ext3: Add fixed tracepoints
[pandora-kernel.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include <trace/events/ext3.h>
42 #include "xattr.h"
43 #include "acl.h"
44
45 static int ext3_writepage_trans_blocks(struct inode *inode);
46
47 /*
48  * Test whether an inode is a fast symlink.
49  */
50 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 {
52         int ea_blocks = EXT3_I(inode)->i_file_acl ?
53                 (inode->i_sb->s_blocksize >> 9) : 0;
54
55         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
56 }
57
58 /*
59  * The ext3 forget function must perform a revoke if we are freeing data
60  * which has been journaled.  Metadata (eg. indirect blocks) must be
61  * revoked in all cases.
62  *
63  * "bh" may be NULL: a metadata block may have been freed from memory
64  * but there may still be a record of it in the journal, and that record
65  * still needs to be revoked.
66  */
67 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
68                         struct buffer_head *bh, ext3_fsblk_t blocknr)
69 {
70         int err;
71
72         might_sleep();
73
74         trace_ext3_forget(inode, is_metadata, blocknr);
75         BUFFER_TRACE(bh, "enter");
76
77         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
78                   "data mode %lx\n",
79                   bh, is_metadata, inode->i_mode,
80                   test_opt(inode->i_sb, DATA_FLAGS));
81
82         /* Never use the revoke function if we are doing full data
83          * journaling: there is no need to, and a V1 superblock won't
84          * support it.  Otherwise, only skip the revoke on un-journaled
85          * data blocks. */
86
87         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
88             (!is_metadata && !ext3_should_journal_data(inode))) {
89                 if (bh) {
90                         BUFFER_TRACE(bh, "call journal_forget");
91                         return ext3_journal_forget(handle, bh);
92                 }
93                 return 0;
94         }
95
96         /*
97          * data!=journal && (is_metadata || should_journal_data(inode))
98          */
99         BUFFER_TRACE(bh, "call ext3_journal_revoke");
100         err = ext3_journal_revoke(handle, blocknr, bh);
101         if (err)
102                 ext3_abort(inode->i_sb, __func__,
103                            "error %d when attempting revoke", err);
104         BUFFER_TRACE(bh, "exit");
105         return err;
106 }
107
108 /*
109  * Work out how many blocks we need to proceed with the next chunk of a
110  * truncate transaction.
111  */
112 static unsigned long blocks_for_truncate(struct inode *inode)
113 {
114         unsigned long needed;
115
116         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
117
118         /* Give ourselves just enough room to cope with inodes in which
119          * i_blocks is corrupt: we've seen disk corruptions in the past
120          * which resulted in random data in an inode which looked enough
121          * like a regular file for ext3 to try to delete it.  Things
122          * will go a bit crazy if that happens, but at least we should
123          * try not to panic the whole kernel. */
124         if (needed < 2)
125                 needed = 2;
126
127         /* But we need to bound the transaction so we don't overflow the
128          * journal. */
129         if (needed > EXT3_MAX_TRANS_DATA)
130                 needed = EXT3_MAX_TRANS_DATA;
131
132         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
133 }
134
135 /*
136  * Truncate transactions can be complex and absolutely huge.  So we need to
137  * be able to restart the transaction at a conventient checkpoint to make
138  * sure we don't overflow the journal.
139  *
140  * start_transaction gets us a new handle for a truncate transaction,
141  * and extend_transaction tries to extend the existing one a bit.  If
142  * extend fails, we need to propagate the failure up and restart the
143  * transaction in the top-level truncate loop. --sct
144  */
145 static handle_t *start_transaction(struct inode *inode)
146 {
147         handle_t *result;
148
149         result = ext3_journal_start(inode, blocks_for_truncate(inode));
150         if (!IS_ERR(result))
151                 return result;
152
153         ext3_std_error(inode->i_sb, PTR_ERR(result));
154         return result;
155 }
156
157 /*
158  * Try to extend this transaction for the purposes of truncation.
159  *
160  * Returns 0 if we managed to create more room.  If we can't create more
161  * room, and the transaction must be restarted we return 1.
162  */
163 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164 {
165         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166                 return 0;
167         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168                 return 0;
169         return 1;
170 }
171
172 /*
173  * Restart the transaction associated with *handle.  This does a commit,
174  * so before we call here everything must be consistently dirtied against
175  * this transaction.
176  */
177 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
178 {
179         int ret;
180
181         jbd_debug(2, "restarting handle %p\n", handle);
182         /*
183          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
184          * At this moment, get_block can be called only for blocks inside
185          * i_size since page cache has been already dropped and writes are
186          * blocked by i_mutex. So we can safely drop the truncate_mutex.
187          */
188         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
189         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
190         mutex_lock(&EXT3_I(inode)->truncate_mutex);
191         return ret;
192 }
193
194 /*
195  * Called at inode eviction from icache
196  */
197 void ext3_evict_inode (struct inode *inode)
198 {
199         struct ext3_block_alloc_info *rsv;
200         handle_t *handle;
201         int want_delete = 0;
202
203         trace_ext3_evict_inode(inode);
204         if (!inode->i_nlink && !is_bad_inode(inode)) {
205                 dquot_initialize(inode);
206                 want_delete = 1;
207         }
208
209         truncate_inode_pages(&inode->i_data, 0);
210
211         ext3_discard_reservation(inode);
212         rsv = EXT3_I(inode)->i_block_alloc_info;
213         EXT3_I(inode)->i_block_alloc_info = NULL;
214         if (unlikely(rsv))
215                 kfree(rsv);
216
217         if (!want_delete)
218                 goto no_delete;
219
220         handle = start_transaction(inode);
221         if (IS_ERR(handle)) {
222                 /*
223                  * If we're going to skip the normal cleanup, we still need to
224                  * make sure that the in-core orphan linked list is properly
225                  * cleaned up.
226                  */
227                 ext3_orphan_del(NULL, inode);
228                 goto no_delete;
229         }
230
231         if (IS_SYNC(inode))
232                 handle->h_sync = 1;
233         inode->i_size = 0;
234         if (inode->i_blocks)
235                 ext3_truncate(inode);
236         /*
237          * Kill off the orphan record which ext3_truncate created.
238          * AKPM: I think this can be inside the above `if'.
239          * Note that ext3_orphan_del() has to be able to cope with the
240          * deletion of a non-existent orphan - this is because we don't
241          * know if ext3_truncate() actually created an orphan record.
242          * (Well, we could do this if we need to, but heck - it works)
243          */
244         ext3_orphan_del(handle, inode);
245         EXT3_I(inode)->i_dtime  = get_seconds();
246
247         /*
248          * One subtle ordering requirement: if anything has gone wrong
249          * (transaction abort, IO errors, whatever), then we can still
250          * do these next steps (the fs will already have been marked as
251          * having errors), but we can't free the inode if the mark_dirty
252          * fails.
