved fs blocks for allocation
531          * let the underlying get_block() function know to
532          * avoid double accounting
533          */
534         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
535                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
536         /*
537          * We need to check for EXT4 here because migrate
538          * could have changed the inode type in between
539          */
540         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
542         } else {
543                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
544
545                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
546                         /*
547                          * We allocated new blocks which will result in
548                          * i_data's format changing.  Force the migrate
549                          * to fail by clearing migrate flags
550                          */
551                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
552                 }
553
554                 /*
555                  * Update reserved blocks/metadata blocks after successful
556                  * block allocation which had been deferred till now. We don't
557                  * support fallocate for non extent files. So we can update
558                  * reserve space here.
559                  */
560                 if ((retval > 0) &&
561                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
562                         ext4_da_update_reserve_space(inode, retval, 1);
563         }
564         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
565                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
566
567                 /* If we have successfully mapped the delayed allocated blocks,
568                  * set the BH_Da_Mapped bit on them. Its important to do this
569                  * under the protection of i_data_sem.
570                  */
571                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572                         set_buffers_da_mapped(inode, map);
573         }
574
575         up_write((&EXT4_I(inode)->i_data_sem));
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 int ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581         return retval;
582 }
583
584 /* Maximum number of blocks we map for direct IO at once. */
585 #define DIO_MAX_BLOCKS 4096
586
587 static int _ext4_get_block(struct inode *inode, sector_t iblock,
588                            struct buffer_head *bh, int flags)
589 {
590         handle_t *handle = ext4_journal_current_handle();
591         struct ext4_map_blocks map;
592         int ret = 0, started = 0;
593         int dio_credits;
594
595         map.m_lblk = iblock;
596         map.m_len = bh->b_size >> inode->i_blkbits;
597
598         if (flags && !handle) {
599                 /* Direct IO write... */
600                 if (map.m_len > DIO_MAX_BLOCKS)
601                         map.m_len = DIO_MAX_BLOCKS;
602                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
603                 handle = ext4_journal_start(inode, dio_credits);
604                 if (IS_ERR(handle)) {
605                         ret = PTR_ERR(handle);
606                         return ret;
607                 }
608                 started = 1;
609         }
610
611         ret = ext4_map_blocks(handle, inode, &map, flags);
612         if (ret > 0) {
613                 map_bh(bh, inode->i_sb, map.m_pblk);
614                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
615                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
616                 ret = 0;
617         }
618         if (started)
619                 ext4_journal_stop(handle);
620         return ret;
621 }
622
623 int ext4_get_block(struct inode *inode, sector_t iblock,
624                    struct buffer_head *bh, int create)
625 {
626         return _ext4_get_block(inode, iblock, bh,
627                                create ? EXT4_GET_BLOCKS_CREATE : 0);
628 }
629
630 /*
631  * `handle' can be NULL if create is zero
632  */
633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
634                                 ext4_lblk_t block, int create, int *errp)
635 {
636         struct ext4_map_blocks map;
637         struct buffer_head *bh;
638         int fatal = 0, err;
639
640         J_ASSERT(handle != NULL || create == 0);
641
642         map.m_lblk = block;
643         map.m_len = 1;
644         err = ext4_map_blocks(handle, inode, &map,
645                               create ? EXT4_GET_BLOCKS_CREATE : 0);
646
647         if (err < 0)
648                 *errp = err;
649         if (err <= 0)
650                 return NULL;
651         *errp = 0;
652
653         bh = sb_getblk(inode->i_sb, map.m_pblk);
654         if (!bh) {
655                 *errp = -EIO;
656                 return NULL;
657         }
658         if (map.m_flags & EXT4_MAP_NEW) {
659                 J_ASSERT(create != 0);
660                 J_ASSERT(handle != NULL);
661
662                 /*
663                  * Now that we do not always journal data, we should
664                  * keep in mind whether this should always journal the
665                  * new buffer as metadata.  For now, regular file
666                  * writes use ext4_get_block instead, so it's not a
667                  * problem.
668                  */
669                 lock_buffer(bh);
670                 BUFFER_TRACE(bh, "call get_create_access");
671                 fatal = ext4_journal_get_create_access(handle, bh);
672                 if (!fatal && !buffer_uptodate(bh)) {
673                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
674                         set_buffer_uptodate(bh);
675                 }
676                 unlock_buffer(bh);
677                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
678                 err = ext4_handle_dirty_metadata(handle, inode, bh);
679                 if (!fatal)
680                         fatal = err;
681         } else {
682                 BUFFER_TRACE(bh, "not a new buffer");
683         }
684         if (fatal) {
685                 *errp = fatal;
686                 brelse(bh);
687                 bh = NULL;
688         }
689         return bh;
690 }
691
692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
693                                ext4_lblk_t block, int create, int *err)
694 {
695         struct buffer_head *bh;
696
697         bh = ext4_getblk(handle, inode, block, create, err);
698         if (!bh)
699                 return bh;
700         if (buffer_uptodate(bh))
701                 return bh;
702         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
703         wait_on_buffer(bh);
704         if (buffer_uptodate(bh))
705                 return bh;
706         put_bh(bh);
707         *err = -EIO;
708         return NULL;
709 }
710
711 static int walk_page_buffers(handle_t *handle,
712                              struct buffer_head *head,
713                              unsigned from,
714                              unsigned to,
715                              int *partial,
716                              int (*fn)(handle_t *handle,
717                                        struct buffer_head *bh))
718 {
719         struct buffer_head *bh;
720         unsigned block_start, block_end;
721         unsigned blocksize = head->b_size;
722         int err, ret = 0;
723         struct buffer_head *next;
724
725         for (bh = head, block_start = 0;
726              ret == 0 && (bh != head || !block_start);
727              block_start = block_end, bh = next) {
728                 next = bh->b_this_page;
729                 block_end = block_start + blocksize;
730                 if (block_end <= from || block_start >= to) {
731                         if (partial && !buffer_uptodate(bh))
732                                 *partial = 1;
733                         continue;
734                 }
735                 err = (*fn)(handle, bh);
736                 if (!ret)
737                         ret = err;
738         }
739         return ret;
740 }
741
742 /*
743  * To preserve ordering, it is essential that the hole instantiation and
744  * the data write be encapsulated in a single transaction.  We cannot
745  * close off a transaction and start a new one between the ext4_get_block()
746  * and the commit_write().  So doing the jbd2_journal_start at the start of
747  * prepare_write() is the right place.
748  *
749  * Also, this function can nest inside ext4_writepage() ->
750  * block_write_full_page(). In that case, we *know* that ext4_writepage()
751  * has generated enough buffer credits to do the whole page.  So we won't
752  * block on the journal in that case, which is good, because the caller may
753  * be PF_MEMALLOC.
754  *
755  * By accident, ext4 can be reentered when a transaction is open via
756  * quota file writes.  If we were to commit the transaction while thus
757  * reentered, there can be a deadlock - we would be holding a quota
758  * lock, and the commit would never complete if another thread had a
759  * transaction open and was blocking on the quota lock - a ranking
760  * violation.
761  *
762  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763  * will _not_ run commit under these circumstances because handle->h_ref
764  * is elevated.  We'll still have enough credits for the tiny quotafile
765  * write.
766  */
767 static int do_journal_get_write_access(handle_t *handle,
768                                        struct buffer_head *bh)
769 {
770         int dirty = buffer_dirty(bh);
771         int ret;
772
773         if (!buffer_mapped(bh) || buffer_freed(bh))
774                 return 0;
775         /*
776          * __block_write_begin() could have dirtied some buffers. Clean
777          * the dirty bit as jbd2_journal_get_write_access() could complain
778          * otherwise about fs integrity issues. Setting of the dirty bit
779          * by __block_write_begin() isn't a real problem here as we clear
780          * the bit before releasing a page lock and thus writeback cannot
781          * ever write the buffer.
782          */
783         if (dirty)
784                 clear_buffer_dirty(bh);
785         ret = ext4_journal_get_write_access(handle, bh);
786         if (!ret && dirty)
787                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
788         return ret;
789 }
790
791 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
792                    struct buffer_head *bh_result, int create);
793 static int ext4_write_begin(struct file *file, struct address_space *mapping,
794                             loff_t pos, unsigned len, unsigned flags,
795                             struct page **pagep, void **fsdata)
796 {
797         struct inode *inode = mapping->host;
798         int ret, needed_blocks;
799         handle_t *handle;
800         int retries = 0;
801         struct page *page;
802         pgoff_t index;
803         unsigned from, to;
804
805         trace_ext4_write_begin(inode, pos, len, flags);
806         /*
807          * Reserve one block more for addition to orphan list in case
808          * we allocate blocks but write fails for some reason
809          */
810         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
811         index = pos >> PAGE_CACHE_SHIFT;
812         from = pos & (PAGE_CACHE_SIZE - 1);
813         to = from + len;
814
815 retry:
816         handle = ext4_journal_start(inode, needed_blocks);
817         if (IS_ERR(handle)) {
818                 ret = PTR_ERR(handle);
819                 goto out;
820         }
821
822         /* We cannot recurse into the filesystem as the transaction is already
823          * started */
824         flags |= AOP_FLAG_NOFS;
825
826         page = grab_cache_page_write_begin(mapping, index, flags);
827         if (!page) {
828                 ext4_journal_stop(handle);
829                 ret = -ENOMEM;
830                 goto out;
831         }
832         *pagep = page;
833
834         if (ext4_should_dioread_nolock(inode))
835                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
836         else
837                 ret = __block_write_begin(page, pos, len, ext4_get_block);
838
839         if (!ret && ext4_should_journal_data(inode)) {
840                 ret = walk_page_buffers(handle, page_buffers(page),
841                                 from, to, NULL, do_journal_get_write_access);
842         }
843
844         if (ret) {
845                 unlock_page(page);
846                 page_cache_release(page);
847                 /*
848                  * __block_write_begin may have instantiated a few blocks
849                  * outside i_size.  Trim these off again. Don't need
850                  * i_size_read because we hold i_mutex.
851                  *
852                  * Add inode to orphan list in case we crash before
853                  * truncate finishes
854                  */
855                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
856                         ext4_orphan_add(handle, inode);
857
858                 ext4_journal_stop(handle);
859                 if (pos + len > inode->i_size) {
860                         ext4_truncate_failed_write(inode);
861                         /*
862                          * If truncate failed early the inode might
863                          * still be on the orphan list; we need to
864                          * make sure the inode is removed from the
865                          * orphan list in that case.
866                          */
867                         if (inode->i_nlink)
868                                 ext4_orphan_del(NULL, inode);
869                 }
870         }
871
872         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
873                 goto retry;
874 out:
875         return ret;
876 }
877
878 /* For write_end() in data=journal mode */
879 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
880 {
881         if (!buffer_mapped(bh) || buffer_freed(bh))
882                 return 0;
883         set_buffer_uptodate(bh);
884         return ext4_handle_dirty_metadata(handle, NULL, bh);
885 }
886
887 static int ext4_generic_write_end(struct file *file,
888                                   struct address_space *mapping,
889                                   loff_t pos, unsigned len, unsigned copied,
890                                   struct page *page, void *fsdata)
891 {
892         int i_size_changed = 0;
893         struct inode *inode = mapping->host;
894         handle_t *handle = ext4_journal_current_handle();
895
896         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
897
898         /*
899          * No need to use i_size_read() here, the i_size
900          * cannot change under us because we hold i_mutex.
901          *
902          * But it's important to update i_size while still holding page lock:
903          * page writeout could otherwise come in and zero beyond i_size.
904          */
905         if (pos + copied > inode->i_size) {
906                 i_size_write(inode, pos + copied);
907                 i_size_changed = 1;
908         }
909
910         if (pos + copied >  EXT4_I(inode)->i_disksize) {
911                 /* We need to mark inode dirty even if
912                  * new_i_size is less that inode->i_size
913                  * bu greater than i_disksize.(hint delalloc)
914                  */
915                 ext4_update_i_disksize(inode, (pos + copied));
916                 i_size_changed = 1;
917         }
918         unlock_page(page);
919         page_cache_release(page);
920
921         /*
922          * Don't mark the inode dirty under page lock. First, it unnecessarily
923          * makes the holding time of page lock longer. Second, it forces lock
924          * ordering of page lock and transaction start for journaling
925          * filesystems.
926          */
927         if (i_size_changed)
928                 ext4_mark_inode_dirty(handle, inode);
929
930         return copied;
931 }
932
933 /*
934  * We need to pick up the new inode size which generic_commit_write gave us
935  * `file' can be NULL - eg, when called from page_symlink().
936  *
937  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
938  * buffers are managed internally.
939  */
940 static int ext4_ordered_write_end(struct file *file,
941                                   struct address_space *mapping,
942                                   loff_t pos, unsigned len, unsigned copied,
943                                   struct page *page, void *fsdata)
944 {
945         handle_t *handle = ext4_journal_current_handle();
946         struct inode *inode = mapping->host;
947         int ret = 0, ret2;
948
949         trace_ext4_ordered_write_end(inode, pos, len, copied);
950         ret = ext4_jbd2_file_inode(handle, inode);
951
952         if (ret == 0) {
953                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
954                                                         page, fsdata);
955                 copied = ret2;
956                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
957                         /* if we have allocated more blocks and copied
958                          * less. We will have blocks allocated outside
959                          * inode->i_size. So truncate them
960                          */
961                         ext4_orphan_add(handle, inode);
962                 if (ret2 < 0)
963                         ret = ret2;
964         } else {
965                 unlock_page(page);
966                 page_cache_release(page);
967         }
968
969         ret2 = ext4_journal_stop(handle);
970         if (!ret)
971                 ret = ret2;
972
973         if (pos + len > inode->i_size) {
974                 ext4_truncate_failed_write(inode);
975                 /*
976                  * If truncate failed early the inode might still be
977                  * on the orphan list; we need to make sure the inode
978                  * is removed from the orphan list in that case.
979                  */
980                 if (inode->i_nlink)
981                         ext4_orphan_del(NULL, inode);
982         }
983
984
985         return ret ? ret : copied;
986 }
987
988 static int ext4_writeback_write_end(struct file *file,
989                                     struct address_space *mapping,
990                                     loff_t pos, unsigned len, unsigned copied,
991                                     struct page *page, void *fsdata)
992 {
993         handle_t *handle = ext4_journal_current_handle();
994         struct inode *inode = mapping->host;
995         int ret = 0, ret2;
996
997         trace_ext4_writeback_write_end(inode, pos, len, copied);
998         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
999                                                         page, fsdata);
1000         copied = ret2;
1001         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1002                 /* if we have allocated more blocks and copied
1003                  * less. We will have blocks allocated outside
1004                  * inode->i_size. So truncate them
1005                  */
1006                 ext4_orphan_add(handle, inode);
1007
1008         if (ret2 < 0)
1009                 ret = ret2;
1010
1011         ret2 = ext4_journal_stop(handle);
1012         if (!ret)
1013                 ret = ret2;
1014
1015         if (pos + len > inode->i_size) {
1016                 ext4_truncate_failed_write(inode);
1017                 /*
1018                  * If truncate failed early the inode might still be
1019                  * on the orphan list; we need to make sure the inode
1020                  * is removed from the orphan list in that case.
1021                  */
1022                 if (inode->i_nlink)
1023                         ext4_orphan_del(NULL, inode);
1024         }
1025
1026         return ret ? ret : copied;
1027 }
1028
1029 static int ext4_journalled_write_end(struct file *file,
1030                                      struct address_space *mapping,
1031                                      loff_t pos, unsigned len, unsigned copied,
1032                                      struct page *page, void *fsdata)
1033 {
1034         handle_t *handle = ext4_journal_current_handle();
1035         struct inode *inode = mapping->host;
1036         int ret = 0, ret2;
1037         int partial = 0;
1038         unsigned from, to;
1039         loff_t new_i_size;
1040
1041         trace_ext4_journalled_write_end(inode, pos, len, copied);
1042         from = pos & (PAGE_CACHE_SIZE - 1);
1043         to = from + len;
1044
1045         BUG_ON(!ext4_handle_valid(handle));
1046
1047         if (copied < len) {
1048                 if (!PageUptodate(page))
1049                         copied = 0;
1050                 page_zero_new_buffers(page, from+copied, to);
1051         }
1052
1053         ret = walk_page_buffers(handle, page_buffers(page), from,
1054                                 to, &partial, write_end_fn);
1055         if (!partial)
1056                 SetPageUptodate(page);
1057         new_i_size = pos + copied;
1058         if (new_i_size > inode->i_size)
1059                 i_size_write(inode, pos+copied);
1060         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1061         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1062         if (new_i_size > EXT4_I(inode)->i_disksize) {
1063                 ext4_update_i_disksize(inode, new_i_size);
1064                 ret2 = ext4_mark_inode_dirty(handle, inode);
1065                 if (!ret)
1066                         ret = ret2;
1067         }
1068
1069         unlock_page(page);
1070         page_cache_release(page);
1071         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1072                 /* if we have allocated more blocks and copied
1073                  * less. We will have blocks allocated outside
1074                  * inode->i_size. So truncate them
1075                  */
1076                 ext4_orphan_add(handle, inode);
1077
1078         ret2 = ext4_journal_stop(handle);
1079         if (!ret)
1080                 ret = ret2;
1081         if (pos + len > inode->i_size) {
1082                 ext4_truncate_failed_write(inode);
1083                 /*
1084                  * If truncate failed early the inode might still be
1085                  * on the orphan list; we need to make sure the inode
1086                  * is removed from the orphan list in that case.