253          */
254         if (ext3_mark_inode_dirty(handle, inode)) {
255                 /* If that failed, just dquot_drop() and be done with that */
256                 dquot_drop(inode);
257                 end_writeback(inode);
258         } else {
259                 ext3_xattr_delete_inode(handle, inode);
260                 dquot_free_inode(inode);
261                 dquot_drop(inode);
262                 end_writeback(inode);
263                 ext3_free_inode(handle, inode);
264         }
265         ext3_journal_stop(handle);
266         return;
267 no_delete:
268         end_writeback(inode);
269         dquot_drop(inode);
270 }
271
272 typedef struct {
273         __le32  *p;
274         __le32  key;
275         struct buffer_head *bh;
276 } Indirect;
277
278 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
279 {
280         p->key = *(p->p = v);
281         p->bh = bh;
282 }
283
284 static int verify_chain(Indirect *from, Indirect *to)
285 {
286         while (from <= to && from->key == *from->p)
287                 from++;
288         return (from > to);
289 }
290
291 /**
292  *      ext3_block_to_path - parse the block number into array of offsets
293  *      @inode: inode in question (we are only interested in its superblock)
294  *      @i_block: block number to be parsed
295  *      @offsets: array to store the offsets in
296  *      @boundary: set this non-zero if the referred-to block is likely to be
297  *             followed (on disk) by an indirect block.
298  *
299  *      To store the locations of file's data ext3 uses a data structure common
300  *      for UNIX filesystems - tree of pointers anchored in the inode, with
301  *      data blocks at leaves and indirect blocks in intermediate nodes.
302  *      This function translates the block number into path in that tree -
303  *      return value is the path length and @offsets[n] is the offset of
304  *      pointer to (n+1)th node in the nth one. If @block is out of range
305  *      (negative or too large) warning is printed and zero returned.
306  *
307  *      Note: function doesn't find node addresses, so no IO is needed. All
308  *      we need to know is the capacity of indirect blocks (taken from the
309  *      inode->i_sb).
310  */
311
312 /*
313  * Portability note: the last comparison (check that we fit into triple
314  * indirect block) is spelled differently, because otherwise on an
315  * architecture with 32-bit longs and 8Kb pages we might get into trouble
316  * if our filesystem had 8Kb blocks. We might use long long, but that would
317  * kill us on x86. Oh, well, at least the sign propagation does not matter -
318  * i_block would have to be negative in the very beginning, so we would not
319  * get there at all.
320  */
321
322 static int ext3_block_to_path(struct inode *inode,
323                         long i_block, int offsets[4], int *boundary)
324 {
325         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
326         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
327         const long direct_blocks = EXT3_NDIR_BLOCKS,
328                 indirect_blocks = ptrs,
329                 double_blocks = (1 << (ptrs_bits * 2));
330         int n = 0;
331         int final = 0;
332
333         if (i_block < 0) {
334                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
335         } else if (i_block < direct_blocks) {
336                 offsets[n++] = i_block;
337                 final = direct_blocks;
338         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
339                 offsets[n++] = EXT3_IND_BLOCK;
340                 offsets[n++] = i_block;
341                 final = ptrs;
342         } else if ((i_block -= indirect_blocks) < double_blocks) {
343                 offsets[n++] = EXT3_DIND_BLOCK;
344                 offsets[n++] = i_block >> ptrs_bits;
345                 offsets[n++] = i_block & (ptrs - 1);
346                 final = ptrs;
347         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348                 offsets[n++] = EXT3_TIND_BLOCK;
349                 offsets[n++] = i_block >> (ptrs_bits * 2);
350                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else {
354                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
355         }
356         if (boundary)
357                 *boundary = final - 1 - (i_block & (ptrs - 1));
358         return n;
359 }
360
361 /**
362  *      ext3_get_branch - read the chain of indirect blocks leading to data
363  *      @inode: inode in question
364  *      @depth: depth of the chain (1 - direct pointer, etc.)
365  *      @offsets: offsets of pointers in inode/indirect blocks
366  *      @chain: place to store the result
367  *      @err: here we store the error value
368  *
369  *      Function fills the array of triples <key, p, bh> and returns %NULL
370  *      if everything went OK or the pointer to the last filled triple
371  *      (incomplete one) otherwise. Upon the return chain[i].key contains
372  *      the number of (i+1)-th block in the chain (as it is stored in memory,
373  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
374  *      number (it points into struct inode for i==0 and into the bh->b_data
375  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376  *      block for i>0 and NULL for i==0. In other words, it holds the block
377  *      numbers of the chain, addresses they were taken from (and where we can
378  *      verify that chain did not change) and buffer_heads hosting these
379  *      numbers.
380  *
381  *      Function stops when it stumbles upon zero pointer (absent block)
382  *              (pointer to last triple returned, *@err == 0)
383  *      or when it gets an IO error reading an indirect block
384  *              (ditto, *@err == -EIO)
385  *      or when it notices that chain had been changed while it was reading
386  *              (ditto, *@err == -EAGAIN)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  */
390 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
391                                  Indirect chain[4], int *err)
392 {
393         struct super_block *sb = inode->i_sb;
394         Indirect *p = chain;
395         struct buffer_head *bh;
396
397         *err = 0;
398         /* i_data is not going away, no lock needed */
399         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
400         if (!p->key)
401                 goto no_block;
402         while (--depth) {
403                 bh = sb_bread(sb, le32_to_cpu(p->key));
404                 if (!bh)
405                         goto failure;
406                 /* Reader: pointers */
407                 if (!verify_chain(chain, p))
408                         goto changed;
409                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
410                 /* Reader: end */
411                 if (!p->key)
412                         goto no_block;
413         }
414         return NULL;
415
416 changed:
417         brelse(bh);
418         *err = -EAGAIN;
419         goto no_block;
420 failure:
421         *err = -EIO;
422 no_block:
423         return p;
424 }
425
426 /**
427  *      ext3_find_near - find a place for allocation with sufficient locality
428  *      @inode: owner
429  *      @ind: descriptor of indirect block.
430  *
431  *      This function returns the preferred place for block allocation.
432  *      It is used when heuristic for sequential allocation fails.
433  *      Rules are:
434  *        + if there is a block to the left of our position - allocate near it.
435  *        + if pointer will live in indirect block - allocate near that block.
436  *        + if pointer will live in inode - allocate in the same
437  *          cylinder group.
438  *
439  * In the latter case we colour the starting block by the callers PID to
440  * prevent it from clashing with concurrent allocations for a different inode
441  * in the same block group.   The PID is used here so that functionally related
442  * files will be close-by on-disk.
443  *
444  *      Caller must make sure that @ind is valid and will stay that way.
445  */
446 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
447 {
448         struct ext3_inode_info *ei = EXT3_I(inode);
449         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
450         __le32 *p;
451         ext3_fsblk_t bg_start;
452         ext3_grpblk_t colour;
453
454         /* Try to find previous block */
455         for (p = ind->p - 1; p >= start; p--) {
456                 if (*p)
457                         return le32_to_cpu(*p);
458         }
459
460         /* No such thing, so let's try location of indirect block */
461         if (ind->bh)
462                 return ind->bh->b_blocknr;
463
464         /*
465          * It is going to be referred to from the inode itself? OK, just put it
466          * into the same cylinder group then.
467          */
468         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
469         colour = (current->pid % 16) *
470                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
471         return bg_start + colour;
472 }
473
474 /**
475  *      ext3_find_goal - find a preferred place for allocation.
476  *      @inode: owner
477  *      @block:  block we want
478  *      @partial: pointer to the last triple within a chain
479  *
480  *      Normally this function find the preferred place for block allocation,
481  *      returns it.
482  */
483
484 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
485                                    Indirect *partial)
486 {
487         struct ext3_block_alloc_info *block_i;
488
489         block_i =  EXT3_I(inode)->i_block_alloc_info;
490
491         /*
492          * try the heuristic for sequential allocation,
493          * failing that at least try to get decent locality.
494          */
495         if (block_i && (block == block_i->last_alloc_logical_block + 1)
496                 && (block_i->last_alloc_physical_block != 0)) {
497                 return block_i->last_alloc_physical_block + 1;
498         }
499
500         return ext3_find_near(inode, partial);
501 }
502
503 /**
504  *      ext3_blks_to_allocate - Look up the block map and count the number
505  *      of direct blocks need to be allocated for the given branch.
506  *
507  *      @branch: chain of indirect blocks
508  *      @k: number of blocks need for indirect blocks
509  *      @blks: number of data blocks to be mapped.
510  *      @blocks_to_boundary:  the offset in the indirect block
511  *
512  *      return the total number of blocks to be allocate, including the
513  *      direct and indirect blocks.
514  */
515 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
516                 int blocks_to_boundary)
517 {
518         unsigned long count = 0;
519
520         /*
521          * Simple case, [t,d]Indirect block(s) has not allocated yet
522          * then it's clear blocks on that path have not allocated
523          */
524         if (k > 0) {
525                 /* right now we don't handle cross boundary allocation */
526                 if (blks < blocks_to_boundary + 1)
527                         count += blks;
528                 else
529                         count += blocks_to_boundary + 1;
530                 return count;
531         }
532
533         count++;
534         while (count < blks && count <= blocks_to_boundary &&
535                 le32_to_cpu(*(branch[0].p + count)) == 0) {
536                 count++;
537         }
538         return count;
539 }
540
541 /**
542  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
543  *      @handle: handle for this transaction
544  *      @inode: owner
545  *      @goal: preferred place for allocation
546  *      @indirect_blks: the number of blocks need to allocate for indirect
547  *                      blocks
548  *      @blks:  number of blocks need to allocated for direct blocks
549  *      @new_blocks: on return it will store the new block numbers for
550  *      the indirect blocks(if needed) and the first direct block,
551  *      @err: here we store the error value
552  *
553  *      return the number of direct blocks allocated
554  */
555 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
556                         ext3_fsblk_t goal, int indirect_blks, int blks,
557                         ext3_fsblk_t new_blocks[4], int *err)
558 {
559         int target, i;
560         unsigned long count = 0;
561         int index = 0;
562         ext3_fsblk_t current_block = 0;
563         int ret = 0;
564
565         /*
566          * Here we try to allocate the requested multiple blocks at once,
567          * on a best-effort basis.
568          * To build a branch, we should allocate blocks for
569          * the indirect blocks(if not allocated yet), and at least
570          * the first direct block of this branch.  That's the
571          * minimum number of blocks need to allocate(required)
572          */
573         target = blks + indirect_blks;
574
575         while (1) {
576                 count = target;
577                 /* allocating blocks for indirect blocks and direct blocks */
578                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588
589                 if (count > 0)
590                         break;
591         }
592
593         /* save the new block number for the first direct block */
594         new_blocks[index] = current_block;
595
596         /* total number of blocks allocated for direct blocks */
597         ret = count;
598         *err = 0;
599         return ret;
600 failed_out:
601         for (i = 0; i <index; i++)
602                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
603         return ret;
604 }
605
606 /**
607  *      ext3_alloc_branch - allocate and set up a chain of blocks.
608  *      @handle: handle for this transaction
609  *      @inode: owner
610  *      @indirect_blks: number of allocated indirect blocks
611  *      @blks: number of allocated direct blocks
612  *      @goal: preferred place for allocation
613  *      @offsets: offsets (in the blocks) to store the pointers to next.
614  *      @branch: place to store the chain in.
615  *
616  *      This function allocates blocks, zeroes out all but the last one,
617  *      links them into chain and (if we are synchronous) writes them to disk.
618  *      In other words, it prepares a branch that can be spliced onto the
619  *      inode. It stores the information about that chain in the branch[], in
620  *      the same format as ext3_get_branch() would do. We are calling it after
621  *      we had read the existing part of chain and partial points to the last
622  *      triple of that (one with zero ->key). Upon the exit we have the same
623  *      picture as after the successful ext3_get_block(), except that in one
624  *      place chain is disconnected - *branch->p is still zero (we did not
625  *      set the last link), but branch->key contains the number that should
626  *      be placed into *branch->p to fill that gap.
627  *
628  *      If allocation fails we free all blocks we've allocated (and forget
629  *      their buffer_heads) and return the error value the from failed
630  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631  *      as described above and return 0.
632  */
633 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
634                         int indirect_blks, int *blks, ext3_fsblk_t goal,
635                         int *offsets, Indirect *branch)
636 {
637         int blocksize = inode->i_sb->s_blocksize;
638         int i, n = 0;
639         int err = 0;
640         struct buffer_head *bh;
641         int num;
642         ext3_fsblk_t new_blocks[4];
643         ext3_fsblk_t current_block;
644
645         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
646                                 *blks, new_blocks, &err);
647         if (err)
648                 return err;
649
650         branch[0].key = cpu_to_le32(new_blocks[0]);
651         /*
652          * metadata blocks and data blocks are allocated.
653          */
654         for (n = 1; n <= indirect_blks;  n++) {
655                 /*
656                  * Get buffer_head for parent block, zero it out
657                  * and set the pointer to new one, then send
658                  * parent to disk.