1087                  */
1088                 if (inode->i_nlink)
1089                         ext4_orphan_del(NULL, inode);
1090         }
1091
1092         return ret ? ret : copied;
1093 }
1094
1095 /*
1096  * Reserve a single cluster located at lblock
1097  */
1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1099 {
1100         int retries = 0;
1101         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102         struct ext4_inode_info *ei = EXT4_I(inode);
1103         unsigned int md_needed;
1104         int ret;
1105
1106         /*
1107          * recalculate the amount of metadata blocks to reserve
1108          * in order to allocate nrblocks
1109          * worse case is one extent per block
1110          */
1111 repeat:
1112         spin_lock(&ei->i_block_reservation_lock);
1113         md_needed = EXT4_NUM_B2C(sbi,
1114                                  ext4_calc_metadata_amount(inode, lblock));
1115         trace_ext4_da_reserve_space(inode, md_needed);
1116         spin_unlock(&ei->i_block_reservation_lock);
1117
1118         /*
1119          * We will charge metadata quota at writeout time; this saves
1120          * us from metadata over-estimation, though we may go over by
1121          * a small amount in the end.  Here we just reserve for data.
1122          */
1123         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1124         if (ret)
1125                 return ret;
1126         /*
1127          * We do still charge estimated metadata to the sb though;
1128          * we cannot afford to run out of free blocks.
1129          */
1130         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1131                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1132                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1133                         yield();
1134                         goto repeat;
1135                 }
1136                 return -ENOSPC;
1137         }
1138         spin_lock(&ei->i_block_reservation_lock);
1139         ei->i_reserved_data_blocks++;
1140         ei->i_reserved_meta_blocks += md_needed;
1141         spin_unlock(&ei->i_block_reservation_lock);
1142
1143         return 0;       /* success */
1144 }
1145
1146 static void ext4_da_release_space(struct inode *inode, int to_free)
1147 {
1148         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149         struct ext4_inode_info *ei = EXT4_I(inode);
1150
1151         if (!to_free)
1152                 return;         /* Nothing to release, exit */
1153
1154         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1155
1156         trace_ext4_da_release_space(inode, to_free);
1157         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1158                 /*
1159                  * if there aren't enough reserved blocks, then the
1160                  * counter is messed up somewhere.  Since this
1161                  * function is called from invalidate page, it's
1162                  * harmless to return without any action.
1163                  */
1164                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1165                          "ino %lu, to_free %d with only %d reserved "
1166                          "data blocks\n", inode->i_ino, to_free,
1167                          ei->i_reserved_data_blocks);
1168                 WARN_ON(1);
1169                 to_free = ei->i_reserved_data_blocks;
1170         }
1171         ei->i_reserved_data_blocks -= to_free;
1172
1173         if (ei->i_reserved_data_blocks == 0) {
1174                 /*
1175                  * We can release all of the reserved metadata blocks
1176                  * only when we have written all of the delayed
1177                  * allocation blocks.
1178                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1179                  * i_reserved_data_blocks, etc. refer to number of clusters.
1180                  */
1181                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1182                                    ei->i_reserved_meta_blocks);
1183                 ei->i_reserved_meta_blocks = 0;
1184                 ei->i_da_metadata_calc_len = 0;
1185         }
1186
1187         /* update fs dirty data blocks counter */
1188         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1189
1190         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1191
1192         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1193 }
1194
1195 static void ext4_da_page_release_reservation(struct page *page,
1196                                              unsigned long offset)
1197 {
1198         int to_release = 0;
1199         struct buffer_head *head, *bh;
1200         unsigned int curr_off = 0;
1201         struct inode *inode = page->mapping->host;
1202         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203         int num_clusters;
1204
1205         head = page_buffers(page);
1206         bh = head;
1207         do {
1208                 unsigned int next_off = curr_off + bh->b_size;
1209
1210                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1211                         to_release++;
1212                         clear_buffer_delay(bh);
1213                         clear_buffer_da_mapped(bh);
1214                 }
1215                 curr_off = next_off;
1216         } while ((bh = bh->b_this_page) != head);
1217
1218         /* If we have released all the blocks belonging to a cluster, then we
1219          * need to release the reserved space for that cluster. */
1220         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1221         while (num_clusters > 0) {
1222                 ext4_fsblk_t lblk;
1223                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1224                         ((num_clusters - 1) << sbi->s_cluster_bits);
1225                 if (sbi->s_cluster_ratio == 1 ||
1226                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1227                         ext4_da_release_space(inode, 1);
1228
1229                 num_clusters--;
1230         }
1231 }
1232
1233 /*
1234  * Delayed allocation stuff
1235  */
1236
1237 /*
1238  * mpage_da_submit_io - walks through extent of pages and try to write
1239  * them with writepage() call back
1240  *
1241  * @mpd->inode: inode
1242  * @mpd->first_page: first page of the extent
1243  * @mpd->next_page: page after the last page of the extent
1244  *
1245  * By the time mpage_da_submit_io() is called we expect all blocks
1246  * to be allocated. this may be wrong if allocation failed.
1247  *
1248  * As pages are already locked by write_cache_pages(), we can't use it
1249  */
1250 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1251                               struct ext4_map_blocks *map)
1252 {
1253         struct pagevec pvec;
1254         unsigned long index, end;
1255         int ret = 0, err, nr_pages, i;
1256         struct inode *inode = mpd->inode;
1257         struct address_space *mapping = inode->i_mapping;
1258         loff_t size = i_size_read(inode);
1259         unsigned int len, block_start;
1260         struct buffer_head *bh, *page_bufs = NULL;
1261         int journal_data = ext4_should_journal_data(inode);
1262         sector_t pblock = 0, cur_logical = 0;
1263         struct ext4_io_submit io_submit;
1264
1265         BUG_ON(mpd->next_page <= mpd->first_page);
1266         memset(&io_submit, 0, sizeof(io_submit));
1267         /*
1268          * We need to start from the first_page to the next_page - 1
1269          * to make sure we also write the mapped dirty buffer_heads.
1270          * If we look at mpd->b_blocknr we would only be looking
1271          * at the currently mapped buffer_heads.
1272          */
1273         index = mpd->first_page;
1274         end = mpd->next_page - 1;
1275
1276         pagevec_init(&pvec, 0);
1277         while (index <= end) {
1278                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1279                 if (nr_pages == 0)
1280                         break;
1281                 for (i = 0; i < nr_pages; i++) {
1282                         int commit_write = 0, skip_page = 0;
1283                         struct page *page = pvec.pages[i];
1284
1285                         index = page->index;
1286                         if (index > end)
1287                                 break;
1288
1289                         if (index == size >> PAGE_CACHE_SHIFT)
1290                                 len = size & ~PAGE_CACHE_MASK;
1291                         else
1292                                 len = PAGE_CACHE_SIZE;
1293                         if (map) {
1294                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1295                                                         inode->i_blkbits);
1296                                 pblock = map->m_pblk + (cur_logical -
1297                                                         map->m_lblk);
1298                         }
1299                         index++;
1300
1301                         BUG_ON(!PageLocked(page));
1302                         BUG_ON(PageWriteback(page));
1303
1304                         /*
1305                          * If the page does not have buffers (for
1306                          * whatever reason), try to create them using
1307                          * __block_write_begin.  If this fails,
1308                          * skip the page and move on.
1309                          */
1310                         if (!page_has_buffers(page)) {
1311                                 if (__block_write_begin(page, 0, len,
1312                                                 noalloc_get_block_write)) {
1313                                 skip_page:
1314                                         unlock_page(page);
1315                                         continue;
1316                                 }
1317                                 commit_write = 1;
1318                         }
1319
1320                         bh = page_bufs = page_buffers(page);
1321                         block_start = 0;
1322                         do {
1323                                 if (!bh)
1324                                         goto skip_page;
1325                                 if (map && (cur_logical >= map->m_lblk) &&
1326                                     (cur_logical <= (map->m_lblk +
1327                                                      (map->m_len - 1)))) {
1328                                         if (buffer_delay(bh)) {
1329                                                 clear_buffer_delay(bh);
1330                                                 bh->b_blocknr = pblock;
1331                                         }
1332                                         if (buffer_da_mapped(bh))
1333                                                 clear_buffer_da_mapped(bh);
1334                                         if (buffer_unwritten(bh) ||
1335                                             buffer_mapped(bh))
1336                                                 BUG_ON(bh->b_blocknr != pblock);
1337                                         if (map->m_flags & EXT4_MAP_UNINIT)
1338                                                 set_buffer_uninit(bh);
1339                                         clear_buffer_unwritten(bh);
1340                                 }
1341
1342                                 /*
1343                                  * skip page if block allocation undone and
1344                                  * block is dirty
1345                                  */
1346                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1347                                         skip_page = 1;
1348                                 bh = bh->b_this_page;
1349                                 block_start += bh->b_size;
1350                                 cur_logical++;
1351                                 pblock++;
1352                         } while (bh != page_bufs);
1353
1354                         if (skip_page)
1355                                 goto skip_page;
1356
1357                         if (commit_write)
1358                                 /* mark the buffer_heads as dirty & uptodate */
1359                                 block_commit_write(page, 0, len);
1360
1361                         clear_page_dirty_for_io(page);
1362                         /*
1363                          * Delalloc doesn't support data journalling,
1364                          * but eventually maybe we'll lift this
1365                          * restriction.
1366                          */
1367                         if (unlikely(journal_data && PageChecked(page)))
1368                                 err = __ext4_journalled_writepage(page, len);
1369                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1370                                 err = ext4_bio_write_page(&io_submit, page,
1371                                                           len, mpd->wbc);
1372                         else if (buffer_uninit(page_bufs)) {
1373                                 ext4_set_bh_endio(page_bufs, inode);
1374                                 err = block_write_full_page_endio(page,
1375                                         noalloc_get_block_write,
1376                                         mpd->wbc, ext4_end_io_buffer_write);
1377                         } else
1378                                 err = block_write_full_page(page,
1379                                         noalloc_get_block_write, mpd->wbc);
1380
1381                         if (!err)
1382                                 mpd->pages_written++;
1383                         /*
1384                          * In error case, we have to continue because
1385                          * remaining pages are still locked
1386                          */
1387                         if (ret == 0)
1388                                 ret = err;
1389                 }
1390                 pagevec_release(&pvec);
1391         }
1392         ext4_io_submit(&io_submit);
1393         return ret;
1394 }
1395
1396 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1397 {
1398         int nr_pages, i;
1399         pgoff_t index, end;
1400         struct pagevec pvec;
1401         struct inode *inode = mpd->inode;
1402         struct address_space *mapping = inode->i_mapping;
1403
1404         index = mpd->first_page;
1405         end   = mpd->next_page - 1;
1406         while (index <= end) {
1407                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1408                 if (nr_pages == 0)
1409                         break;
1410                 for (i = 0; i < nr_pages; i++) {
1411                         struct page *page = pvec.pages[i];
1412                         if (page->index > end)
1413                                 break;
1414                         BUG_ON(!PageLocked(page));
1415                         BUG_ON(PageWriteback(page));
1416                         block_invalidatepage(page, 0);
1417                         ClearPageUptodate(page);
1418                         unlock_page(page);
1419                 }
1420                 index = pvec.pages[nr_pages - 1]->index + 1;
1421                 pagevec_release(&pvec);
1422         }
1423         return;
1424 }
1425
1426 static void ext4_print_free_blocks(struct inode *inode)
1427 {
1428         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1429         printk(KERN_CRIT "Total free blocks count %lld\n",
1430                EXT4_C2B(EXT4_SB(inode->i_sb),
1431                         ext4_count_free_clusters(inode->i_sb)));
1432         printk(KERN_CRIT "Free/Dirty block details\n");
1433         printk(KERN_CRIT "free_blocks=%lld\n",
1434                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1435                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1436         printk(KERN_CRIT "dirty_blocks=%lld\n",
1437                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1438                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1439         printk(KERN_CRIT "Block reservation details\n");
1440         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1441                EXT4_I(inode)->i_reserved_data_blocks);
1442         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1443                EXT4_I(inode)->i_reserved_meta_blocks);
1444         return;
1445 }
1446
1447 /*
1448  * mpage_da_map_and_submit - go through given space, map them
1449  *       if necessary, and then submit them for I/O
1450  *
1451  * @mpd - bh describing space
1452  *
1453  * The function skips space we know is already mapped to disk blocks.
1454  *
1455  */
1456 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1457 {
1458         int err, blks, get_blocks_flags;
1459         struct ext4_map_blocks map, *mapp = NULL;
1460         sector_t next = mpd->b_blocknr;
1461         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1462         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1463         handle_t *handle = NULL;
1464
1465         /*
1466          * If the blocks are mapped already, or we couldn't accumulate
1467          * any blocks, then proceed immediately to the submission stage.
1468          */
1469         if ((mpd->b_size == 0) ||
1470             ((mpd->b_state  & (1 << BH_Mapped)) &&
1471              !(mpd->b_state & (1 << BH_Delay)) &&
1472              !(mpd->b_state & (1 << BH_Unwritten))))
1473                 goto submit_io;
1474
1475         handle = ext4_journal_current_handle();
1476         BUG_ON(!handle);
1477
1478         /*
1479          * Call ext4_map_blocks() to allocate any delayed allocation
1480          * blocks, or to convert an uninitialized extent to be
1481          * initialized (in the case where we have written into
1482          * one or more preallocated blocks).
1483          *
1484          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1485          * indicate that we are on the delayed allocation path.  This
1486          * affects functions in many different parts of the allocation
1487          * call path.  This flag exists primarily because we don't
1488          * want to change *many* call functions, so ext4_map_blocks()
1489          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1490          * inode's allocation semaphore is taken.
1491          *
1492          * If the blocks in questions were delalloc blocks, set
1493          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1494          * variables are updated after the blocks have been allocated.
1495          */
1496         map.m_lblk = next;
1497         map.m_len = max_blocks;
1498         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1499         if (ext4_should_dioread_nolock(mpd->inode))
1500                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1501         if (mpd->b_state & (1 << BH_Delay))
1502                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1503
1504         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1505         if (blks < 0) {
1506                 struct super_block *sb = mpd->inode->i_sb;
1507
1508                 err = blks;
1509                 /*
1510                  * If get block returns EAGAIN or ENOSPC and there
1511                  * appears to be free blocks we will just let
1512                  * mpage_da_submit_io() unlock all of the pages.
1513                  */
1514                 if (err == -EAGAIN)
1515                         goto submit_io;
1516
1517                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1518                         mpd->retval = err;
1519                         goto submit_io;
1520                 }
1521
1522                 /*
1523                  * get block failure will cause us to loop in
1524                  * writepages, because a_ops->writepage won't be able
1525                  * to make progress. The page will be redirtied by
1526                  * writepage and writepages will again try to write
1527                  * the same.
1528                  */
1529                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1530                         ext4_msg(sb, KERN_CRIT,
1531                                  "delayed block allocation failed for inode %lu "
1532                                  "at logical offset %llu with max blocks %zd "
1533                                  "with error %d", mpd->inode->i_ino,
1534                                  (unsigned long long) next,
1535                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1536                         ext4_msg(sb, KERN_CRIT,
1537                                 "This should not happen!! Data will be lost\n");
1538                         if (err == -ENOSPC)
1539                                 ext4_print_free_blocks(mpd->inode);
1540                 }
1541                 /* invalidate all the pages */
1542                 ext4_da_block_invalidatepages(mpd);
1543
1544                 /* Mark this page range as having been completed */
1545                 mpd->io_done = 1;
1546                 return;
1547         }
1548         BUG_ON(blks == 0);
1549
1550         mapp = &map;
1551         if (map.m_flags & EXT4_MAP_NEW) {
1552                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1553                 int i;
1554
1555                 for (i = 0; i < map.m_len; i++)
1556                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1557
1558                 if (ext4_should_order_data(mpd->inode)) {
1559                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1560                         if (err) {
1561                                 /* Only if the journal is aborted */
1562                                 mpd->retval = err;
1563                                 goto submit_io;
1564                         }
1565                 }
1566         }
1567
1568         /*
1569          * Update on-disk size along with block allocation.
1570          */
1571         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1572         if (disksize > i_size_read(mpd->inode))
1573                 disksize = i_size_read(mpd->inode);
1574         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1575                 ext4_update_i_disksize(mpd->inode, disksize);
1576                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1577                 if (err)
1578                         ext4_error(mpd->inode->i_sb,
1579                                    "Failed to mark inode %lu dirty",
1580                                    mpd->inode->i_ino);
1581         }
1582
1583 submit_io:
1584         mpage_da_submit_io(mpd, mapp);
1585         mpd->io_done = 1;
1586 }
1587
1588 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1589                 (1 << BH_Delay) | (1 << BH_Unwritten))
1590
1591 /*
1592  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1593  *
1594  * @mpd->lbh - extent of blocks
1595  * @logical - logical number of the block in the file
1596  * @bh - bh of the block (used to access block's state)
1597  *
1598  * the function is used to collect contig. blocks in same state
1599  */
1600 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1601                                    sector_t logical, size_t b_size,
1602                                    unsigned long b_state)
1603 {
1604         sector_t next;
1605         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1606
1607         /*
1608          * XXX Don't go larger than mballoc is willing to allocate
1609          * This is a stopgap solution.  We eventually need to fold
1610          * mpage_da_submit_io() into this function and then call
1611          * ext4_map_blocks() multiple times in a loop
1612          */
1613         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1614                 goto flush_it;
1615
1616         /* check if thereserved journal credits might overflow */
1617         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1618                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1619                         /*
1620                          * With non-extent format we are limited by the journal
1621                          * credit available.  Total credit needed to insert
1622                          * nrblocks contiguous blocks is dependent on the
1623                          * nrblocks.  So limit nrblocks.