659                  */
660                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
661                 branch[n].bh = bh;
662                 lock_buffer(bh);
663                 BUFFER_TRACE(bh, "call get_create_access");
664                 err = ext3_journal_get_create_access(handle, bh);
665                 if (err) {
666                         unlock_buffer(bh);
667                         brelse(bh);
668                         goto failed;
669                 }
670
671                 memset(bh->b_data, 0, blocksize);
672                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
673                 branch[n].key = cpu_to_le32(new_blocks[n]);
674                 *branch[n].p = branch[n].key;
675                 if ( n == indirect_blks) {
676                         current_block = new_blocks[n];
677                         /*
678                          * End of chain, update the last new metablock of
679                          * the chain to point to the new allocated
680                          * data blocks numbers
681                          */
682                         for (i=1; i < num; i++)
683                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
684                 }
685                 BUFFER_TRACE(bh, "marking uptodate");
686                 set_buffer_uptodate(bh);
687                 unlock_buffer(bh);
688
689                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
690                 err = ext3_journal_dirty_metadata(handle, bh);
691                 if (err)
692                         goto failed;
693         }
694         *blks = num;
695         return err;
696 failed:
697         /* Allocation failed, free what we already allocated */
698         for (i = 1; i <= n ; i++) {
699                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
700                 ext3_journal_forget(handle, branch[i].bh);
701         }
702         for (i = 0; i <indirect_blks; i++)
703                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
704
705         ext3_free_blocks(handle, inode, new_blocks[i], num);
706
707         return err;
708 }
709
710 /**
711  * ext3_splice_branch - splice the allocated branch onto inode.
712  * @handle: handle for this transaction
713  * @inode: owner
714  * @block: (logical) number of block we are adding
715  * @where: location of missing link
716  * @num:   number of indirect blocks we are adding
717  * @blks:  number of direct blocks we are adding
718  *
719  * This function fills the missing link and does all housekeeping needed in
720  * inode (->i_blocks, etc.). In case of success we end up with the full
721  * chain to new block and return 0.
722  */
723 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
724                         long block, Indirect *where, int num, int blks)
725 {
726         int i;
727         int err = 0;
728         struct ext3_block_alloc_info *block_i;
729         ext3_fsblk_t current_block;
730         struct ext3_inode_info *ei = EXT3_I(inode);
731
732         block_i = ei->i_block_alloc_info;
733         /*
734          * If we're splicing into a [td]indirect block (as opposed to the
735          * inode) then we need to get write access to the [td]indirect block
736          * before the splice.
737          */
738         if (where->bh) {
739                 BUFFER_TRACE(where->bh, "get_write_access");
740                 err = ext3_journal_get_write_access(handle, where->bh);
741                 if (err)
742                         goto err_out;
743         }
744         /* That's it */
745
746         *where->p = where->key;
747
748         /*
749          * Update the host buffer_head or inode to point to more just allocated
750          * direct blocks blocks
751          */
752         if (num == 0 && blks > 1) {
753                 current_block = le32_to_cpu(where->key) + 1;
754                 for (i = 1; i < blks; i++)
755                         *(where->p + i ) = cpu_to_le32(current_block++);
756         }
757
758         /*
759          * update the most recently allocated logical & physical block
760          * in i_block_alloc_info, to assist find the proper goal block for next
761          * allocation
762          */
763         if (block_i) {
764                 block_i->last_alloc_logical_block = block + blks - 1;
765                 block_i->last_alloc_physical_block =
766                                 le32_to_cpu(where[num].key) + blks - 1;
767         }
768
769         /* We are done with atomic stuff, now do the rest of housekeeping */
770
771         inode->i_ctime = CURRENT_TIME_SEC;
772         ext3_mark_inode_dirty(handle, inode);
773         /* ext3_mark_inode_dirty already updated i_sync_tid */
774         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
775
776         /* had we spliced it onto indirect block? */
777         if (where->bh) {
778                 /*
779                  * If we spliced it onto an indirect block, we haven't
780                  * altered the inode.  Note however that if it is being spliced
781                  * onto an indirect block at the very end of the file (the
782                  * file is growing) then we *will* alter the inode to reflect
783                  * the new i_size.  But that is not done here - it is done in
784                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
785                  */
786                 jbd_debug(5, "splicing indirect only\n");
787                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
788                 err = ext3_journal_dirty_metadata(handle, where->bh);
789                 if (err)
790                         goto err_out;
791         } else {
792                 /*
793                  * OK, we spliced it into the inode itself on a direct block.
794                  * Inode was dirtied above.
795                  */
796                 jbd_debug(5, "splicing direct\n");
797         }
798         return err;
799
800 err_out:
801         for (i = 1; i <= num; i++) {
802                 BUFFER_TRACE(where[i].bh, "call journal_forget");
803                 ext3_journal_forget(handle, where[i].bh);
804                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
805         }
806         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
807
808         return err;
809 }
810
811 /*
812  * Allocation strategy is simple: if we have to allocate something, we will
813  * have to go the whole way to leaf. So let's do it before attaching anything
814  * to tree, set linkage between the newborn blocks, write them if sync is
815  * required, recheck the path, free and repeat if check fails, otherwise
816  * set the last missing link (that will protect us from any truncate-generated
817  * removals - all blocks on the path are immune now) and possibly force the
818  * write on the parent block.
819  * That has a nice additional property: no special recovery from the failed
820  * allocations is needed - we simply release blocks and do not touch anything
821  * reachable from inode.
822  *
823  * `handle' can be NULL if create == 0.
824  *
825  * The BKL may not be held on entry here.  Be sure to take it early.
826  * return > 0, # of blocks mapped or allocated.
827  * return = 0, if plain lookup failed.
828  * return < 0, error case.
829  */
830 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
831                 sector_t iblock, unsigned long maxblocks,
832                 struct buffer_head *bh_result,
833                 int create)
834 {
835         int err = -EIO;
836         int offsets[4];
837         Indirect chain[4];
838         Indirect *partial;
839         ext3_fsblk_t goal;
840         int indirect_blks;
841         int blocks_to_boundary = 0;
842         int depth;
843         struct ext3_inode_info *ei = EXT3_I(inode);
844         int count = 0;
845         ext3_fsblk_t first_block = 0;
846
847
848         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
849         J_ASSERT(handle != NULL || create == 0);
850         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
851
852         if (depth == 0)
853                 goto out;
854
855         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
856
857         /* Simplest case - block found, no allocation needed */
858         if (!partial) {
859                 first_block = le32_to_cpu(chain[depth - 1].key);
860                 clear_buffer_new(bh_result);
861                 count++;
862                 /*map more blocks*/
863                 while (count < maxblocks && count <= blocks_to_boundary) {
864                         ext3_fsblk_t blk;
865
866                         if (!verify_chain(chain, chain + depth - 1)) {
867                                 /*
868                                  * Indirect block might be removed by
869                                  * truncate while we were reading it.
870                                  * Handling of that case: forget what we've
871                                  * got now. Flag the err as EAGAIN, so it
872                                  * will reread.
873                                  */
874                                 err = -EAGAIN;
875                                 count = 0;
876                                 break;
877                         }
878                         blk = le32_to_cpu(*(chain[depth-1].p + count));
879
880                         if (blk == first_block + count)
881                                 count++;
882                         else
883                                 break;
884                 }
885                 if (err != -EAGAIN)
886                         goto got_it;
887         }
888
889         /* Next simple case - plain lookup or failed read of indirect block */
890         if (!create || err == -EIO)
891                 goto cleanup;
892
893         mutex_lock(&ei->truncate_mutex);
894
895         /*
896          * If the indirect block is missing while we are reading
897          * the chain(ext3_get_branch() returns -EAGAIN err), or
898          * if the chain has been changed after we grab the semaphore,
899          * (either because another process truncated this branch, or
900          * another get_block allocated this branch) re-grab the chain to see if
901          * the request block has been allocated or not.
902          *
903          * Since we already block the truncate/other get_block
904          * at this point, we will have the current copy of the chain when we
905          * splice the branch into the tree.
906          */
907         if (err == -EAGAIN || !verify_chain(chain, partial)) {
908                 while (partial > chain) {
909                         brelse(partial->bh);
910                         partial--;
911                 }
912                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
913                 if (!partial) {
914                         count++;
915                         mutex_unlock(&ei->truncate_mutex);
916                         if (err)
917                                 goto cleanup;
918                         clear_buffer_new(bh_result);
919                         goto got_it;
920                 }
921         }
922
923         /*
924          * Okay, we need to do block allocation.  Lazily initialize the block
925          * allocation info here if necessary
926         */
927         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
928                 ext3_init_block_alloc_info(inode);
929
930         goal = ext3_find_goal(inode, iblock, partial);
931
932         /* the number of blocks need to allocate for [d,t]indirect blocks */
933         indirect_blks = (chain + depth) - partial - 1;
934
935         /*
936          * Next look up the indirect map to count the totoal number of
937          * direct blocks to allocate for this branch.
938          */
939         count = ext3_blks_to_allocate(partial, indirect_blks,
940                                         maxblocks, blocks_to_boundary);
941         /*
942          * Block out ext3_truncate while we alter the tree
943          */
944         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
945                                 offsets + (partial - chain), partial);
946
947         /*
948          * The ext3_splice_branch call will free and forget any buffers
949          * on the new chain if there is a failure, but that risks using
950          * up transaction credits, especially for bitmaps where the
951          * credits cannot be returned.  Can we handle this somehow?  We
952          * may need to return -EAGAIN upwards in the worst case.  --sct
953          */
954         if (!err)
955                 err = ext3_splice_branch(handle, inode, iblock,
956                                         partial, indirect_blks, count);
957         mutex_unlock(&ei->truncate_mutex);
958         if (err)
959                 goto cleanup;
960
961         set_buffer_new(bh_result);
962 got_it:
963         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
964         if (count > blocks_to_boundary)
965                 set_buffer_boundary(bh_result);
966         err = count;
967         /* Clean up and exit */
968         partial = chain + depth - 1;    /* the whole chain */
969 cleanup:
970         while (partial > chain) {
971                 BUFFER_TRACE(partial->bh, "call brelse");
972                 brelse(partial->bh);
973                 partial--;
974         }
975         BUFFER_TRACE(bh_result, "returned");
976 out:
977         trace_ext3_get_blocks_exit(inode, iblock,
978                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
979                                    count, err);
980         return err;
981 }
982
983 /* Maximum number of blocks we map for direct IO at once. */
984 #define DIO_MAX_BLOCKS 4096
985 /*
986  * Number of credits we need for writing DIO_MAX_BLOCKS:
987  * We need sb + group descriptor + bitmap + inode -> 4
988  * For B blocks with A block pointers per block we need:
989  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
990  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
991  */
992 #define DIO_CREDITS 25
993
994 static int ext3_get_block(struct inode *inode, sector_t iblock,
995                         struct buffer_head *bh_result, int create)
996 {
997         handle_t *handle = ext3_journal_current_handle();
998         int ret = 0, started = 0;
999         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1000
1001         if (create && !handle) {        /* Direct IO write... */
1002                 if (max_blocks > DIO_MAX_BLOCKS)
1003                         max_blocks = DIO_MAX_BLOCKS;
1004                 handle = ext3_journal_start(inode, DIO_CREDITS +
1005                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1006                 if (IS_ERR(handle)) {
1007                         ret = PTR_ERR(handle);
1008                         goto out;
1009                 }
1010                 started = 1;
1011         }
1012
1013         ret = ext3_get_blocks_handle(handle, inode, iblock,
1014                                         max_blocks, bh_result, create);
1015         if (ret > 0) {
1016                 bh_result->b_size = (ret << inode->i_blkbits);
1017                 ret = 0;
1018         }
1019         if (started)
1020                 ext3_journal_stop(handle);
1021 out:
1022         return ret;
1023 }
1024
1025 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1026                 u64 start, u64 len)
1027 {
1028         return generic_block_fiemap(inode, fieinfo, start, len,
1029                                     ext3_get_block);
1030 }
1031
1032 /*
1033  * `handle' can be NULL if create is zero
1034  */
1035 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1036                                 long block, int create, int *errp)
1037 {
1038         struct buffer_head dummy;
1039         int fatal = 0, err;
1040
1041         J_ASSERT(handle != NULL || create == 0);
1042
1043         dummy.b_state = 0;
1044         dummy.b_blocknr = -1000;
1045         buffer_trace_init(&dummy.b_history);
1046         err = ext3_get_blocks_handle(handle, inode, block, 1,
1047                                         &dummy, create);
1048         /*
1049          * ext3_get_blocks_handle() returns number of blocks
1050          * mapped. 0 in case of a HOLE.
1051          */
1052         if (err > 0) {
1053                 if (err > 1)
1054                         WARN_ON(1);
1055                 err = 0;
1056         }
1057         *errp = err;
1058         if (!err && buffer_mapped(&dummy)) {
1059                 struct buffer_head *bh;
1060                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1061                 if (!bh) {
1062                         *errp = -EIO;
1063                         goto err;
1064                 }
1065                 if (buffer_new(&dummy)) {
1066                         J_ASSERT(create != 0);
1067                         J_ASSERT(handle != NULL);
1068
1069                         /*
1070                          * Now that we do not always journal data, we should
1071                          * keep in mind whether this should always journal the
1072                          * new buffer as metadata.  For now, regular file
1073                          * writes use ext3_get_block instead, so it's not a
1074                          * problem.