1624                          */
1625                         goto flush_it;
1626                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1627                                 EXT4_MAX_TRANS_DATA) {
1628                         /*
1629                          * Adding the new buffer_head would make it cross the
1630                          * allowed limit for which we have journal credit
1631                          * reserved. So limit the new bh->b_size
1632                          */
1633                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1634                                                 mpd->inode->i_blkbits;
1635                         /* we will do mpage_da_submit_io in the next loop */
1636                 }
1637         }
1638         /*
1639          * First block in the extent
1640          */
1641         if (mpd->b_size == 0) {
1642                 mpd->b_blocknr = logical;
1643                 mpd->b_size = b_size;
1644                 mpd->b_state = b_state & BH_FLAGS;
1645                 return;
1646         }
1647
1648         next = mpd->b_blocknr + nrblocks;
1649         /*
1650          * Can we merge the block to our big extent?
1651          */
1652         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1653                 mpd->b_size += b_size;
1654                 return;
1655         }
1656
1657 flush_it:
1658         /*
1659          * We couldn't merge the block to our extent, so we
1660          * need to flush current  extent and start new one
1661          */
1662         mpage_da_map_and_submit(mpd);
1663         return;
1664 }
1665
1666 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1667 {
1668         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1669 }
1670
1671 /*
1672  * This function is grabs code from the very beginning of
1673  * ext4_map_blocks, but assumes that the caller is from delayed write
1674  * time. This function looks up the requested blocks and sets the
1675  * buffer delay bit under the protection of i_data_sem.
1676  */
1677 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1678                               struct ext4_map_blocks *map,
1679                               struct buffer_head *bh)
1680 {
1681         int retval;
1682         sector_t invalid_block = ~((sector_t) 0xffff);
1683
1684         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1685                 invalid_block = ~0;
1686
1687         map->m_flags = 0;
1688         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1689                   "logical block %lu\n", inode->i_ino, map->m_len,
1690                   (unsigned long) map->m_lblk);
1691         /*
1692          * Try to see if we can get the block without requesting a new
1693          * file system block.
1694          */
1695         down_read((&EXT4_I(inode)->i_data_sem));
1696         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1697                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1698         else
1699                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1700
1701         if (retval == 0) {
1702                 /*
1703                  * XXX: __block_prepare_write() unmaps passed block,
1704                  * is it OK?
1705                  */
1706                 /* If the block was allocated from previously allocated cluster,
1707                  * then we dont need to reserve it again. */
1708                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1709                         retval = ext4_da_reserve_space(inode, iblock);
1710                         if (retval)
1711                                 /* not enough space to reserve */
1712                                 goto out_unlock;
1713                 }
1714
1715                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1716                  * and it should not appear on the bh->b_state.
1717                  */
1718                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1719
1720                 map_bh(bh, inode->i_sb, invalid_block);
1721                 set_buffer_new(bh);
1722                 set_buffer_delay(bh);
1723         }
1724
1725 out_unlock:
1726         up_read((&EXT4_I(inode)->i_data_sem));
1727
1728         return retval;
1729 }
1730
1731 /*
1732  * This is a special get_blocks_t callback which is used by
1733  * ext4_da_write_begin().  It will either return mapped block or
1734  * reserve space for a single block.
1735  *
1736  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1737  * We also have b_blocknr = -1 and b_bdev initialized properly
1738  *
1739  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1740  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1741  * initialized properly.
1742  */
1743 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1744                                   struct buffer_head *bh, int create)
1745 {
1746         struct ext4_map_blocks map;
1747         int ret = 0;
1748
1749         BUG_ON(create == 0);
1750         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1751
1752         map.m_lblk = iblock;
1753         map.m_len = 1;
1754
1755         /*
1756          * first, we need to know whether the block is allocated already
1757          * preallocated blocks are unmapped but should treated
1758          * the same as allocated blocks.
1759          */
1760         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1761         if (ret <= 0)
1762                 return ret;
1763
1764         map_bh(bh, inode->i_sb, map.m_pblk);
1765         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1766
1767         if (buffer_unwritten(bh)) {
1768                 /* A delayed write to unwritten bh should be marked
1769                  * new and mapped.  Mapped ensures that we don't do
1770                  * get_block multiple times when we write to the same
1771                  * offset and new ensures that we do proper zero out
1772                  * for partial write.
1773                  */
1774                 set_buffer_new(bh);
1775                 set_buffer_mapped(bh);
1776         }
1777         return 0;
1778 }
1779
1780 /*
1781  * This function is used as a standard get_block_t calback function
1782  * when there is no desire to allocate any blocks.  It is used as a
1783  * callback function for block_write_begin() and block_write_full_page().
1784  * These functions should only try to map a single block at a time.
1785  *
1786  * Since this function doesn't do block allocations even if the caller
1787  * requests it by passing in create=1, it is critically important that
1788  * any caller checks to make sure that any buffer heads are returned
1789  * by this function are either all already mapped or marked for
1790  * delayed allocation before calling  block_write_full_page().  Otherwise,
1791  * b_blocknr could be left unitialized, and the page write functions will
1792  * be taken by surprise.
1793  */
1794 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1795                                    struct buffer_head *bh_result, int create)
1796 {
1797         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1798         return _ext4_get_block(inode, iblock, bh_result, 0);
1799 }
1800
1801 static int bget_one(handle_t *handle, struct buffer_head *bh)
1802 {
1803         get_bh(bh);
1804         return 0;
1805 }
1806
1807 static int bput_one(handle_t *handle, struct buffer_head *bh)
1808 {
1809         put_bh(bh);
1810         return 0;
1811 }
1812
1813 static int __ext4_journalled_writepage(struct page *page,
1814                                        unsigned int len)
1815 {
1816         struct address_space *mapping = page->mapping;
1817         struct inode *inode = mapping->host;
1818         struct buffer_head *page_bufs;
1819         handle_t *handle = NULL;
1820         int ret = 0;
1821         int err;
1822
1823         ClearPageChecked(page);
1824         page_bufs = page_buffers(page);
1825         BUG_ON(!page_bufs);
1826         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1827         /* As soon as we unlock the page, it can go away, but we have
1828          * references to buffers so we are safe */
1829         unlock_page(page);
1830
1831         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1832         if (IS_ERR(handle)) {
1833                 ret = PTR_ERR(handle);
1834                 goto out;
1835         }
1836
1837         BUG_ON(!ext4_handle_valid(handle));
1838
1839         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1840                                 do_journal_get_write_access);
1841
1842         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1843                                 write_end_fn);
1844         if (ret == 0)
1845                 ret = err;
1846         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1847         err = ext4_journal_stop(handle);
1848         if (!ret)
1849                 ret = err;
1850
1851         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1852         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1853 out:
1854         return ret;
1855 }
1856
1857 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1858 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1859
1860 /*
1861  * Note that we don't need to start a transaction unless we're journaling data
1862  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1863  * need to file the inode to the transaction's list in ordered mode because if
1864  * we are writing back data added by write(), the inode is already there and if
1865  * we are writing back data modified via mmap(), no one guarantees in which
1866  * transaction the data will hit the disk. In case we are journaling data, we
1867  * cannot start transaction directly because transaction start ranks above page
1868  * lock so we have to do some magic.
1869  *
1870  * This function can get called via...
1871  *   - ext4_da_writepages after taking page lock (have journal handle)
1872  *   - journal_submit_inode_data_buffers (no journal handle)
1873  *   - shrink_page_list via pdflush (no journal handle)
1874  *   - grab_page_cache when doing write_begin (have journal handle)
1875  *
1876  * We don't do any block allocation in this function. If we have page with
1877  * multiple blocks we need to write those buffer_heads that are mapped. This
1878  * is important for mmaped based write. So if we do with blocksize 1K
1879  * truncate(f, 1024);
1880  * a = mmap(f, 0, 4096);
1881  * a[0] = 'a';
1882  * truncate(f, 4096);
1883  * we have in the page first buffer_head mapped via page_mkwrite call back
1884  * but other bufer_heads would be unmapped but dirty(dirty done via the
1885  * do_wp_page). So writepage should write the first block. If we modify
1886  * the mmap area beyond 1024 we will again get a page_fault and the
1887  * page_mkwrite callback will do the block allocation and mark the
1888  * buffer_heads mapped.
1889  *
1890  * We redirty the page if we have any buffer_heads that is either delay or
1891  * unwritten in the page.
1892  *
1893  * We can get recursively called as show below.
1894  *
1895  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1896  *              ext4_writepage()
1897  *
1898  * But since we don't do any block allocation we should not deadlock.
1899  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1900  */
1901 static int ext4_writepage(struct page *page,
1902                           struct writeback_control *wbc)
1903 {
1904         int ret = 0, commit_write = 0;
1905         loff_t size;
1906         unsigned int len;
1907         struct buffer_head *page_bufs = NULL;
1908         struct inode *inode = page->mapping->host;
1909
1910         trace_ext4_writepage(page);
1911         size = i_size_read(inode);
1912         if (page->index == size >> PAGE_CACHE_SHIFT)
1913                 len = size & ~PAGE_CACHE_MASK;
1914         else
1915                 len = PAGE_CACHE_SIZE;
1916
1917         /*
1918          * If the page does not have buffers (for whatever reason),
1919          * try to create them using __block_write_begin.  If this
1920          * fails, redirty the page and move on.
1921          */
1922         if (!page_has_buffers(page)) {
1923                 if (__block_write_begin(page, 0, len,
1924                                         noalloc_get_block_write)) {
1925                 redirty_page:
1926                         redirty_page_for_writepage(wbc, page);
1927                         unlock_page(page);
1928                         return 0;
1929                 }
1930                 commit_write = 1;
1931         }
1932         page_bufs = page_buffers(page);
1933         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1934                               ext4_bh_delay_or_unwritten)) {
1935                 /*
1936                  * We don't want to do block allocation, so redirty
1937                  * the page and return.  We may reach here when we do
1938                  * a journal commit via journal_submit_inode_data_buffers.
1939                  * We can also reach here via shrink_page_list but it
1940                  * should never be for direct reclaim so warn if that
1941                  * happens
1942                  */
1943                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1944                                                                 PF_MEMALLOC);
1945                 goto redirty_page;
1946         }
1947         if (commit_write)
1948                 /* now mark the buffer_heads as dirty and uptodate */
1949                 block_commit_write(page, 0, len);
1950
1951         if (PageChecked(page) && ext4_should_journal_data(inode))
1952                 /*
1953                  * It's mmapped pagecache.  Add buffers and journal it.  There
1954                  * doesn't seem much point in redirtying the page here.
1955                  */
1956                 return __ext4_journalled_writepage(page, len);
1957
1958         if (buffer_uninit(page_bufs)) {
1959                 ext4_set_bh_endio(page_bufs, inode);
1960                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1961                                             wbc, ext4_end_io_buffer_write);
1962         } else
1963                 ret = block_write_full_page(page, noalloc_get_block_write,
1964                                             wbc);
1965
1966         return ret;
1967 }
1968
1969 /*
1970  * This is called via ext4_da_writepages() to
1971  * calculate the total number of credits to reserve to fit
1972  * a single extent allocation into a single transaction,
1973  * ext4_da_writpeages() will loop calling this before
1974  * the block allocation.
1975  */
1976
1977 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1978 {
1979         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1980
1981         /*
1982          * With non-extent format the journal credit needed to
1983          * insert nrblocks contiguous block is dependent on
1984          * number of contiguous block. So we will limit
1985          * number of contiguous block to a sane value
1986          */
1987         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1988             (max_blocks > EXT4_MAX_TRANS_DATA))
1989                 max_blocks = EXT4_MAX_TRANS_DATA;
1990
1991         return ext4_chunk_trans_blocks(inode, max_blocks);
1992 }
1993
1994 /*
1995  * write_cache_pages_da - walk the list of dirty pages of the given
1996  * address space and accumulate pages that need writing, and call
1997  * mpage_da_map_and_submit to map a single contiguous memory region
1998  * and then write them.
1999  */
2000 static int write_cache_pages_da(struct address_space *mapping,
2001                                 struct writeback_control *wbc,
2002                                 struct mpage_da_data *mpd,
2003                                 pgoff_t *done_index)
2004 {
2005         struct buffer_head      *bh, *head;
2006         struct inode            *inode = mapping->host;
2007         struct pagevec          pvec;
2008         unsigned int            nr_pages;
2009         sector_t                logical;
2010         pgoff_t                 index, end;
2011         long                    nr_to_write = wbc->nr_to_write;
2012         int                     i, tag, ret = 0;
2013
2014         memset(mpd, 0, sizeof(struct mpage_da_data));
2015         mpd->wbc = wbc;
2016         mpd->inode = inode;
2017         pagevec_init(&pvec, 0);
2018         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2019         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2020
2021         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2022                 tag = PAGECACHE_TAG_TOWRITE;
2023         else
2024                 tag = PAGECACHE_TAG_DIRTY;
2025
2026         *done_index = index;
2027         while (index <= end) {
2028                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2029                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2030                 if (nr_pages == 0)
2031                         return 0;
2032
2033                 for (i = 0; i < nr_pages; i++) {
2034                         struct page *page = pvec.pages[i];
2035
2036                         /*
2037                          * At this point, the page may be truncated or
2038                          * invalidated (changing page->mapping to NULL), or
2039                          * even swizzled back from swapper_space to tmpfs file
2040                          * mapping. However, page->index will not change
2041                          * because we have a reference on the page.
2042                          */
2043                         if (page->index > end)
2044                                 goto out;
2045
2046                         *done_index = page->index + 1;
2047
2048                         /*
2049                          * If we can't merge this page, and we have
2050                          * accumulated an contiguous region, write it
2051                          */
2052                         if ((mpd->next_page != page->index) &&
2053                             (mpd->next_page != mpd->first_page)) {
2054                                 mpage_da_map_and_submit(mpd);
2055                                 goto ret_extent_tail;
2056                         }
2057
2058                         lock_page(page);
2059
2060                         /*
2061                          * If the page is no longer dirty, or its
2062                          * mapping no longer corresponds to inode we
2063                          * are writing (which means it has been
2064                          * truncated or invalidated), or the page is
2065                          * already under writeback and we are not
2066                          * doing a data integrity writeback, skip the page
2067                          */
2068                         if (!PageDirty(page) ||
2069                             (PageWriteback(page) &&
2070                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2071                             unlikely(page->mapping != mapping)) {
2072                                 unlock_page(page);
2073                                 continue;
2074                         }
2075
2076                         wait_on_page_writeback(page);
2077                         BUG_ON(PageWriteback(page));
2078
2079                         if (mpd->next_page != page->index)
2080                                 mpd->first_page = page->index;
2081                         mpd->next_page = page->index + 1;
2082                         logical = (sector_t) page->index <<
2083                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2084
2085                         if (!page_has_buffers(page)) {
2086                                 mpage_add_bh_to_extent(mpd, logical,
2087                                                        PAGE_CACHE_SIZE,
2088                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2089                                 if (mpd->io_done)
2090                                         goto ret_extent_tail;
2091                         } else {
2092                                 /*
2093                                  * Page with regular buffer heads,
2094                                  * just add all dirty ones
2095                                  */
2096                                 head = page_buffers(page);
2097                                 bh = head;
2098                                 do {
2099                                         BUG_ON(buffer_locked(bh));
2100                                         /*
2101                                          * We need to try to allocate
2102                                          * unmapped blocks in the same page.
2103                                          * Otherwise we won't make progress
2104                                          * with the page in ext4_writepage
2105                                          */
2106                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2107                                                 mpage_add_bh_to_extent(mpd, logical,
2108                                                                        bh->b_size,
2109                                                                        bh->b_state);
2110                                                 if (mpd->io_done)
2111                                                         goto ret_extent_tail;
2112                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2113                                                 /*
2114                                                  * mapped dirty buffer. We need
2115                                                  * to update the b_state
2116                                                  * because we look at b_state
2117                                                  * in mpage_da_map_blocks.  We
2118                                                  * don't update b_size because
2119                                                  * if we find an unmapped
2120                                                  * buffer_head later we need to
2121                                                  * use the b_state flag of that
2122                                                  * buffer_head.
2123                                                  */
2124                                                 if (mpd->b_size == 0)
2125                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2126                                         }
2127                                         logical++;
2128                                 } while ((bh = bh->b_this_page) != head);
2129                         }
2130
2131                         if (nr_to_write > 0) {
2132                                 nr_to_write--;
2133                                 if (nr_to_write == 0 &&
2134                                     wbc->sync_mode == WB_SYNC_NONE)
2135                                         /*
2136                                          * We stop writing back only if we are
2137                                          * not doing integrity sync. In case of
2138                                          * integrity sync we have to keep going
2139                                          * because someone may be concurrently
2140                                          * dirtying pages, and we might have
2141                                          * synced a lot of newly appeared dirty
2142                                          * pages, but have not synced all of the
2143                                          * old dirty pages.