1075                          */
1076                         lock_buffer(bh);
1077                         BUFFER_TRACE(bh, "call get_create_access");
1078                         fatal = ext3_journal_get_create_access(handle, bh);
1079                         if (!fatal && !buffer_uptodate(bh)) {
1080                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1081                                 set_buffer_uptodate(bh);
1082                         }
1083                         unlock_buffer(bh);
1084                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1085                         err = ext3_journal_dirty_metadata(handle, bh);
1086                         if (!fatal)
1087                                 fatal = err;
1088                 } else {
1089                         BUFFER_TRACE(bh, "not a new buffer");
1090                 }
1091                 if (fatal) {
1092                         *errp = fatal;
1093                         brelse(bh);
1094                         bh = NULL;
1095                 }
1096                 return bh;
1097         }
1098 err:
1099         return NULL;
1100 }
1101
1102 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1103                                int block, int create, int *err)
1104 {
1105         struct buffer_head * bh;
1106
1107         bh = ext3_getblk(handle, inode, block, create, err);
1108         if (!bh)
1109                 return bh;
1110         if (buffer_uptodate(bh))
1111                 return bh;
1112         ll_rw_block(READ_META, 1, &bh);
1113         wait_on_buffer(bh);
1114         if (buffer_uptodate(bh))
1115                 return bh;
1116         put_bh(bh);
1117         *err = -EIO;
1118         return NULL;
1119 }
1120
1121 static int walk_page_buffers(   handle_t *handle,
1122                                 struct buffer_head *head,
1123                                 unsigned from,
1124                                 unsigned to,
1125                                 int *partial,
1126                                 int (*fn)(      handle_t *handle,
1127                                                 struct buffer_head *bh))
1128 {
1129         struct buffer_head *bh;
1130         unsigned block_start, block_end;
1131         unsigned blocksize = head->b_size;
1132         int err, ret = 0;
1133         struct buffer_head *next;
1134
1135         for (   bh = head, block_start = 0;
1136                 ret == 0 && (bh != head || !block_start);
1137                 block_start = block_end, bh = next)
1138         {
1139                 next = bh->b_this_page;
1140                 block_end = block_start + blocksize;
1141                 if (block_end <= from || block_start >= to) {
1142                         if (partial && !buffer_uptodate(bh))
1143                                 *partial = 1;
1144                         continue;
1145                 }
1146                 err = (*fn)(handle, bh);
1147                 if (!ret)
1148                         ret = err;
1149         }
1150         return ret;
1151 }
1152
1153 /*
1154  * To preserve ordering, it is essential that the hole instantiation and
1155  * the data write be encapsulated in a single transaction.  We cannot
1156  * close off a transaction and start a new one between the ext3_get_block()
1157  * and the commit_write().  So doing the journal_start at the start of
1158  * prepare_write() is the right place.
1159  *
1160  * Also, this function can nest inside ext3_writepage() ->
1161  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1162  * has generated enough buffer credits to do the whole page.  So we won't
1163  * block on the journal in that case, which is good, because the caller may
1164  * be PF_MEMALLOC.
1165  *
1166  * By accident, ext3 can be reentered when a transaction is open via
1167  * quota file writes.  If we were to commit the transaction while thus
1168  * reentered, there can be a deadlock - we would be holding a quota
1169  * lock, and the commit would never complete if another thread had a
1170  * transaction open and was blocking on the quota lock - a ranking
1171  * violation.
1172  *
1173  * So what we do is to rely on the fact that journal_stop/journal_start
1174  * will _not_ run commit under these circumstances because handle->h_ref
1175  * is elevated.  We'll still have enough credits for the tiny quotafile
1176  * write.
1177  */
1178 static int do_journal_get_write_access(handle_t *handle,
1179                                         struct buffer_head *bh)
1180 {
1181         int dirty = buffer_dirty(bh);
1182         int ret;
1183
1184         if (!buffer_mapped(bh) || buffer_freed(bh))
1185                 return 0;
1186         /*
1187          * __block_prepare_write() could have dirtied some buffers. Clean
1188          * the dirty bit as jbd2_journal_get_write_access() could complain
1189          * otherwise about fs integrity issues. Setting of the dirty bit
1190          * by __block_prepare_write() isn't a real problem here as we clear
1191          * the bit before releasing a page lock and thus writeback cannot
1192          * ever write the buffer.
1193          */
1194         if (dirty)
1195                 clear_buffer_dirty(bh);
1196         ret = ext3_journal_get_write_access(handle, bh);
1197         if (!ret && dirty)
1198                 ret = ext3_journal_dirty_metadata(handle, bh);
1199         return ret;
1200 }
1201
1202 /*
1203  * Truncate blocks that were not used by write. We have to truncate the
1204  * pagecache as well so that corresponding buffers get properly unmapped.
1205  */
1206 static void ext3_truncate_failed_write(struct inode *inode)
1207 {
1208         truncate_inode_pages(inode->i_mapping, inode->i_size);
1209         ext3_truncate(inode);
1210 }
1211
1212 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1213                                 loff_t pos, unsigned len, unsigned flags,
1214                                 struct page **pagep, void **fsdata)
1215 {
1216         struct inode *inode = mapping->host;
1217         int ret;
1218         handle_t *handle;
1219         int retries = 0;
1220         struct page *page;
1221         pgoff_t index;
1222         unsigned from, to;
1223         /* Reserve one block more for addition to orphan list in case
1224          * we allocate blocks but write fails for some reason */
1225         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1226
1227         trace_ext3_write_begin(inode, pos, len, flags);
1228
1229         index = pos >> PAGE_CACHE_SHIFT;
1230         from = pos & (PAGE_CACHE_SIZE - 1);
1231         to = from + len;
1232
1233 retry:
1234         page = grab_cache_page_write_begin(mapping, index, flags);
1235         if (!page)
1236                 return -ENOMEM;
1237         *pagep = page;
1238
1239         handle = ext3_journal_start(inode, needed_blocks);
1240         if (IS_ERR(handle)) {
1241                 unlock_page(page);
1242                 page_cache_release(page);
1243                 ret = PTR_ERR(handle);
1244                 goto out;
1245         }
1246         ret = __block_write_begin(page, pos, len, ext3_get_block);
1247         if (ret)
1248                 goto write_begin_failed;
1249
1250         if (ext3_should_journal_data(inode)) {
1251                 ret = walk_page_buffers(handle, page_buffers(page),
1252                                 from, to, NULL, do_journal_get_write_access);
1253         }
1254 write_begin_failed:
1255         if (ret) {
1256                 /*
1257                  * block_write_begin may have instantiated a few blocks
1258                  * outside i_size.  Trim these off again. Don't need
1259                  * i_size_read because we hold i_mutex.
1260                  *
1261                  * Add inode to orphan list in case we crash before truncate
1262                  * finishes. Do this only if ext3_can_truncate() agrees so
1263                  * that orphan processing code is happy.
1264                  */
1265                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1266                         ext3_orphan_add(handle, inode);
1267                 ext3_journal_stop(handle);
1268                 unlock_page(page);
1269                 page_cache_release(page);
1270                 if (pos + len > inode->i_size)
1271                         ext3_truncate_failed_write(inode);
1272         }
1273         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1274                 goto retry;
1275 out:
1276         return ret;
1277 }
1278
1279
1280 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1281 {
1282         int err = journal_dirty_data(handle, bh);
1283         if (err)
1284                 ext3_journal_abort_handle(__func__, __func__,
1285                                                 bh, handle, err);
1286         return err;
1287 }
1288
1289 /* For ordered writepage and write_end functions */
1290 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1291 {
1292         /*
1293          * Write could have mapped the buffer but it didn't copy the data in
1294          * yet. So avoid filing such buffer into a transaction.