2144                                          */
2145                                         goto out;
2146                         }
2147                 }
2148                 pagevec_release(&pvec);
2149                 cond_resched();
2150         }
2151         return 0;
2152 ret_extent_tail:
2153         ret = MPAGE_DA_EXTENT_TAIL;
2154 out:
2155         pagevec_release(&pvec);
2156         cond_resched();
2157         return ret;
2158 }
2159
2160
2161 static int ext4_da_writepages(struct address_space *mapping,
2162                               struct writeback_control *wbc)
2163 {
2164         pgoff_t index;
2165         int range_whole = 0;
2166         handle_t *handle = NULL;
2167         struct mpage_da_data mpd;
2168         struct inode *inode = mapping->host;
2169         int pages_written = 0;
2170         unsigned int max_pages;
2171         int range_cyclic, cycled = 1, io_done = 0;
2172         int needed_blocks, ret = 0;
2173         long desired_nr_to_write, nr_to_writebump = 0;
2174         loff_t range_start = wbc->range_start;
2175         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2176         pgoff_t done_index = 0;
2177         pgoff_t end;
2178         struct blk_plug plug;
2179
2180         trace_ext4_da_writepages(inode, wbc);
2181
2182         /*
2183          * No pages to write? This is mainly a kludge to avoid starting
2184          * a transaction for special inodes like journal inode on last iput()
2185          * because that could violate lock ordering on umount
2186          */
2187         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2188                 return 0;
2189
2190         /*
2191          * If the filesystem has aborted, it is read-only, so return
2192          * right away instead of dumping stack traces later on that
2193          * will obscure the real source of the problem.  We test
2194          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2195          * the latter could be true if the filesystem is mounted
2196          * read-only, and in that case, ext4_da_writepages should
2197          * *never* be called, so if that ever happens, we would want
2198          * the stack trace.
2199          */
2200         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2201                 return -EROFS;
2202
2203         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2204                 range_whole = 1;
2205
2206         range_cyclic = wbc->range_cyclic;
2207         if (wbc->range_cyclic) {
2208                 index = mapping->writeback_index;
2209                 if (index)
2210                         cycled = 0;
2211                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2212                 wbc->range_end  = LLONG_MAX;
2213                 wbc->range_cyclic = 0;
2214                 end = -1;
2215         } else {
2216                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2217                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2218         }
2219
2220         /*
2221          * This works around two forms of stupidity.  The first is in
2222          * the writeback code, which caps the maximum number of pages
2223          * written to be 1024 pages.  This is wrong on multiple
2224          * levels; different architectues have a different page size,
2225          * which changes the maximum amount of data which gets
2226          * written.  Secondly, 4 megabytes is way too small.  XFS
2227          * forces this value to be 16 megabytes by multiplying
2228          * nr_to_write parameter by four, and then relies on its
2229          * allocator to allocate larger extents to make them
2230          * contiguous.  Unfortunately this brings us to the second
2231          * stupidity, which is that ext4's mballoc code only allocates
2232          * at most 2048 blocks.  So we force contiguous writes up to
2233          * the number of dirty blocks in the inode, or
2234          * sbi->max_writeback_mb_bump whichever is smaller.
2235          */
2236         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2237         if (!range_cyclic && range_whole) {
2238                 if (wbc->nr_to_write == LONG_MAX)
2239                         desired_nr_to_write = wbc->nr_to_write;
2240                 else
2241                         desired_nr_to_write = wbc->nr_to_write * 8;
2242         } else
2243                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2244                                                            max_pages);
2245         if (desired_nr_to_write > max_pages)
2246                 desired_nr_to_write = max_pages;
2247
2248         if (wbc->nr_to_write < desired_nr_to_write) {
2249                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2250                 wbc->nr_to_write = desired_nr_to_write;
2251         }
2252
2253 retry:
2254         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2255                 tag_pages_for_writeback(mapping, index, end);
2256
2257         blk_start_plug(&plug);
2258         while (!ret && wbc->nr_to_write > 0) {
2259
2260                 /*
2261                  * we  insert one extent at a time. So we need
2262                  * credit needed for single extent allocation.
2263                  * journalled mode is currently not supported
2264                  * by delalloc
2265                  */
2266                 BUG_ON(ext4_should_journal_data(inode));
2267                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2268
2269                 /* start a new transaction*/
2270                 handle = ext4_journal_start(inode, needed_blocks);
2271                 if (IS_ERR(handle)) {
2272                         ret = PTR_ERR(handle);
2273                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2274                                "%ld pages, ino %lu; err %d", __func__,
2275                                 wbc->nr_to_write, inode->i_ino, ret);
2276                         blk_finish_plug(&plug);
2277                         goto out_writepages;
2278                 }
2279
2280                 /*
2281                  * Now call write_cache_pages_da() to find the next
2282                  * contiguous region of logical blocks that need
2283                  * blocks to be allocated by ext4 and submit them.
2284                  */
2285                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2286                 /*
2287                  * If we have a contiguous extent of pages and we
2288                  * haven't done the I/O yet, map the blocks and submit
2289                  * them for I/O.
2290                  */
2291                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2292                         mpage_da_map_and_submit(&mpd);
2293                         ret = MPAGE_DA_EXTENT_TAIL;
2294                 }
2295                 trace_ext4_da_write_pages(inode, &mpd);
2296                 wbc->nr_to_write -= mpd.pages_written;
2297
2298                 ext4_journal_stop(handle);
2299
2300                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2301                         /* commit the transaction which would
2302                          * free blocks released in the transaction
2303                          * and try again
2304                          */
2305                         jbd2_journal_force_commit_nested(sbi->s_journal);
2306                         ret = 0;
2307                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2308                         /*
2309                          * Got one extent now try with rest of the pages.
2310                          * If mpd.retval is set -EIO, journal is aborted.
2311                          * So we don't need to write any more.
2312                          */
2313                         pages_written += mpd.pages_written;
2314                         ret = mpd.retval;
2315                         io_done = 1;
2316                 } else if (wbc->nr_to_write)
2317                         /*
2318                          * There is no more writeout needed
2319                          * or we requested for a noblocking writeout
2320                          * and we found the device congested
2321                          */
2322                         break;
2323         }
2324         blk_finish_plug(&plug);
2325         if (!io_done && !cycled) {
2326                 cycled = 1;
2327                 index = 0;
2328                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2329                 wbc->range_end  = mapping->writeback_index - 1;
2330                 goto retry;
2331         }
2332
2333         /* Update index */
2334         wbc->range_cyclic = range_cyclic;
2335         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2336                 /*
2337                  * set the writeback_index so that range_cyclic
2338                  * mode will write it back later
2339                  */
2340                 mapping->writeback_index = done_index;
2341
2342 out_writepages:
2343         wbc->nr_to_write -= nr_to_writebump;
2344         wbc->range_start = range_start;
2345         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2346         return ret;
2347 }
2348
2349 #define FALL_BACK_TO_NONDELALLOC 1
2350 static int ext4_nonda_switch(struct super_block *sb)
2351 {
2352         s64 free_blocks, dirty_blocks;
2353         struct ext4_sb_info *sbi = EXT4_SB(sb);
2354
2355         /*
2356          * switch to non delalloc mode if we are running low
2357          * on free block. The free block accounting via percpu
2358          * counters can get slightly wrong with percpu_counter_batch getting
2359          * accumulated on each CPU without updating global counters
2360          * Delalloc need an accurate free block accounting. So switch
2361          * to non delalloc when we are near to error range.
2362          */
2363         free_blocks  = EXT4_C2B(sbi,
2364                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2365         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2366         if (2 * free_blocks < 3 * dirty_blocks ||
2367                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2368                 /*
2369                  * free block count is less than 150% of dirty blocks
2370                  * or free blocks is less than watermark
2371                  */
2372                 return 1;
2373         }
2374         /*
2375          * Even if we don't switch but are nearing capacity,
2376          * start pushing delalloc when 1/2 of free blocks are dirty.
2377          */
2378         if (free_blocks < 2 * dirty_blocks)
2379                 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2380
2381         return 0;
2382 }
2383
2384 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2385                                loff_t pos, unsigned len, unsigned flags,
2386                                struct page **pagep, void **fsdata)
2387 {
2388         int ret, retries = 0;
2389         struct page *page;
2390         pgoff_t index;
2391         struct inode *inode = mapping->host;
2392         handle_t *handle;
2393
2394         index = pos >> PAGE_CACHE_SHIFT;
2395
2396         if (ext4_nonda_switch(inode->i_sb)) {
2397                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2398                 return ext4_write_begin(file, mapping, pos,
2399                                         len, flags, pagep, fsdata);
2400         }
2401         *fsdata = (void *)0;
2402         trace_ext4_da_write_begin(inode, pos, len, flags);
2403 retry:
2404         /*
2405          * With delayed allocation, we don't log the i_disksize update
2406          * if there is delayed block allocation. But we still need
2407          * to journalling the i_disksize update if writes to the end
2408          * of file which has an already mapped buffer.
2409          */
2410         handle = ext4_journal_start(inode, 1);
2411         if (IS_ERR(handle)) {
2412                 ret = PTR_ERR(handle);
2413                 goto out;
2414         }
2415         /* We cannot recurse into the filesystem as the transaction is already
2416          * started */
2417         flags |= AOP_FLAG_NOFS;
2418
2419         page = grab_cache_page_write_begin(mapping, index, flags);
2420         if (!page) {
2421                 ext4_journal_stop(handle);
2422                 ret = -ENOMEM;
2423                 goto out;
2424         }
2425         *pagep = page;
2426
2427         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2428         if (ret < 0) {
2429                 unlock_page(page);
2430                 ext4_journal_stop(handle);
2431                 page_cache_release(page);
2432                 /*
2433                  * block_write_begin may have instantiated a few blocks
2434                  * outside i_size.  Trim these off again. Don't need
2435                  * i_size_read because we hold i_mutex.
2436                  */
2437                 if (pos + len > inode->i_size)
2438                         ext4_truncate_failed_write(inode);
2439         }
2440
2441         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2442                 goto retry;
2443 out:
2444         return ret;
2445 }
2446
2447 /*
2448  * Check if we should update i_disksize
2449  * when write to the end of file but not require block allocation
2450  */
2451 static int ext4_da_should_update_i_disksize(struct page *page,
2452                                             unsigned long offset)
2453 {
2454         struct buffer_head *bh;
2455         struct inode *inode = page->mapping->host;
2456         unsigned int idx;
2457         int i;
2458
2459         bh = page_buffers(page);
2460         idx = offset >> inode->i_blkbits;
2461
2462         for (i = 0; i < idx; i++)
2463                 bh = bh->b_this_page;
2464
2465         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2466                 return 0;
2467         return 1;
2468 }
2469
2470 static int ext4_da_write_end(struct file *file,
2471                              struct address_space *mapping,
2472                              loff_t pos, unsigned len, unsigned copied,
2473                              struct page *page, void *fsdata)
2474 {
2475         struct inode *inode = mapping->host;
2476         int ret = 0, ret2;
2477         handle_t *handle = ext4_journal_current_handle();
2478         loff_t new_i_size;
2479         unsigned long start, end;
2480         int write_mode = (int)(unsigned long)fsdata;
2481
2482         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2483                 switch (ext4_inode_journal_mode(inode)) {
2484                 case EXT4_INODE_ORDERED_DATA_MODE:
2485                         return ext4_ordered_write_end(file, mapping, pos,
2486                                         len, copied, page, fsdata);
2487                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2488                         return ext4_writeback_write_end(file, mapping, pos,
2489                                         len, copied, page, fsdata);
2490                 default:
2491                         BUG();
2492                 }
2493         }
2494
2495         trace_ext4_da_write_end(inode, pos, len, copied);
2496         start = pos & (PAGE_CACHE_SIZE - 1);
2497         end = start + copied - 1;
2498
2499         /*
2500          * generic_write_end() will run mark_inode_dirty() if i_size
2501          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2502          * into that.
2503          */
2504
2505         new_i_size = pos + copied;
2506         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2507                 if (ext4_da_should_update_i_disksize(page, end)) {
2508                         down_write(&EXT4_I(inode)->i_data_sem);
2509                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2510                                 /*
2511                                  * Updating i_disksize when extending file
2512                                  * without needing block allocation
2513                                  */
2514                                 if (ext4_should_order_data(inode))
2515                                         ret = ext4_jbd2_file_inode(handle,
2516                                                                    inode);
2517
2518                                 EXT4_I(inode)->i_disksize = new_i_size;
2519                         }
2520                         up_write(&EXT4_I(inode)->i_data_sem);
2521                         /* We need to mark inode dirty even if
2522                          * new_i_size is less that inode->i_size
2523                          * bu greater than i_disksize.(hint delalloc)
2524                          */
2525                         ext4_mark_inode_dirty(handle, inode);
2526                 }
2527         }
2528         ret2 = generic_write_end(file, mapping, pos, len, copied,
2529                                                         page, fsdata);
2530         copied = ret2;
2531         if (ret2 < 0)
2532                 ret = ret2;
2533         ret2 = ext4_journal_stop(handle);
2534         if (!ret)
2535                 ret = ret2;
2536
2537         return ret ? ret : copied;
2538 }
2539
2540 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2541 {
2542         /*
2543          * Drop reserved blocks
2544          */
2545         BUG_ON(!PageLocked(page));
2546         if (!page_has_buffers(page))
2547                 goto out;
2548
2549         ext4_da_page_release_reservation(page, offset);
2550
2551 out:
2552         ext4_invalidatepage(page, offset);
2553
2554         return;
2555 }
2556
2557 /*
2558  * Force all delayed allocation blocks to be allocated for a given inode.
2559  */
2560 int ext4_alloc_da_blocks(struct inode *inode)
2561 {
2562         trace_ext4_alloc_da_blocks(inode);
2563
2564         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2565             !EXT4_I(inode)->i_reserved_meta_blocks)
2566                 return 0;
2567
2568         /*
2569          * We do something simple for now.  The filemap_flush() will
2570          * also start triggering a write of the data blocks, which is
2571          * not strictly speaking necessary (and for users of
2572          * laptop_mode, not even desirable).  However, to do otherwise
2573          * would require replicating code paths in:
2574          *
2575          * ext4_da_writepages() ->
2576          *    write_cache_pages() ---> (via passed in callback function)
2577          *        __mpage_da_writepage() -->
2578          *           mpage_add_bh_to_extent()
2579          *           mpage_da_map_blocks()
2580          *
2581          * The problem is that write_cache_pages(), located in
2582          * mm/page-writeback.c, marks pages clean in preparation for
2583          * doing I/O, which is not desirable if we're not planning on
2584          * doing I/O at all.
2585          *
2586          * We could call write_cache_pages(), and then redirty all of
2587          * the pages by calling redirty_page_for_writepage() but that
2588          * would be ugly in the extreme.  So instead we would need to
2589          * replicate parts of the code in the above functions,
2590          * simplifying them because we wouldn't actually intend to
2591          * write out the pages, but rather only collect contiguous
2592          * logical block extents, call the multi-block allocator, and
2593          * then update the buffer heads with the block allocations.
2594          *
2595          * For now, though, we'll cheat by calling filemap_flush(),
2596          * which will map the blocks, and start the I/O, but not
2597          * actually wait for the I/O to complete.
2598          */
2599         return filemap_flush(inode->i_mapping);
2600 }
2601
2602 /*
2603  * bmap() is special.  It gets used by applications such as lilo and by
2604  * the swapper to find the on-disk block of a specific piece of data.
2605  *
2606  * Naturally, this is dangerous if the block concerned is still in the
2607  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2608  * filesystem and enables swap, then they may get a nasty shock when the
2609  * data getting swapped to that swapfile suddenly gets overwritten by
2610  * the original zero's written out previously to the journal and
2611  * awaiting writeback in the kernel's buffer cache.
2612  *
2613  * So, if we see any bmap calls here on a modified, data-journaled file,
2614  * take extra steps to flush any blocks which might be in the cache.
2615  */
2616 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2617 {
2618         struct inode *inode = mapping->host;
2619         journal_t *journal;
2620         int err;
2621
2622         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2623                         test_opt(inode->i_sb, DELALLOC)) {
2624                 /*
2625                  * With delalloc we want to sync the file
2626                  * so that we can make sure we allocate
2627                  * blocks for file
2628                  */
2629                 filemap_write_and_wait(mapping);
2630         }
2631
2632         if (EXT4_JOURNAL(inode) &&
2633             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2634                 /*
2635                  * This is a REALLY heavyweight approach, but the use of
2636                  * bmap on dirty files is expected to be extremely rare:
2637                  * only if we run lilo or swapon on a freshly made file
2638                  * do we expect this to happen.
2639                  *
2640                  * (bmap requires CAP_SYS_RAWIO so this does not
2641                  * represent an unprivileged user DOS attack --- we'd be
2642                  * in trouble if mortal users could trigger this path at
2643                  * will.)
2644                  *
2645                  * NB. EXT4_STATE_JDATA is not set on files other than
2646                  * regular files.  If somebody wants to bmap a directory
2647                  * or symlink and gets confused because the buffer
2648                  * hasn't yet been flushed to disk, they deserve
2649                  * everything they get.
2650                  */
2651
2652                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2653                 journal = EXT4_JOURNAL(inode);
2654                 jbd2_journal_lock_updates(journal);
2655                 err = jbd2_journal_flush(journal);
2656                 jbd2_journal_unlock_updates(journal);
2657
2658                 if (err)
2659                         return 0;
2660         }
2661
2662         return generic_block_bmap(mapping, block, ext4_get_block);
2663 }
2664
2665 static int ext4_readpage(struct file *file, struct page *page)
2666 {
2667         trace_ext4_readpage(page);
2668         return mpage_readpage(page, ext4_get_block);
2669 }
2670
2671 static int
2672 ext4_readpages(struct file *file, struct address_space *mapping,
2673                 struct list_head *pages, unsigned nr_pages)
2674 {
2675         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2676 }
2677
2678 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2679 {
2680         struct buffer_head *head, *bh;
2681         unsigned int curr_off = 0;
2682
2683         if (!page_has_buffers(page))
2684                 return;
2685         head = bh = page_buffers(page);
2686         do {
2687                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2688                                         && bh->b_private) {
2689                         ext4_free_io_end(bh->b_private);
2690                         bh->b_private = NULL;
2691                         bh->b_end_io = NULL;
2692                 }
2693                 curr_off = curr_off + bh->b_size;
2694                 bh = bh->b_this_page;
2695         } while (bh != head);
2696 }
2697
2698 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2699 {
2700         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2701
2702         trace_ext4_invalidatepage(page, offset);
2703
2704         /*
2705          * free any io_end structure allocated for buffers to be discarded
2706          */
2707         if (ext4_should_dioread_nolock(page->mapping->host))
2708                 ext4_invalidatepage_free_endio(page, offset);
2709         /*
2710          * If it's a full truncate we just forget about the pending dirtying
2711          */
2712         if (offset == 0)
2713                 ClearPageChecked(page);
2714
2715         if (journal)
2716                 jbd2_journal_invalidatepage(journal, page, offset);
2717         else
2718                 block_invalidatepage(page, offset);
2719 }
2720
2721 static int ext4_releasepage(struct page *page, gfp_t wait)
2722 {
2723         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2724
2725         trace_ext4_releasepage(page);
2726
2727         WARN_ON(PageChecked(page));
2728         if (!page_has_buffers(page))
2729                 return 0;
2730         if (journal)
2731                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2732         else
2733                 return try_to_free_buffers(page);
2734 }
2735
2736 /*
2737  * ext4_get_block used when preparing for a DIO write or buffer write.
2738  * We allocate an uinitialized extent if blocks haven't been allocated.
2739  * The extent will be converted to initialized after the IO is complete.
2740  */
2741 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2742                    struct buffer_head *bh_result, int create)
2743 {
2744         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2745                    inode->i_ino, create);
2746         return _ext4_get_block(inode, iblock, bh_result,
2747                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2748 }
2749
2750 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2751                             ssize_t size, void *private, int ret,
2752                             bool is_async)
2753 {
2754         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2755         ext4_io_end_t *io_end = iocb->private;
2756         struct workqueue_struct *wq;
2757         unsigned long flags;
2758         struct ext4_inode_info *ei;
2759
2760         /* if not async direct IO or dio with 0 bytes write, just return */
2761         if (!io_end || !size)
2762                 goto out;
2763
2764         ext_debug("ext4_end_io_dio(): io_end 0x%p"
2765                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2766                   iocb->private, io_end->inode->i_ino, iocb, offset,
2767                   size);
2768
2769         iocb->private = NULL;
2770
2771         /* if not aio dio with unwritten extents, just free io and return */
2772         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2773                 ext4_free_io_end(io_end);
2774 out:
2775                 if (is_async)
2776                         aio_complete(iocb, ret, 0);
2777                 inode_dio_done(inode);
2778                 return;
2779         }
2780
2781         io_end->offset = offset;
2782         io_end->size = size;
2783         if (is_async) {
2784                 io_end->iocb = iocb;
2785                 io_end->result = ret;
2786         }
2787         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2788
2789         /* Add the io_end to per-inode completed aio dio list*/
2790         ei = EXT4_I(io_end->inode);
2791         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2792         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2793         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2794
2795         /* queue the work to convert unwritten extents to written */
2796         queue_work(wq, &io_end->work);
2797
2798         /* XXX: probably should move into the real I/O completion handler */
2799         inode_dio_done(inode);
2800 }
2801
2802 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2803 {
2804         ext4_io_end_t *io_end = bh->b_private;
2805         struct workqueue_struct *wq;
2806         struct inode *inode;
2807         unsigned long flags;
2808
2809         if (!test_clear_buffer_uninit(bh) || !io_end)
2810                 goto out;
2811
2812         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2813                 printk("sb umounted, discard end_io request for inode %lu\n",
2814                         io_end->inode->i_ino);
2815                 ext4_free_io_end(io_end);
2816                 goto out;
2817         }
2818
2819         /*
2820          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2821          * but being more careful is always safe for the future change.
2822          */
2823         inode = io_end->inode;
2824         ext4_set_io_unwritten_flag(inode, io_end);
2825
2826         /* Add the io_end to per-inode completed io list*/
2827         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2828         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2829         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2830
2831         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2832         /* queue the work to convert unwritten extents to written */
2833         queue_work(wq, &io_end->work);
2834 out:
2835         bh->b_private = NULL;
2836         bh->b_end_io = NULL;
2837         clear_buffer_uninit(bh);
2838         end_buffer_async_write(bh, uptodate);
2839 }
2840
2841 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2842 {
2843         ext4_io_end_t *io_end;
2844         struct page *page = bh->b_page;
2845         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2846         size_t size = bh->b_size;
2847
2848 retry:
2849         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2850         if (!io_end) {
2851                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2852                 schedule();
2853                 goto retry;
2854         }
2855         io_end->offset = offset;
2856         io_end->size = size;
2857         /*
2858          * We need to hold a reference to the page to make sure it
2859          * doesn't get evicted before ext4_end_io_work() has a chance
2860          * to convert the extent from written to unwritten.
2861          */
2862         io_end->page = page;
2863         get_page(io_end->page);
2864
2865         bh->b_private = io_end;
2866         bh->b_end_io = ext4_end_io_buffer_write;
2867         return 0;
2868 }
2869
2870 /*
2871  * For ext4 extent files, ext4 will do direct-io write to holes,
2872  * preallocated extents, and those write extend the file, no need to
2873  * fall back to buffered IO.
2874  *
2875  * For holes, we fallocate those blocks, mark them as uninitialized
2876  * If those blocks were preallocated, we mark sure they are splited, but
2877  * still keep the range to write as uninitialized.
2878  *
2879  * The unwrritten extents will be converted to written when DIO is completed.
2880  * For async direct IO, since the IO may still pending when return, we
2881  * set up an end_io call back function, which will do the conversion
2882  * when async direct IO completed.
2883  *
2884  * If the O_DIRECT write will extend the file then add this inode to the
2885  * orphan list.  So recovery will truncate it back to the original size
2886  * if the machine crashes during the write.
2887  *
2888  */
2889 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2890                               const struct iovec *iov, loff_t offset,
2891                               unsigned long nr_segs)
2892 {
2893         struct file *file = iocb->ki_filp;
2894         struct inode *inode = file->f_mapping->host;
2895         ssize_t ret;
2896         size_t count = iov_length(iov, nr_segs);
2897
2898         loff_t final_size = offset + count;
2899         if (rw == WRITE && final_size <= inode->i_size) {
2900                 /*
2901                  * We could direct write to holes and fallocate.
2902                  *
2903                  * Allocated blocks to fill the hole are marked as uninitialized
2904                  * to prevent parallel buffered read to expose the stale data
2905                  * before DIO complete the data IO.
2906                  *
2907                  * As to previously fallocated extents, ext4 get_block
2908                  * will just simply mark the buffer mapped but still
2909                  * keep the extents uninitialized.
2910                  *
2911                  * for non AIO case, we will convert those unwritten extents
2912                  * to written after return back from blockdev_direct_IO.
2913                  *
2914                  * for async DIO, the conversion needs to be defered when
2915                  * the IO is completed. The ext4 end_io callback function
2916                  * will be called to take care of the conversion work.
2917                  * Here for async case, we allocate an io_end structure to
2918                  * hook to the iocb.
2919                  */
2920                 iocb->private = NULL;
2921                 EXT4_I(inode)->cur_aio_dio = NULL;
2922                 if (!is_sync_kiocb(iocb)) {
2923                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2924                         if (!iocb->private)
2925                                 return -ENOMEM;
2926                         /*
2927                          * we save the io structure for current async
2928                          * direct IO, so that later ext4_map_blocks()
2929                          * could flag the io structure whether there
2930                          * is a unwritten extents needs to be converted
2931                          * when IO is completed.
2932                          */
2933                         EXT4_I(inode)->cur_aio_dio = iocb->private;
2934                 }
2935
2936                 ret = __blockdev_direct_IO(rw, iocb, inode,
2937                                          inode->i_sb->s_bdev, iov,
2938                                          offset, nr_segs,
2939                                          ext4_get_block_write,
2940                                          ext4_end_io_dio,
2941                                          NULL,
2942                                          DIO_LOCKING | DIO_SKIP_HOLES);
2943                 if (iocb->private)
2944                         EXT4_I(inode)->cur_aio_dio = NULL;
2945                 /*
2946                  * The io_end structure takes a reference to the inode,
2947                  * that structure needs to be destroyed and the
2948                  * reference to the inode need to be dropped, when IO is
2949                  * complete, even with 0 byte write, or failed.
2950                  *
2951                  * In the successful AIO DIO case, the io_end structure will be
2952                  * desctroyed and the reference to the inode will be dropped
2953                  * after the end_io call back function is called.
2954                  *
2955                  * In the case there is 0 byte write, or error case, since
2956                  * VFS direct IO won't invoke the end_io call back function,
2957                  * we need to free the end_io structure here.
2958                  */
2959                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2960                         ext4_free_io_end(iocb->private);
2961                         iocb->private = NULL;
2962                 } else if (ret > 0 && ext4_test_inode_state(inode,
2963                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2964                         int err;
2965                         /*
2966                          * for non AIO case, since the IO is already
2967                          * completed, we could do the conversion right here
2968                          */
2969                         err = ext4_convert_unwritten_extents(inode,
2970                                                              offset, ret);
2971                         if (err < 0)
2972                                 ret = err;
2973                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2974                 }
2975                 return ret;
2976         }
2977
2978         /* for write the the end of file case, we fall back to old way */
2979         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2980 }
2981
2982 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2983                               const struct iovec *iov, loff_t offset,
2984                               unsigned long nr_segs)
2985 {
2986         struct file *file = iocb->ki_filp;
2987         struct inode *inode = file->f_mapping->host;
2988         ssize_t ret;
2989
2990         /*
2991          * If we are doing data journalling we don't support O_DIRECT
2992          */
2993         if (ext4_should_journal_data(inode))
2994                 return 0;
2995
2996         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2997         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2998                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2999         else
3000                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3001         trace_ext4_direct_IO_exit(inode, offset,
3002                                 iov_length(iov, nr_segs), rw, ret);
3003         return ret;
3004 }
3005
3006 /*
3007  * Pages can be marked dirty completely asynchronously from ext4's journalling
3008  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3009  * much here because ->set_page_dirty is called under VFS locks.  The page is
3010  * not necessarily locked.
3011  *
3012  * We cannot just dirty the page and leave attached buffers clean, because the
3013  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3014  * or jbddirty because all the journalling code will explode.
3015  *
3016  * So what we do is to mark the page "pending dirty" and next time writepage
3017  * is called, propagate that into the buffers appropriately.
3018  */
3019 static int ext4_journalled_set_page_dirty(struct page *page)
3020 {
3021         SetPageChecked(page);
3022         return __set_page_dirty_nobuffers(page);
3023 }
3024
3025 static const struct address_space_operations ext4_ordered_aops = {
3026         .readpage               = ext4_readpage,
3027         .readpages              = ext4_readpages,
3028         .writepage              = ext4_writepage,
3029         .write_begin            = ext4_write_begin,
3030         .write_end              = ext4_ordered_write_end,
3031         .bmap                   = ext4_bmap,
3032         .invalidatepage         = ext4_invalidatepage,
3033         .releasepage            = ext4_releasepage,
3034         .direct_IO              = ext4_direct_IO,
3035         .migratepage            = buffer_migrate_page,
3036         .is_partially_uptodate  = block_is_partially_uptodate,
3037         .error_remove_page      = generic_error_remove_page,
3038 };
3039
3040 static const struct address_space_operations ext4_writeback_aops = {
3041         .readpage               = ext4_readpage,
3042         .readpages              = ext4_readpages,
3043         .writepage              = ext4_writepage,
3044         .write_begin            = ext4_write_begin,
3045         .write_end              = ext4_writeback_write_end,
3046         .bmap                   = ext4_bmap,
3047         .invalidatepage         = ext4_invalidatepage,
3048         .releasepage            = ext4_releasepage,
3049         .direct_IO              = ext4_direct_IO,
3050         .migratepage            = buffer_migrate_page,
3051         .is_partially_uptodate  = block_is_partially_uptodate,
3052         .error_remove_page      = generic_error_remove_page,
3053 };
3054
3055 static const struct address_space_operations ext4_journalled_aops = {
3056         .readpage               = ext4_readpage,
3057         .readpages              = ext4_readpages,
3058         .writepage              = ext4_writepage,
3059         .write_begin            = ext4_write_begin,
3060         .write_end              = ext4_journalled_write_end,
3061         .set_page_dirty         = ext4_journalled_set_page_dirty,
3062         .bmap                   = ext4_bmap,
3063         .invalidatepage         = ext4_invalidatepage,
3064         .releasepage            = ext4_releasepage,
3065         .direct_IO              = ext4_direct_IO,
3066         .is_partially_uptodate  = block_is_partially_uptodate,
3067         .error_remove_page      = generic_error_remove_page,
3068 };
3069
3070 static const struct address_space_operations ext4_da_aops = {
3071         .readpage               = ext4_readpage,
3072         .readpages              = ext4_readpages,
3073         .writepage              = ext4_writepage,
3074         .writepages             = ext4_da_writepages,
3075         .write_begin            = ext4_da_write_begin,
3076         .write_end              = ext4_da_write_end,
3077         .bmap                   = ext4_bmap,
3078         .invalidatepage         = ext4_da_invalidatepage,
3079         .releasepage            = ext4_releasepage,
3080         .direct_IO              = ext4_direct_IO,
3081         .migratepage            = buffer_migrate_page,
3082         .is_partially_uptodate  = block_is_partially_uptodate,
3083         .error_remove_page      = generic_error_remove_page,
3084 };
3085
3086 void ext4_set_aops(struct inode *inode)
3087 {
3088         switch (ext4_inode_journal_mode(inode)) {
3089         case EXT4_INODE_ORDERED_DATA_MODE:
3090                 if (test_opt(inode->i_sb, DELALLOC))
3091                         inode->i_mapping->a_ops = &ext4_da_aops;
3092                 else
3093                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3094                 break;
3095         case EXT4_INODE_WRITEBACK_DATA_MODE:
3096                 if (test_opt(inode->i_sb, DELALLOC))
3097                         inode->i_mapping->a_ops = &ext4_da_aops;
3098                 else
3099                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3100                 break;
3101         case EXT4_INODE_JOURNAL_DATA_MODE:
3102                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3103                 break;
3104         default:
3105                 BUG();
3106         }
3107 }
3108
3109
3110 /*
3111  * ext4_discard_partial_page_buffers()
3112  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3113  * This function finds and locks the page containing the offset
3114  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3115  * Calling functions that already have the page locked should call
3116  * ext4_discard_partial_page_buffers_no_lock directly.
3117  */
3118 int ext4_discard_partial_page_buffers(handle_t *handle,
3119                 struct address_space *mapping, loff_t from,
3120                 loff_t length, int flags)
3121 {
3122         struct inode *inode = mapping->host;
3123         struct page *page;
3124         int err = 0;
3125
3126         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3127                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3128         if (!page)
3129                 return -ENOMEM;
3130
3131         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3132                 from, length, flags);
3133
3134         unlock_page(page);
3135         page_cache_release(page);
3136         return err;
3137 }
3138
3139 /*
3140  * ext4_discard_partial_page_buffers_no_lock()
3141  * Zeros a page range of length 'length' starting from offset 'from'.
3142  * Buffer heads that correspond to the block aligned regions of the
3143  * zeroed range will be unmapped.  Unblock aligned regions
3144  * will have the corresponding buffer head mapped if needed so that
3145  * that region of the page can be updated with the partial zero out.
3146  *
3147  * This function assumes that the page has already been  locked.  The
3148  * The range to be discarded must be contained with in the given page.
3149  * If the specified range exceeds the end of the page it will be shortened
3150  * to the end of the page that corresponds to 'from'.  This function is
3151  * appropriate for updating a page and it buffer heads to be unmapped and
3152  * zeroed for blocks that have been either released, or are going to be
3153  * released.