1295          */
1296         if (buffer_mapped(bh) && buffer_uptodate(bh))
1297                 return ext3_journal_dirty_data(handle, bh);
1298         return 0;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304         if (!buffer_mapped(bh) || buffer_freed(bh))
1305                 return 0;
1306         set_buffer_uptodate(bh);
1307         return ext3_journal_dirty_metadata(handle, bh);
1308 }
1309
1310 /*
1311  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1312  * for the whole page but later we failed to copy the data in. Update inode
1313  * size according to what we managed to copy. The rest is going to be
1314  * truncated in write_end function.
1315  */
1316 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1317 {
1318         /* What matters to us is i_disksize. We don't write i_size anywhere */
1319         if (pos + copied > inode->i_size)
1320                 i_size_write(inode, pos + copied);
1321         if (pos + copied > EXT3_I(inode)->i_disksize) {
1322                 EXT3_I(inode)->i_disksize = pos + copied;
1323                 mark_inode_dirty(inode);
1324         }
1325 }
1326
1327 /*
1328  * We need to pick up the new inode size which generic_commit_write gave us
1329  * `file' can be NULL - eg, when called from page_symlink().
1330  *
1331  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1332  * buffers are managed internally.
1333  */
1334 static int ext3_ordered_write_end(struct file *file,
1335                                 struct address_space *mapping,
1336                                 loff_t pos, unsigned len, unsigned copied,
1337                                 struct page *page, void *fsdata)
1338 {
1339         handle_t *handle = ext3_journal_current_handle();
1340         struct inode *inode = file->f_mapping->host;
1341         unsigned from, to;
1342         int ret = 0, ret2;
1343
1344         trace_ext3_ordered_write_end(inode, pos, len, copied);
1345         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1346
1347         from = pos & (PAGE_CACHE_SIZE - 1);
1348         to = from + copied;
1349         ret = walk_page_buffers(handle, page_buffers(page),
1350                 from, to, NULL, journal_dirty_data_fn);
1351
1352         if (ret == 0)
1353                 update_file_sizes(inode, pos, copied);
1354         /*
1355          * There may be allocated blocks outside of i_size because
1356          * we failed to copy some data. Prepare for truncate.
1357          */
1358         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1359                 ext3_orphan_add(handle, inode);
1360         ret2 = ext3_journal_stop(handle);
1361         if (!ret)
1362                 ret = ret2;
1363         unlock_page(page);
1364         page_cache_release(page);
1365
1366         if (pos + len > inode->i_size)
1367                 ext3_truncate_failed_write(inode);
1368         return ret ? ret : copied;
1369 }
1370
1371 static int ext3_writeback_write_end(struct file *file,
1372                                 struct address_space *mapping,
1373                                 loff_t pos, unsigned len, unsigned copied,
1374                                 struct page *page, void *fsdata)
1375 {
1376         handle_t *handle = ext3_journal_current_handle();
1377         struct inode *inode = file->f_mapping->host;
1378         int ret;
1379
1380         trace_ext3_writeback_write_end(inode, pos, len, copied);
1381         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1382         update_file_sizes(inode, pos, copied);
1383         /*
1384          * There may be allocated blocks outside of i_size because
1385          * we failed to copy some data. Prepare for truncate.
1386          */
1387         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1388                 ext3_orphan_add(handle, inode);
1389         ret = ext3_journal_stop(handle);
1390         unlock_page(page);
1391         page_cache_release(page);
1392
1393         if (pos + len > inode->i_size)
1394                 ext3_truncate_failed_write(inode);
1395         return ret ? ret : copied;
1396 }
1397
1398 static int ext3_journalled_write_end(struct file *file,
1399                                 struct address_space *mapping,
1400                                 loff_t pos, unsigned len, unsigned copied,
1401                                 struct page *page, void *fsdata)
1402 {
1403         handle_t *handle = ext3_journal_current_handle();
1404         struct inode *inode = mapping->host;
1405         int ret = 0, ret2;
1406         int partial = 0;
1407         unsigned from, to;
1408
1409         trace_ext3_journalled_write_end(inode, pos, len, copied);
1410         from = pos & (PAGE_CACHE_SIZE - 1);
1411         to = from + len;
1412
1413         if (copied < len) {
1414                 if (!PageUptodate(page))
1415                         copied = 0;
1416                 page_zero_new_buffers(page, from + copied, to);
1417                 to = from + copied;
1418         }
1419
1420         ret = walk_page_buffers(handle, page_buffers(page), from,
1421                                 to, &partial, write_end_fn);
1422         if (!partial)
1423                 SetPageUptodate(page);
1424
1425         if (pos + copied > inode->i_size)
1426                 i_size_write(inode, pos + copied);
1427         /*
1428          * There may be allocated blocks outside of i_size because
1429          * we failed to copy some data. Prepare for truncate.
1430          */
1431         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1432                 ext3_orphan_add(handle, inode);
1433         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1434         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1435                 EXT3_I(inode)->i_disksize = inode->i_size;
1436                 ret2 = ext3_mark_inode_dirty(handle, inode);
1437                 if (!ret)
1438                         ret = ret2;
1439         }
1440
1441         ret2 = ext3_journal_stop(handle);
1442         if (!ret)
1443                 ret = ret2;
1444         unlock_page(page);
1445         page_cache_release(page);
1446
1447         if (pos + len > inode->i_size)
1448                 ext3_truncate_failed_write(inode);
1449         return ret ? ret : copied;
1450 }
1451
1452 /*
1453  * bmap() is special.  It gets used by applications such as lilo and by
1454  * the swapper to find the on-disk block of a specific piece of data.
1455  *
1456  * Naturally, this is dangerous if the block concerned is still in the
1457  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1458  * filesystem and enables swap, then they may get a nasty shock when the
1459  * data getting swapped to that swapfile suddenly gets overwritten by
1460  * the original zero's written out previously to the journal and
1461  * awaiting writeback in the kernel's buffer cache.
1462  *
1463  * So, if we see any bmap calls here on a modified, data-journaled file,
1464  * take extra steps to flush any blocks which might be in the cache.
1465  */
1466 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1467 {
1468         struct inode *inode = mapping->host;
1469         journal_t *journal;
1470         int err;
1471
1472         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1473                 /*
1474                  * This is a REALLY heavyweight approach, but the use of
1475                  * bmap on dirty files is expected to be extremely rare:
1476                  * only if we run lilo or swapon on a freshly made file
1477                  * do we expect this to happen.
1478                  *
1479                  * (bmap requires CAP_SYS_RAWIO so this does not
1480                  * represent an unprivileged user DOS attack --- we'd be
1481                  * in trouble if mortal users could trigger this path at
1482                  * will.)