3154  *
3155  * handle: The journal handle
3156  * inode:  The files inode
3157  * page:   A locked page that contains the offset "from"
3158  * from:   The starting byte offset (from the begining of the file)
3159  *         to begin discarding
3160  * len:    The length of bytes to discard
3161  * flags:  Optional flags that may be used:
3162  *
3163  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3164  *         Only zero the regions of the page whose buffer heads
3165  *         have already been unmapped.  This flag is appropriate
3166  *         for updateing the contents of a page whose blocks may
3167  *         have already been released, and we only want to zero
3168  *         out the regions that correspond to those released blocks.
3169  *
3170  * Returns zero on sucess or negative on failure.
3171  */
3172 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3173                 struct inode *inode, struct page *page, loff_t from,
3174                 loff_t length, int flags)
3175 {
3176         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3177         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3178         unsigned int blocksize, max, pos;
3179         ext4_lblk_t iblock;
3180         struct buffer_head *bh;
3181         int err = 0;
3182
3183         blocksize = inode->i_sb->s_blocksize;
3184         max = PAGE_CACHE_SIZE - offset;
3185
3186         if (index != page->index)
3187                 return -EINVAL;
3188
3189         /*
3190          * correct length if it does not fall between
3191          * 'from' and the end of the page
3192          */
3193         if (length > max || length < 0)
3194                 length = max;
3195
3196         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3197
3198         if (!page_has_buffers(page))
3199                 create_empty_buffers(page, blocksize, 0);
3200
3201         /* Find the buffer that contains "offset" */
3202         bh = page_buffers(page);
3203         pos = blocksize;
3204         while (offset >= pos) {
3205                 bh = bh->b_this_page;
3206                 iblock++;
3207                 pos += blocksize;
3208         }
3209
3210         pos = offset;
3211         while (pos < offset + length) {
3212                 unsigned int end_of_block, range_to_discard;
3213
3214                 err = 0;
3215
3216                 /* The length of space left to zero and unmap */
3217                 range_to_discard = offset + length - pos;
3218
3219                 /* The length of space until the end of the block */
3220                 end_of_block = blocksize - (pos & (blocksize-1));
3221
3222                 /*
3223                  * Do not unmap or zero past end of block
3224                  * for this buffer head
3225                  */
3226                 if (range_to_discard > end_of_block)
3227                         range_to_discard = end_of_block;
3228
3229
3230                 /*
3231                  * Skip this buffer head if we are only zeroing unampped
3232                  * regions of the page
3233                  */
3234                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3235                         buffer_mapped(bh))
3236                                 goto next;
3237
3238                 /* If the range is block aligned, unmap */
3239                 if (range_to_discard == blocksize) {
3240                         clear_buffer_dirty(bh);
3241                         bh->b_bdev = NULL;
3242                         clear_buffer_mapped(bh);
3243                         clear_buffer_req(bh);
3244                         clear_buffer_new(bh);
3245                         clear_buffer_delay(bh);
3246                         clear_buffer_unwritten(bh);
3247                         clear_buffer_uptodate(bh);
3248                         zero_user(page, pos, range_to_discard);
3249                         BUFFER_TRACE(bh, "Buffer discarded");
3250                         goto next;
3251                 }
3252
3253                 /*
3254                  * If this block is not completely contained in the range
3255                  * to be discarded, then it is not going to be released. Because
3256                  * we need to keep this block, we need to make sure this part
3257                  * of the page is uptodate before we modify it by writeing
3258                  * partial zeros on it.
3259                  */
3260                 if (!buffer_mapped(bh)) {
3261                         /*
3262                          * Buffer head must be mapped before we can read
3263                          * from the block
3264                          */
3265                         BUFFER_TRACE(bh, "unmapped");
3266                         ext4_get_block(inode, iblock, bh, 0);
3267                         /* unmapped? It's a hole - nothing to do */
3268                         if (!buffer_mapped(bh)) {
3269                                 BUFFER_TRACE(bh, "still unmapped");
3270                                 goto next;
3271                         }
3272                 }
3273
3274                 /* Ok, it's mapped. Make sure it's up-to-date */
3275                 if (PageUptodate(page))
3276                         set_buffer_uptodate(bh);
3277
3278                 if (!buffer_uptodate(bh)) {
3279                         err = -EIO;
3280                         ll_rw_block(READ, 1, &bh);
3281                         wait_on_buffer(bh);
3282                         /* Uhhuh. Read error. Complain and punt.*/
3283                         if (!buffer_uptodate(bh))
3284                                 goto next;
3285                 }
3286
3287                 if (ext4_should_journal_data(inode)) {
3288                         BUFFER_TRACE(bh, "get write access");
3289                         err = ext4_journal_get_write_access(handle, bh);
3290                         if (err)
3291                                 goto next;
3292                 }
3293
3294                 zero_user(page, pos, range_to_discard);
3295
3296                 err = 0;
3297                 if (ext4_should_journal_data(inode)) {
3298                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3299                 } else
3300                         mark_buffer_dirty(bh);
3301
3302                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3303 next:
3304                 bh = bh->b_this_page;
3305                 iblock++;
3306                 pos += range_to_discard;
3307         }
3308
3309         return err;
3310 }
3311
3312 /*
3313  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3314  * up to the end of the block which corresponds to `from'.
3315  * This required during truncate. We need to physically zero the tail end
3316  * of that block so it doesn't yield old data if the file is later grown.
3317  */
3318 int ext4_block_truncate_page(handle_t *handle,
3319                 struct address_space *mapping, loff_t from)
3320 {
3321         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3322         unsigned length;
3323         unsigned blocksize;
3324         struct inode *inode = mapping->host;
3325
3326         blocksize = inode->i_sb->s_blocksize;
3327         length = blocksize - (offset & (blocksize - 1));
3328
3329         return ext4_block_zero_page_range(handle, mapping, from, length);
3330 }
3331
3332 /*
3333  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3334  * starting from file offset 'from'.  The range to be zero'd must
3335  * be contained with in one block.  If the specified range exceeds
3336  * the end of the block it will be shortened to end of the block
3337  * that cooresponds to 'from'
3338  */
3339 int ext4_block_zero_page_range(handle_t *handle,
3340                 struct address_space *mapping, loff_t from, loff_t length)
3341 {
3342         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3343         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3344         unsigned blocksize, max, pos;
3345         ext4_lblk_t iblock;
3346         struct inode *inode = mapping->host;
3347         struct buffer_head *bh;
3348         struct page *page;
3349         int err = 0;
3350
3351         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3352                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3353         if (!page)
3354                 return -ENOMEM;
3355
3356         blocksize = inode->i_sb->s_blocksize;
3357         max = blocksize - (offset & (blocksize - 1));
3358
3359         /*
3360          * correct length if it does not fall between
3361          * 'from' and the end of the block
3362          */
3363         if (length > max || length < 0)
3364                 length = max;
3365
3366         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3367
3368         if (!page_has_buffers(page))
3369                 create_empty_buffers(page, blocksize, 0);
3370
3371         /* Find the buffer that contains "offset" */
3372         bh = page_buffers(page);
3373         pos = blocksize;
3374         while (offset >= pos) {
3375                 bh = bh->b_this_page;
3376                 iblock++;
3377                 pos += blocksize;
3378         }
3379
3380         err = 0;
3381         if (buffer_freed(bh)) {
3382                 BUFFER_TRACE(bh, "freed: skip");
3383                 goto unlock;
3384         }
3385
3386         if (!buffer_mapped(bh)) {
3387                 BUFFER_TRACE(bh, "unmapped");
3388                 ext4_get_block(inode, iblock, bh, 0);
3389                 /* unmapped? It's a hole - nothing to do */
3390                 if (!buffer_mapped(bh)) {
3391                         BUFFER_TRACE(bh, "still unmapped");
3392                         goto unlock;
3393                 }
3394         }
3395
3396         /* Ok, it's mapped. Make sure it's up-to-date */
3397         if (PageUptodate(page))
3398                 set_buffer_uptodate(bh);
3399
3400         if (!buffer_uptodate(bh)) {
3401                 err = -EIO;
3402                 ll_rw_block(READ, 1, &bh);
3403                 wait_on_buffer(bh);
3404                 /* Uhhuh. Read error. Complain and punt. */
3405                 if (!buffer_uptodate(bh))
3406                         goto unlock;
3407         }
3408
3409         if (ext4_should_journal_data(inode)) {
3410                 BUFFER_TRACE(bh, "get write access");
3411                 err = ext4_journal_get_write_access(handle, bh);
3412                 if (err)
3413                         goto unlock;
3414         }
3415
3416         zero_user(page, offset, length);
3417
3418         BUFFER_TRACE(bh, "zeroed end of block");
3419
3420         err = 0;
3421         if (ext4_should_journal_data(inode)) {
3422                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3423         } else
3424                 mark_buffer_dirty(bh);
3425
3426 unlock:
3427         unlock_page(page);
3428         page_cache_release(page);
3429         return err;
3430 }
3431
3432 int ext4_can_truncate(struct inode *inode)
3433 {
3434         if (S_ISREG(inode->i_mode))
3435                 return 1;
3436         if (S_ISDIR(inode->i_mode))
3437                 return 1;
3438         if (S_ISLNK(inode->i_mode))
3439                 return !ext4_inode_is_fast_symlink(inode);
3440         return 0;
3441 }
3442
3443 /*
3444  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3445  * associated with the given offset and length
3446  *
3447  * @inode:  File inode
3448  * @offset: The offset where the hole will begin
3449  * @len:    The length of the hole
3450  *
3451  * Returns: 0 on sucess or negative on failure
3452  */
3453
3454 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3455 {
3456         struct inode *inode = file->f_path.dentry->d_inode;
3457         if (!S_ISREG(inode->i_mode))
3458                 return -ENOTSUPP;
3459
3460         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3461                 /* TODO: Add support for non extent hole punching */
3462                 return -ENOTSUPP;
3463         }
3464
3465         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3466                 /* TODO: Add support for bigalloc file systems */
3467                 return -ENOTSUPP;
3468         }
3469
3470         return ext4_ext_punch_hole(file, offset, length);
3471 }
3472
3473 /*
3474  * ext4_truncate()
3475  *
3476  * We block out ext4_get_block() block instantiations across the entire
3477  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3478  * simultaneously on behalf of the same inode.
3479  *
3480  * As we work through the truncate and commmit bits of it to the journal there
3481  * is one core, guiding principle: the file's tree must always be consistent on
3482  * disk.  We must be able to restart the truncate after a crash.
3483  *
3484  * The file's tree may be transiently inconsistent in memory (although it
3485  * probably isn't), but whenever we close off and commit a journal transaction,
3486  * the contents of (the filesystem + the journal) must be consistent and
3487  * restartable.  It's pretty simple, really: bottom up, right to left (although
3488  * left-to-right works OK too).
3489  *
3490  * Note that at recovery time, journal replay occurs *before* the restart of
3491  * truncate against the orphan inode list.
3492  *
3493  * The committed inode has the new, desired i_size (which is the same as
3494  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3495  * that this inode's truncate did not complete and it will again call
3496  * ext4_truncate() to have another go.  So there will be instantiated blocks
3497  * to the right of the truncation point in a crashed ext4 filesystem.  But
3498  * that's fine - as long as they are linked from the inode, the post-crash
3499  * ext4_truncate() run will find them and release them.
3500  */
3501 void ext4_truncate(struct inode *inode)
3502 {
3503         trace_ext4_truncate_enter(inode);
3504
3505         if (!ext4_can_truncate(inode))
3506                 return;
3507
3508         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3509
3510         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3511                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3512
3513         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3514                 ext4_ext_truncate(inode);
3515         else
3516                 ext4_ind_truncate(inode);
3517
3518         trace_ext4_truncate_exit(inode);
3519 }
3520
3521 /*
3522  * ext4_get_inode_loc returns with an extra refcount against the inode's
3523  * underlying buffer_head on success. If 'in_mem' is true, we have all
3524  * data in memory that is needed to recreate the on-disk version of this
3525  * inode.
3526  */
3527 static int __ext4_get_inode_loc(struct inode *inode,
3528                                 struct ext4_iloc *iloc, int in_mem)
3529 {
3530         struct ext4_group_desc  *gdp;
3531         struct buffer_head      *bh;
3532         struct super_block      *sb = inode->i_sb;
3533         ext4_fsblk_t            block;
3534         int                     inodes_per_block, inode_offset;
3535
3536         iloc->bh = NULL;
3537         if (!ext4_valid_inum(sb, inode->i_ino))
3538                 return -EIO;
3539
3540         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3541         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3542         if (!gdp)
3543                 return -EIO;
3544
3545         /*
3546          * Figure out the offset within the block group inode table
3547          */
3548         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3549         inode_offset = ((inode->i_ino - 1) %
3550                         EXT4_INODES_PER_GROUP(sb));
3551         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3552         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3553
3554         bh = sb_getblk(sb, block);
3555         if (!bh) {
3556                 EXT4_ERROR_INODE_BLOCK(inode, block,
3557                                        "unable to read itable block");
3558                 return -EIO;
3559         }
3560         if (!buffer_uptodate(bh)) {
3561                 lock_buffer(bh);
3562
3563                 /*
3564                  * If the buffer has the write error flag, we have failed
3565                  * to write out another inode in the same block.  In this
3566                  * case, we don't have to read the block because we may
3567                  * read the old inode data successfully.
3568                  */
3569                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3570                         set_buffer_uptodate(bh);
3571
3572                 if (buffer_uptodate(bh)) {
3573                         /* someone brought it uptodate while we waited */
3574                         unlock_buffer(bh);
3575                         goto has_buffer;
3576                 }
3577
3578                 /*
3579                  * If we have all information of the inode in memory and this
3580                  * is the only valid inode in the block, we need not read the
3581                  * block.
3582                  */
3583                 if (in_mem) {
3584                         struct buffer_head *bitmap_bh;
3585                         int i, start;
3586
3587                         start = inode_offset & ~(inodes_per_block - 1);
3588
3589                         /* Is the inode bitmap in cache? */
3590                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3591                         if (!bitmap_bh)
3592                                 goto make_io;
3593
3594                         /*
3595                          * If the inode bitmap isn't in cache then the
3596                          * optimisation may end up performing two reads instead
3597                          * of one, so skip it.
3598                          */
3599                         if (!buffer_uptodate(bitmap_bh)) {
3600                                 brelse(bitmap_bh);
3601                                 goto make_io;
3602                         }
3603                         for (i = start; i < start + inodes_per_block; i++) {
3604                                 if (i == inode_offset)
3605                                         continue;
3606                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3607                                         break;
3608                         }
3609                         brelse(bitmap_bh);
3610                         if (i == start + inodes_per_block) {
3611                                 /* all other inodes are free, so skip I/O */
3612                                 memset(bh->b_data, 0, bh->b_size);
3613                                 set_buffer_uptodate(bh);
3614                                 unlock_buffer(bh);
3615                                 goto has_buffer;
3616                         }
3617                 }
3618
3619 make_io:
3620                 /*
3621                  * If we need to do any I/O, try to pre-readahead extra
3622                  * blocks from the inode table.
3623                  */
3624                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3625                         ext4_fsblk_t b, end, table;
3626                         unsigned num;
3627
3628                         table = ext4_inode_table(sb, gdp);
3629                         /* s_inode_readahead_blks is always a power of 2 */
3630                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3631                         if (table > b)
3632                                 b = table;
3633                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3634                         num = EXT4_INODES_PER_GROUP(sb);
3635                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3636                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3637                                 num -= ext4_itable_unused_count(sb, gdp);
3638                         table += num / inodes_per_block;
3639                         if (end > table)
3640                                 end = table;
3641                         while (b <= end)
3642                                 sb_breadahead(sb, b++);
3643                 }
3644
3645                 /*
3646                  * There are other valid inodes in the buffer, this inode
3647                  * has in-inode xattrs, or we don't have this inode in memory.
3648                  * Read the block from disk.
3649                  */
3650                 trace_ext4_load_inode(inode);
3651                 get_bh(bh);
3652                 bh->b_end_io = end_buffer_read_sync;
3653                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3654                 wait_on_buffer(bh);
3655                 if (!buffer_uptodate(bh)) {
3656                         EXT4_ERROR_INODE_BLOCK(inode, block,
3657                                                "unable to read itable block");
3658                         brelse(bh);
3659                         return -EIO;
3660                 }
3661         }
3662 has_buffer:
3663         iloc->bh = bh;
3664         return 0;
3665 }
3666
3667 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3668 {
3669         /* We have all inode data except xattrs in memory here. */
3670         return __ext4_get_inode_loc(inode, iloc,
3671                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3672 }
3673
3674 void ext4_set_inode_flags(struct inode *inode)
3675 {
3676         unsigned int flags = EXT4_I(inode)->i_flags;
3677
3678         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3679         if (flags & EXT4_SYNC_FL)
3680                 inode->i_flags |= S_SYNC;
3681         if (flags & EXT4_APPEND_FL)
3682                 inode->i_flags |= S_APPEND;
3683         if (flags & EXT4_IMMUTABLE_FL)
3684                 inode->i_flags |= S_IMMUTABLE;
3685         if (flags & EXT4_NOATIME_FL)
3686                 inode->i_flags |= S_NOATIME;
3687         if (flags & EXT4_DIRSYNC_FL)
3688                 inode->i_flags |= S_DIRSYNC;
3689 }
3690
3691 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3692 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3693 {
3694         unsigned int vfs_fl;
3695         unsigned long old_fl, new_fl;
3696
3697         do {
3698                 vfs_fl = ei->vfs_inode.i_flags;
3699                 old_fl = ei->i_flags;
3700                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3701                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3702                                 EXT4_DIRSYNC_FL);
3703                 if (vfs_fl & S_SYNC)
3704                         new_fl |= EXT4_SYNC_FL;
3705                 if (vfs_fl & S_APPEND)
3706                         new_fl |= EXT4_APPEND_FL;
3707                 if (vfs_fl & S_IMMUTABLE)
3708                         new_fl |= EXT4_IMMUTABLE_FL;
3709                 if (vfs_fl & S_NOATIME)
3710                         new_fl |= EXT4_NOATIME_FL;
3711                 if (vfs_fl & S_DIRSYNC)
3712                         new_fl |= EXT4_DIRSYNC_FL;
3713         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3714 }
3715
3716 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3717                                   struct ext4_inode_info *ei)
3718 {
3719         blkcnt_t i_blocks ;
3720         struct inode *inode = &(ei->vfs_inode);
3721         struct super_block *sb = inode->i_sb;
3722
3723         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3724                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3725                 /* we are using combined 48 bit field */
3726                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3727                                         le32_to_cpu(raw_inode->i_blocks_lo);
3728                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3729                         /* i_blocks represent file system block size */
3730                         return i_blocks  << (inode->i_blkbits - 9);
3731                 } else {
3732                         return i_blocks;
3733                 }
3734         } else {
3735                 return le32_to_cpu(raw_inode->i_blocks_lo);
3736         }
3737 }
3738
3739 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3740 {
3741         struct ext4_iloc iloc;
3742         struct ext4_inode *raw_inode;
3743         struct ext4_inode_info *ei;
3744         struct inode *inode;
3745         journal_t *journal = EXT4_SB(sb)->s_journal;
3746         long ret;
3747         int block;
3748
3749         inode = iget_locked(sb, ino);
3750         if (!inode)
3751                 return ERR_PTR(-ENOMEM);
3752         if (!(inode->i_state & I_NEW))
3753                 return inode;
3754
3755         ei = EXT4_I(inode);
3756         iloc.bh = NULL;
3757
3758         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3759         if (ret < 0)
3760                 goto bad_inode;
3761         raw_inode = ext4_raw_inode(&iloc);
3762         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3763         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3764         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3765         if (!(test_opt(inode->i_sb, NO_UID32))) {
3766                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3767                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3768         }
3769         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3770
3771         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3772         ei->i_dir_start_lookup = 0;
3773         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3774         /* We now have enough fields to check if the inode was active or not.
3775          * This is needed because nfsd might try to access dead inodes
3776          * the test is that same one that e2fsck uses
3777          * NeilBrown 1999oct15
3778          */
3779         if (inode->i_nlink == 0) {
3780                 if (inode->i_mode == 0 ||
3781                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3782                         /* this inode is deleted */
3783                         ret = -ESTALE;
3784                         goto bad_inode;
3785                 }
3786                 /* The only unlinked inodes we let through here have
3787                  * valid i_mode and are being read by the orphan
3788                  * recovery code: that's fine, we're about to complete
3789                  * the process of deleting those. */
3790         }
3791         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3792         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3793         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3794         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3795                 ei->i_file_acl |=
3796                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3797         inode->i_size = ext4_isize(raw_inode);
3798         ei->i_disksize = inode->i_size;
3799 #ifdef CONFIG_QUOTA
3800         ei->i_reserved_quota = 0;
3801 #endif
3802         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3803         ei->i_block_group = iloc.block_group;
3804         ei->i_last_alloc_group = ~0;
3805         /*
3806          * NOTE! The in-memory inode i_data array is in little-endian order
3807          * even on big-endian machines: we do NOT byteswap the block numbers!
3808          */
3809         for (block = 0; block < EXT4_N_BLOCKS; block++)
3810                 ei->i_data[block] = raw_inode->i_block[block];
3811         INIT_LIST_HEAD(&ei->i_orphan);
3812
3813         /*
3814          * Set transaction id's of transactions that have to be committed
3815          * to finish f[data]sync. We set them to currently running transaction
3816          * as we cannot be sure that the inode or some of its metadata isn't
3817          * part of the transaction - the inode could have been reclaimed and
3818          * now it is reread from disk.
3819          */
3820         if (journal) {
3821                 transaction_t *transaction;
3822                 tid_t tid;
3823
3824                 read_lock(&journal->j_state_lock);
3825                 if (journal->j_running_transaction)
3826                         transaction = journal->j_running_transaction;
3827                 else
3828                         transaction = journal->j_committing_transaction;
3829                 if (transaction)
3830                         tid = transaction->t_tid;
3831                 else
3832                         tid = journal->j_commit_sequence;
3833                 read_unlock(&journal->j_state_lock);
3834                 ei->i_sync_tid = tid;
3835                 ei->i_datasync_tid = tid;
3836         }
3837
3838         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3839                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3840                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3841                     EXT4_INODE_SIZE(inode->i_sb)) {
3842                         ret = -EIO;
3843                         goto bad_inode;
3844                 }
3845                 if (ei->i_extra_isize == 0) {
3846                         /* The extra space is currently unused. Use it. */
3847                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3848                                             EXT4_GOOD_OLD_INODE_SIZE;
3849                 } else {
3850                         __le32 *magic = (void *)raw_inode +
3851                                         EXT4_GOOD_OLD_INODE_SIZE +
3852                                         ei->i_extra_isize;
3853                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3854                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3855                 }
3856         } else
3857                 ei->i_extra_isize = 0;
3858
3859         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3860         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3861         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3862         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3863
3864         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3865         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3866                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3867                         inode->i_version |=
3868                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3869         }
3870
3871         ret = 0;
3872         if (ei->i_file_acl &&
3873             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3874                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3875                                  ei->i_file_acl);
3876                 ret = -EIO;
3877                 goto bad_inode;
3878         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3879                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3880                     (S_ISLNK(inode->i_mode) &&
3881                      !ext4_inode_is_fast_symlink(inode)))
3882                         /* Validate extent which is part of inode */
3883                         ret = ext4_ext_check_inode(inode);
3884         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3885                    (S_ISLNK(inode->i_mode) &&
3886                     !ext4_inode_is_fast_symlink(inode))) {
3887                 /* Validate block references which are part of inode */
3888                 ret = ext4_ind_check_inode(inode);
3889         }
3890         if (ret)
3891                 goto bad_inode;
3892
3893         if (S_ISREG(inode->i_mode)) {
3894                 inode->i_op = &ext4_file_inode_operations;
3895                 inode->i_fop = &ext4_file_operations;
3896                 ext4_set_aops(inode);
3897         } else if (S_ISDIR(inode->i_mode)) {
3898                 inode->i_op = &ext4_dir_inode_operations;
3899                 inode->i_fop = &ext4_dir_operations;
3900         } else if (S_ISLNK(inode->i_mode)) {
3901                 if (ext4_inode_is_fast_symlink(inode)) {
3902                         inode->i_op = &ext4_fast_symlink_inode_operations;
3903                         nd_terminate_link(ei->i_data, inode->i_size,
3904                                 sizeof(ei->i_data) - 1);
3905                 } else {
3906                         inode->i_op = &ext4_symlink_inode_operations;
3907                         ext4_set_aops(inode);
3908                 }
3909         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3910               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3911                 inode->i_op = &ext4_special_inode_operations;
3912                 if (raw_inode->i_block[0])
3913                         init_special_inode(inode, inode->i_mode,
3914                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3915                 else
3916                         init_special_inode(inode, inode->i_mode,
3917                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3918         } else {
3919                 ret = -EIO;
3920                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3921                 goto bad_inode;
3922         }
3923         brelse(iloc.bh);
3924         ext4_set_inode_flags(inode);
3925         unlock_new_inode(inode);
3926         return inode;
3927
3928 bad_inode:
3929         brelse(iloc.bh);
3930         iget_failed(inode);
3931         return ERR_PTR(ret);
3932 }
3933
3934 static int ext4_inode_blocks_set(handle_t *handle,
3935                                 struct ext4_inode *raw_inode,
3936                                 struct ext4_inode_info *ei)
3937 {
3938         struct inode *inode = &(ei->vfs_inode);
3939         u64 i_blocks = inode->i_blocks;
3940         struct super_block *sb = inode->i_sb;
3941
3942         if (i_blocks <= ~0U) {
3943                 /*
3944                  * i_blocks can be represnted in a 32 bit variable
3945                  * as multiple of 512 bytes
3946                  */
3947                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3948                 raw_inode->i_blocks_high = 0;
3949                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3950                 return 0;
3951         }
3952         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3953                 return -EFBIG;
3954
3955         if (i_blocks <= 0xffffffffffffULL) {
3956                 /*
3957                  * i_blocks can be represented in a 48 bit variable
3958                  * as multiple of 512 bytes
3959                  */
3960                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3961                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3962                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3963         } else {
3964                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3965                 /* i_block is stored in file system block size */
3966                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3967                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3968                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3969         }
3970         return 0;
3971 }
3972
3973 /*
3974  * Post the struct inode info into an on-disk inode location in the
3975  * buffer-cache.  This gobbles the caller's reference to the
3976  * buffer_head in the inode location struct.
3977  *
3978  * The caller must have write access to iloc->bh.
3979  */
3980 static int ext4_do_update_inode(handle_t *handle,
3981                                 struct inode *inode,
3982                                 struct ext4_iloc *iloc)
3983 {
3984         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3985         struct ext4_inode_info *ei = EXT4_I(inode);
3986         struct buffer_head *bh = iloc->bh;
3987         int err = 0, rc, block;
3988
3989         /* For fields not not tracking in the in-memory inode,
3990          * initialise them to zero for new inodes. */
3991         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3992                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3993
3994         ext4_get_inode_flags(ei);
3995         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3996         if (!(test_opt(inode->i_sb, NO_UID32))) {
3997                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3998                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3999 /*
4000  * Fix up interoperability with old kernels. Otherwise, old inodes get
4001  * re-used with the upper 16 bits of the uid/gid intact
4002  */
4003                 if (!ei->i_dtime) {
4004                         raw_inode->i_uid_high =
4005                                 cpu_to_le16(high_16_bits(inode->i_uid));
4006                         raw_inode->i_gid_high =
4007                                 cpu_to_le16(high_16_bits(inode->i_gid));
4008                 } else {
4009                         raw_inode->i_uid_high = 0;
4010                         raw_inode->i_gid_high = 0;
4011                 }
4012         } else {
4013                 raw_inode->i_uid_low =
4014                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4015                 raw_inode->i_gid_low =
4016                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4017                 raw_inode->i_uid_high = 0;
4018                 raw_inode->i_gid_high = 0;
4019         }
4020         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4021
4022         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4023         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4024         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4025         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4026
4027         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4028                 goto out_brelse;
4029         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4030         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4031         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4032             cpu_to_le32(EXT4_OS_HURD))
4033                 raw_inode->i_file_acl_high =
4034                         cpu_to_le16(ei->i_file_acl >> 32);
4035         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4036         ext4_isize_set(raw_inode, ei->i_disksize);
4037         if (ei->i_disksize > 0x7fffffffULL) {
4038                 struct super_block *sb = inode->i_sb;
4039                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4040                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4041                                 EXT4_SB(sb)->s_es->s_rev_level ==
4042                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4043                         /* If this is the first large file
4044                          * created, add a flag to the superblock.
4045                          */
4046                         err = ext4_journal_get_write_access(handle,
4047                                         EXT4_SB(sb)->s_sbh);
4048                         if (err)
4049                                 goto out_brelse;
4050                         ext4_update_dynamic_rev(sb);
4051                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4052                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4053                         sb->s_dirt = 1;
4054                         ext4_handle_sync(handle);
4055                         err = ext4_handle_dirty_metadata(handle, NULL,
4056                                         EXT4_SB(sb)->s_sbh);
4057                 }
4058         }
4059         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4060         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4061                 if (old_valid_dev(inode->i_rdev)) {
4062                         raw_inode->i_block[0] =
4063                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4064                         raw_inode->i_block[1] = 0;
4065                 } else {
4066                         raw_inode->i_block[0] = 0;
4067                         raw_inode->i_block[1] =
4068                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4069                         raw_inode->i_block[2] = 0;
4070                 }
4071         } else
4072                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4073                         raw_inode->i_block[block] = ei->i_data[block];
4074
4075         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4076         if (ei->i_extra_isize) {
4077                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4078                         raw_inode->i_version_hi =
4079                         cpu_to_le32(inode->i_version >> 32);
4080                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4081         }
4082
4083         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4084         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4085         if (!err)
4086                 err = rc;
4087         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4088
4089         ext4_update_inode_fsync_trans(handle, inode, 0);
4090 out_brelse:
4091         brelse(bh);
4092         ext4_std_error(inode->i_sb, err);
4093         return err;
4094 }
4095
4096 /*
4097  * ext4_write_inode()
4098  *
4099  * We are called from a few places:
4100  *
4101  * - Within generic_file_write() for O_SYNC files.
4102  *   Here, there will be no transaction running. We wait for any running
4103  *   trasnaction to commit.
4104  *
4105  * - Within sys_sync(), kupdate and such.
4106  *   We wait on commit, if tol to.
4107  *
4108  * - Within prune_icache() (PF_MEMALLOC == true)
4109  *   Here we simply return.  We can't afford to block kswapd on the
4110  *   journal commit.
4111  *
4112  * In all cases it is actually safe for us to return without doing anything,
4113  * because the inode has been copied into a raw inode buffer in
4114  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4115  * knfsd.
4116  *
4117  * Note that we are absolutely dependent upon all inode dirtiers doing the
4118  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4119  * which we are interested.
4120  *
4121  * It would be a bug for them to not do this.  The code:
4122  *
4123  *      mark_inode_dirty(inode)
4124  *      stuff();
4125  *      inode->i_size = expr;
4126  *
4127  * is in error because a kswapd-driven write_inode() could occur while
4128  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4129  * will no longer be on the superblock's dirty inode list.
4130  */
4131 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4132 {
4133         int err;
4134
4135         if (current->flags & PF_MEMALLOC)
4136                 return 0;
4137
4138         if (EXT4_SB(inode->i_sb)->s_journal) {
4139                 if (ext4_journal_current_handle()) {
4140                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4141                         dump_stack();
4142                         return -EIO;
4143                 }
4144
4145                 if (wbc->sync_mode != WB_SYNC_ALL)
4146                         return 0;
4147
4148                 err = ext4_force_commit(inode->i_sb);
4149         } else {
4150                 struct ext4_iloc iloc;
4151
4152                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4153                 if (err)
4154                         return err;
4155                 if (wbc->sync_mode == WB_SYNC_ALL)
4156                         sync_dirty_buffer(iloc.bh);
4157                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4158                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4159                                          "IO error syncing inode");
4160                         err = -EIO;
4161                 }
4162                 brelse(iloc.bh);
4163         }
4164         return err;
4165 }
4166
4167 /*
4168  * ext4_setattr()
4169  *
4170  * Called from notify_change.
4171  *
4172  * We want to trap VFS attempts to truncate the file as soon as
4173  * possible.  In particular, we want to make sure that when the VFS
4174  * shrinks i_size, we put the inode on the orphan list and modify
4175  * i_disksize immediately, so that during the subsequent flushing of
4176  * dirty pages and freeing of disk blocks, we can guarantee that any
4177  * commit will leave the blocks being flushed in an unused state on
4178  * disk.  (On recovery, the inode will get truncated and the blocks will
4179  * be freed, so we have a strong guarantee that no future commit will
4180  * leave these blocks visible to the user.)
4181  *
4182  * Another thing we have to assure is that if we are in ordered mode
4183  * and inode is still attached to the committing transaction, we must
4184  * we start writeout of all the dirty pages which are being truncated.
4185  * This way we are sure that all the data written in the previous
4186  * transaction are already on disk (truncate waits for pages under
4187  * writeback).
4188  *
4189  * Called with inode->i_mutex down.
4190  */
4191 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4192 {
4193         struct inode *inode = dentry->d_inode;
4194         int error, rc = 0;
4195         int orphan = 0;
4196         const unsigned int ia_valid = attr->ia_valid;
4197
4198         error = inode_change_ok(inode, attr);
4199         if (error)
4200                 return error;
4201
4202         if (is_quota_modification(inode, attr))
4203                 dquot_initialize(inode);
4204         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4205                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4206                 handle_t *handle;
4207
4208                 /* (user+group)*(old+new) structure, inode write (sb,
4209                  * inode block, ? - but truncate inode update has it) */
4210                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4211                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4212                 if (IS_ERR(handle)) {
4213                         error = PTR_ERR(handle);
4214                         goto err_out;
4215                 }
4216                 error = dquot_transfer(inode, attr);
4217                 if (error) {
4218                         ext4_journal_stop(handle);
4219                         return error;
4220                 }
4221                 /* Update corresponding info in inode so that everything is in
4222                  * one transaction */
4223                 if (attr->ia_valid & ATTR_UID)
4224                         inode->i_uid = attr->ia_uid;
4225                 if (attr->ia_valid & ATTR_GID)
4226                         inode->i_gid = attr->ia_gid;
4227                 error = ext4_mark_inode_dirty(handle, inode);
4228                 ext4_journal_stop(handle);
4229         }
4230
4231         if (attr->ia_valid & ATTR_SIZE) {
4232                 inode_dio_wait(inode);
4233
4234                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4235                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4236
4237                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4238                                 return -EFBIG;
4239                 }
4240         }
4241
4242         if (S_ISREG(inode->i_mode) &&
4243             attr->ia_valid & ATTR_SIZE &&
4244             (attr->ia_size < inode->i_size)) {
4245                 handle_t *handle;
4246
4247                 handle = ext4_journal_start(inode, 3);
4248                 if (IS_ERR(handle)) {
4249                         error = PTR_ERR(handle);
4250                         goto err_out;
4251                 }
4252                 if (ext4_handle_valid(handle)) {
4253                         error = ext4_orphan_add(handle, inode);
4254                         orphan = 1;
4255                 }
4256                 EXT4_I(inode)->i_disksize = attr->ia_size;
4257                 rc = ext4_mark_inode_dirty(handle, inode);
4258                 if (!error)
4259                         error = rc;
4260                 ext4_journal_stop(handle);
4261
4262                 if (ext4_should_order_data(inode)) {
4263                         error = ext4_begin_ordered_truncate(inode,
4264                                                             attr->ia_size);
4265                         if (error) {
4266                                 /* Do as much error cleanup as possible */
4267                                 handle = ext4_journal_start(inode, 3);
4268                                 if (IS_ERR(handle)) {
4269                                         ext4_orphan_del(NULL, inode);
4270                                         goto err_out;
4271                                 }
4272                                 ext4_orphan_del(handle, inode);
4273                                 orphan = 0;
4274                                 ext4_journal_stop(handle);
4275                                 goto err_out;
4276                         }
4277                 }
4278         }
4279
4280         if (attr->ia_valid & ATTR_SIZE) {
4281                 if (attr->ia_size != i_size_read(inode)) {
4282                         truncate_setsize(inode, attr->ia_size);
4283                         ext4_truncate(inode);
4284                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4285                         ext4_truncate(inode);
4286         }
4287
4288         if (!rc) {
4289                 setattr_copy(inode, attr);
4290                 mark_inode_dirty(inode);
4291         }
4292
4293         /*
4294          * If the call to ext4_truncate failed to get a transaction handle at
4295          * all, we need to clean up the in-core orphan list manually.
4296          */
4297         if (orphan && inode->i_nlink)
4298                 ext4_orphan_del(NULL, inode);
4299
4300         if (!rc && (ia_valid & ATTR_MODE))
4301                 rc = ext4_acl_chmod(inode);
4302
4303 err_out:
4304         ext4_std_error(inode->i_sb, error);
4305         if (!error)
4306                 error = rc;
4307         return error;
4308 }
4309
4310 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4311                  struct kstat *stat)
4312 {
4313         struct inode *inode;
4314         unsigned long delalloc_blocks;
4315
4316         inode = dentry->d_inode;
4317         generic_fillattr(inode, stat);
4318
4319         /*
4320          * We can't update i_blocks if the block allocation is delayed
4321          * otherwise in the case of system crash before the real block
4322          * allocation is done, we will have i_blocks inconsistent with
4323          * on-disk file blocks.
4324          * We always keep i_blocks updated together with real
4325          * allocation. But to not confuse with user, stat
4326          * will return the blocks that include the delayed allocation
4327          * blocks for this file.
4328          */
4329         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4330
4331         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4332         return 0;
4333 }
4334
4335 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4336 {
4337         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4338                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4339         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4340 }
4341
4342 /*
4343  * Account for index blocks, block groups bitmaps and block group
4344  * descriptor blocks if modify datablocks and index blocks
4345  * worse case, the indexs blocks spread over different block groups
4346  *
4347  * If datablocks are discontiguous, they are possible to spread over
4348  * different block groups too. If they are contiuguous, with flexbg,
4349  * they could still across block group boundary.
4350  *
4351  * Also account for superblock, inode, quota and xattr blocks
4352  */
4353 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4354 {
4355         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4356         int gdpblocks;
4357         int idxblocks;
4358         int ret = 0;
4359
4360         /*
4361          * How many index blocks need to touch to modify nrblocks?
4362          * The "Chunk" flag indicating whether the nrblocks is
4363          * physically contiguous on disk
4364          *
4365          * For Direct IO and fallocate, they calls get_block to allocate
4366          * one single extent at a time, so they could set the "Chunk" flag
4367          */
4368         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4369
4370         ret = idxblocks;
4371
4372         /*
4373          * Now let's see how many group bitmaps and group descriptors need
4374          * to account
4375          */
4376         groups = idxblocks;
4377         if (chunk)
4378                 groups += 1;
4379         else
4380                 groups += nrblocks;
4381
4382         gdpblocks = groups;
4383         if (groups > ngroups)
4384                 groups = ngroups;
4385         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4386                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4387
4388         /* bitmaps and block group descriptor blocks */
4389         ret += groups + gdpblocks;
4390
4391         /* Blocks for super block, inode, quota and xattr blocks */
4392         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4393
4394         return ret;
4395 }
4396
4397 /*
4398  * Calculate the total number of credits to reserve to fit
4399  * the modification of a single pages into a single transaction,
4400  * which may include multiple chunks of block allocations.
4401  *
4402  * This could be called via ext4_write_begin()
4403  *
4404  * We need to consider the worse case, when
4405  * one new block per extent.
4406  */
4407 int ext4_writepage_trans_blocks(struct inode *inode)
4408 {
4409         int bpp = ext4_journal_blocks_per_page(inode);
4410         int ret;
4411
4412         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4413
4414         /* Account for data blocks for journalled mode */
4415         if (ext4_should_journal_data(inode))
4416                 ret += bpp;
4417         return ret;
4418 }
4419
4420 /*
4421  * Calculate the journal credits for a chunk of data modification.
4422  *
4423  * This is called from DIO, fallocate or whoever calling
4424  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4425  *
4426  * journal buffers for data blocks are not included here, as DIO
4427  * and fallocate do no need to journal data buffers.
4428  */
4429 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4430 {
4431         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4432 }
4433
4434 /*
4435  * The caller must have previously called ext4_reserve_inode_write().
4436  * Give this, we know that the caller already has write access to iloc->bh.
4437  */
4438 int ext4_mark_iloc_dirty(handle_t *handle,
4439                          struct inode *inode, struct ext4_iloc *iloc)
4440 {
4441         int err = 0;
4442
4443         if (test_opt(inode->i_sb, I_VERSION))
4444                 inode_inc_iversion(inode);
4445
4446         /* the do_update_inode consumes one bh->b_count */
4447         get_bh(iloc->bh);
4448
4449         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4450         err = ext4_do_update_inode(handle, inode, iloc);
4451         put_bh(iloc->bh);
4452         return err;
4453 }
4454
4455 /*
4456  * On success, We end up with an outstanding reference count against
4457  * iloc->bh.  This _must_ be cleaned up later.
4458  */
4459
4460 int
4461 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4462                          struct ext4_iloc *iloc)
4463 {
4464         int err;
4465
4466         err = ext4_get_inode_loc(inode, iloc);
4467         if (!err) {
4468                 BUFFER_TRACE(iloc->bh, "get_write_access");
4469                 err = ext4_journal_get_write_access(handle, iloc->bh);
4470                 if (err) {
4471                         brelse(iloc->bh);
4472                         iloc->bh = NULL;
4473                 }
4474         }
4475         ext4_std_error(inode->i_sb, err);
4476         return err;
4477 }
4478
4479 /*
4480  * Expand an inode by new_extra_isize bytes.
4481  * Returns 0 on success or negative error number on failure.
4482  */
4483 static int ext4_expand_extra_isize(struct inode *inode,
4484                                    unsigned int new_extra_isize,
4485                                    struct ext4_iloc iloc,
4486                                    handle_t *handle)
4487 {
4488         struct ext4_inode *raw_inode;
4489         struct ext4_xattr_ibody_header *header;
4490
4491         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4492                 return 0;
4493
4494         raw_inode = ext4_raw_inode(&iloc);
4495
4496         header = IHDR(inode, raw_inode);
4497
4498         /* No extended attributes present */
4499         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4500             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4501                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4502                         new_extra_isize);
4503                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4504                 return 0;
4505         }
4506
4507         /* try to expand with EAs present */
4508         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4509                                           raw_inode, handle);
4510 }
4511
4512 /*
4513  * What we do here is to mark the in-core inode as clean with respect to inode
4514  * dirtiness (it may still be data-dirty).
4515  * This means that the in-core inode may be reaped by prune_icache
4516  * without having to perform any I/O.  This is a very good thing,
4517  * because *any* task may call prune_icache - even ones which
4518  * have a transaction open against a different journal.
4519  *
4520  * Is this cheating?  Not really.  Sure, we haven't written the
4521  * inode out, but prune_icache isn't a user-visible syncing function.
4522  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4523  * we start and wait on commits.
4524  *
4525  * Is this efficient/effective?  Well, we're being nice to the system
4526  * by cleaning up our inodes proactively so they can be reaped
4527  * without I/O.  But we are potentially leaving up to five seconds'
4528  * worth of inodes floating about which prune_icache wants us to
4529  * write out.  One way to fix that would be to get prune_icache()
4530  * to do a write_super() to free up some memory.  It has the desired
4531  * effect.
4532  */
4533 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4534 {
4535         struct ext4_iloc iloc;
4536         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4537         static unsigned int mnt_count;
4538         int err, ret;
4539
4540         might_sleep();
4541         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4542         err = ext4_reserve_inode_write(handle, inode, &iloc);
4543         if (ext4_handle_valid(handle) &&
4544             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4545             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4546                 /*
4547                  * We need extra buffer credits since we may write into EA block
4548                  * with this same handle. If journal_extend fails, then it will
4549                  * only result in a minor loss of functionality for that inode.
4550                  * If this is felt to be critical, then e2fsck should be run to
4551                  * force a large enough s_min_extra_isize.
4552                  */
4553                 if ((jbd2_journal_extend(handle,
4554                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4555                         ret = ext4_expand_extra_isize(inode,
4556                                                       sbi->s_want_extra_isize,
4557                                                       iloc, handle);
4558                         if (ret) {
4559                                 ext4_set_inode_state(inode,
4560                                                      EXT4_STATE_NO_EXPAND);
4561                                 if (mnt_count !=
4562                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4563                                         ext4_warning(inode->i_sb,
4564                                         "Unable to expand inode %lu. Delete"
4565                                         " some EAs or run e2fsck.",
4566                                         inode->i_ino);
4567                                         mnt_count =
4568                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4569                                 }
4570                         }
4571                 }
4572         }
4573         if (!err)
4574                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4575         return err;
4576 }
4577
4578 /*
4579  * ext4_dirty_inode() is called from __mark_inode_dirty()
4580  *
4581  * We're really interested in the case where a file is being extended.
4582  * i_size has been changed by generic_commit_write() and we thus need
4583  * to include the updated inode in the current transaction.
4584  *
4585  * Also, dquot_alloc_block() will always dirty the inode when blocks
4586  * are allocated to the file.
4587  *
4588  * If the inode is marked synchronous, we don't honour that here - doing
4589  * so would cause a commit on atime updates, which we don't bother doing.
4590  * We handle synchronous inodes at the highest possible level.
4591  */
4592 void ext4_dirty_inode(struct inode *inode, int flags)
4593 {
4594         handle_t *handle;
4595
4596         handle = ext4_journal_start(inode, 2);
4597         if (IS_ERR(handle))
4598                 goto out;
4599
4600         ext4_mark_inode_dirty(handle, inode);
4601
4602         ext4_journal_stop(handle);
4603 out:
4604         return;
4605 }
4606
4607 #if 0
4608 /*
4609  * Bind an inode's backing buffer_head into this transaction, to prevent
4610  * it from being flushed to disk early.  Unlike
4611  * ext4_reserve_inode_write, this leaves behind no bh reference and
4612  * returns no iloc structure, so the caller needs to repeat the iloc
4613  * lookup to mark the inode dirty later.
4614  */
4615 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4616 {
4617         struct ext4_iloc iloc;
4618
4619         int err = 0;
4620         if (handle) {
4621                 err = ext4_get_inode_loc(inode, &iloc);
4622                 if (!err) {
4623                         BUFFER_TRACE(iloc.bh, "get_write_access");
4624                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4625                         if (!err)
4626                                 err = ext4_handle_dirty_metadata(handle,
4627                                                                  NULL,
4628                                                                  iloc.bh);
4629                         brelse(iloc.bh);
4630                 }
4631         }
4632         ext4_std_error(inode->i_sb, err);
4633         return err;
4634 }
4635 #endif
4636
4637 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4638 {
4639         journal_t *journal;
4640         handle_t *handle;
4641         int err;
4642
4643         /*
4644          * We have to be very careful here: changing a data block's
4645          * journaling status dynamically is dangerous.  If we write a
4646          * data block to the journal, change the status and then delete
4647          * that block, we risk forgetting to revoke the old log record
4648          * from the journal and so a subsequent replay can corrupt data.
4649          * So, first we make sure that the journal is empty and that
4650          * nobody is changing anything.
4651          */
4652
4653         journal = EXT4_JOURNAL(inode);
4654         if (!journal)
4655                 return 0;
4656         if (is_journal_aborted(journal))
4657                 return -EROFS;
4658
4659         jbd2_journal_lock_updates(journal);
4660         jbd2_journal_flush(journal);
4661
4662         /*
4663          * OK, there are no updates running now, and all cached data is
4664          * synced to disk.  We are now in a completely consistent state
4665          * which doesn't have anything in the journal, and we know that
4666          * no filesystem updates are running, so it is safe to modify
4667          * the inode's in-core data-journaling state flag now.
4668          */
4669
4670         if (val)
4671                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4672         else
4673                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4674         ext4_set_aops(inode);
4675
4676         jbd2_journal_unlock_updates(journal);
4677
4678         /* Finally we can mark the inode as dirty. */
4679
4680         handle = ext4_journal_start(inode, 1);
4681         if (IS_ERR(handle))
4682                 return PTR_ERR(handle);
4683
4684         err = ext4_mark_inode_dirty(handle, inode);
4685         ext4_handle_sync(handle);
4686         ext4_journal_stop(handle);
4687         ext4_std_error(inode->i_sb, err);
4688
4689         return err;
4690 }
4691
4692 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4693 {
4694         return !buffer_mapped(bh);
4695 }
4696
4697 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4698 {
4699         struct page *page = vmf->page;
4700         loff_t size;
4701         unsigned long len;
4702         int ret;
4703         struct file *file = vma->vm_file;
4704         struct inode *inode = file->f_path.dentry->d_inode;
4705         struct address_space *mapping = inode->i_mapping;
4706         handle_t *handle;
4707         get_block_t *get_block;
4708         int retries = 0;
4709
4710         /*
4711          * This check is racy but catches the common case. We rely on
4712          * __block_page_mkwrite() to do a reliable check.
4713          */
4714         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4715         /* Delalloc case is easy... */
4716         if (test_opt(inode->i_sb, DELALLOC) &&
4717             !ext4_should_journal_data(inode) &&
4718             !ext4_nonda_switch(inode->i_sb)) {
4719                 do {
4720                         ret = __block_page_mkwrite(vma, vmf,
4721                                                    ext4_da_get_block_prep);
4722                 } while (ret == -ENOSPC &&
4723                        ext4_should_retry_alloc(inode->i_sb, &retries));
4724                 goto out_ret;
4725         }
4726
4727         lock_page(page);
4728         size = i_size_read(inode);
4729         /* Page got truncated from under us? */
4730         if (page->mapping != mapping || page_offset(page) > size) {
4731                 unlock_page(page);
4732                 ret = VM_FAULT_NOPAGE;
4733                 goto out;
4734         }
4735
4736         if (page->index == size >> PAGE_CACHE_SHIFT)
4737                 len = size & ~PAGE_CACHE_MASK;
4738         else
4739                 len = PAGE_CACHE_SIZE;
4740         /*
4741          * Return if we have all the buffers mapped. This avoids the need to do
4742          * journal_start/journal_stop which can block and take a long time
4743          */
4744         if (page_has_buffers(page)) {
4745                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4746                                         ext4_bh_unmapped)) {
4747                         /* Wait so that we don't change page under IO */
4748                         wait_on_page_writeback(page);
4749                         ret = VM_FAULT_LOCKED;
4750                         goto out;
4751                 }
4752         }
4753         unlock_page(page);
4754         /* OK, we need to fill the hole... */
4755         if (ext4_should_dioread_nolock(inode))
4756                 get_block = ext4_get_block_write;
4757         else
4758                 get_block = ext4_get_block;
4759 retry_alloc:
4760         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4761         if (IS_ERR(handle)) {
4762                 ret = VM_FAULT_SIGBUS;
4763                 goto out;
4764         }
4765         ret = __block_page_mkwrite(vma, vmf, get_block);
4766         if (!ret && ext4_should_journal_data(inode)) {
4767                 if (walk_page_buffers(handle, page_buffers(page), 0,
4768                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4769                         unlock_page(page);
4770                         ret = VM_FAULT_SIGBUS;
4771                         ext4_journal_stop(handle);
4772                         goto out;
4773                 }
4774                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4775         }
4776         ext4_journal_stop(handle);
4777         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4778                 goto retry_alloc;
4779 out_ret:
4780         ret = block_page_mkwrite_return(ret);
4781 out:
4782         return ret;
4783 }