1483                  *
1484                  * NB. EXT3_STATE_JDATA is not set on files other than
1485                  * regular files.  If somebody wants to bmap a directory
1486                  * or symlink and gets confused because the buffer
1487                  * hasn't yet been flushed to disk, they deserve
1488                  * everything they get.
1489                  */
1490
1491                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1492                 journal = EXT3_JOURNAL(inode);
1493                 journal_lock_updates(journal);
1494                 err = journal_flush(journal);
1495                 journal_unlock_updates(journal);
1496
1497                 if (err)
1498                         return 0;
1499         }
1500
1501         return generic_block_bmap(mapping,block,ext3_get_block);
1502 }
1503
1504 static int bget_one(handle_t *handle, struct buffer_head *bh)
1505 {
1506         get_bh(bh);
1507         return 0;
1508 }
1509
1510 static int bput_one(handle_t *handle, struct buffer_head *bh)
1511 {
1512         put_bh(bh);
1513         return 0;
1514 }
1515
1516 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1517 {
1518         return !buffer_mapped(bh);
1519 }
1520
1521 /*
1522  * Note that we always start a transaction even if we're not journalling
1523  * data.  This is to preserve ordering: any hole instantiation within
1524  * __block_write_full_page -> ext3_get_block() should be journalled
1525  * along with the data so we don't crash and then get metadata which
1526  * refers to old data.
1527  *
1528  * In all journalling modes block_write_full_page() will start the I/O.
1529  *
1530  * Problem:
1531  *
1532  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1533  *              ext3_writepage()
1534  *
1535  * Similar for:
1536  *
1537  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1538  *
1539  * Same applies to ext3_get_block().  We will deadlock on various things like
1540  * lock_journal and i_truncate_mutex.
1541  *
1542  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1543  * allocations fail.
1544  *
1545  * 16May01: If we're reentered then journal_current_handle() will be
1546  *          non-zero. We simply *return*.
1547  *
1548  * 1 July 2001: @@@ FIXME:
1549  *   In journalled data mode, a data buffer may be metadata against the
1550  *   current transaction.  But the same file is part of a shared mapping
1551  *   and someone does a writepage() on it.
1552  *
1553  *   We will move the buffer onto the async_data list, but *after* it has
1554  *   been dirtied. So there's a small window where we have dirty data on
1555  *   BJ_Metadata.
1556  *
1557  *   Note that this only applies to the last partial page in the file.  The
1558  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1559  *   broken code anyway: it's wrong for msync()).
1560  *
1561  *   It's a rare case: affects the final partial page, for journalled data
1562  *   where the file is subject to bith write() and writepage() in the same
1563  *   transction.  To fix it we'll need a custom block_write_full_page().
1564  *   We'll probably need that anyway for journalling writepage() output.
1565  *
1566  * We don't honour synchronous mounts for writepage().  That would be
1567  * disastrous.  Any write() or metadata operation will sync the fs for
1568  * us.
1569  *
1570  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1571  * we don't need to open a transaction here.
1572  */
1573 static int ext3_ordered_writepage(struct page *page,
1574                                 struct writeback_control *wbc)
1575 {
1576         struct inode *inode = page->mapping->host;
1577         struct buffer_head *page_bufs;
1578         handle_t *handle = NULL;
1579         int ret = 0;
1580         int err;
1581
1582         J_ASSERT(PageLocked(page));
1583         WARN_ON_ONCE(IS_RDONLY(inode));
1584
1585         /*
1586          * We give up here if we're reentered, because it might be for a
1587          * different filesystem.
1588          */
1589         if (ext3_journal_current_handle())
1590                 goto out_fail;
1591
1592         trace_ext3_ordered_writepage(page);
1593         if (!page_has_buffers(page)) {
1594                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1595                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1596                 page_bufs = page_buffers(page);
1597         } else {
1598                 page_bufs = page_buffers(page);
1599                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1600                                        NULL, buffer_unmapped)) {
1601                         /* Provide NULL get_block() to catch bugs if buffers
1602                          * weren't really mapped */
1603                         return block_write_full_page(page, NULL, wbc);
1604                 }
1605         }
1606         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1607
1608         if (IS_ERR(handle)) {
1609                 ret = PTR_ERR(handle);
1610                 goto out_fail;
1611         }
1612
1613         walk_page_buffers(handle, page_bufs, 0,
1614                         PAGE_CACHE_SIZE, NULL, bget_one);
1615
1616         ret = block_write_full_page(page, ext3_get_block, wbc);
1617
1618         /*
1619          * The page can become unlocked at any point now, and
1620          * truncate can then come in and change things.  So we
1621          * can't touch *page from now on.  But *page_bufs is
1622          * safe due to elevated refcount.
1623          */
1624
1625         /*
1626          * And attach them to the current transaction.  But only if
1627          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1628          * and generally junk.
1629          */
1630         if (ret == 0) {
1631                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1632                                         NULL, journal_dirty_data_fn);
1633                 if (!ret)
1634                         ret = err;
1635         }
1636         walk_page_buffers(handle, page_bufs, 0,
1637                         PAGE_CACHE_SIZE, NULL, bput_one);
1638         err = ext3_journal_stop(handle);
1639         if (!ret)
1640                 ret = err;
1641         return ret;
1642
1643 out_fail:
1644         redirty_page_for_writepage(wbc, page);
1645         unlock_page(page);
1646         return ret;
1647 }
1648
1649 static int ext3_writeback_writepage(struct page *page,
1650                                 struct writeback_control *wbc)
1651 {
1652         struct inode *inode = page->mapping->host;
1653         handle_t *handle = NULL;
1654         int ret = 0;
1655         int err;
1656
1657         J_ASSERT(PageLocked(page));
1658         WARN_ON_ONCE(IS_RDONLY(inode));
1659
1660         if (ext3_journal_current_handle())
1661                 goto out_fail;
1662
1663         trace_ext3_writeback_writepage(page);
1664         if (page_has_buffers(page)) {
1665                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1666                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1667                         /* Provide NULL get_block() to catch bugs if buffers
1668                          * weren't really mapped */
1669                         return block_write_full_page(page, NULL, wbc);
1670                 }
1671         }
1672
1673         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1674         if (IS_ERR(handle)) {
1675                 ret = PTR_ERR(handle);
1676                 goto out_fail;
1677         }
1678
1679         ret = block_write_full_page(page, ext3_get_block, wbc);
1680
1681         err = ext3_journal_stop(handle);
1682         if (!ret)
1683                 ret = err;
1684         return ret;
1685
1686 out_fail:
1687         redirty_page_for_writepage(wbc, page);
1688         unlock_page(page);
1689         return ret;
1690 }
1691
1692 static int ext3_journalled_writepage(struct page *page,
1693                                 struct writeback_control *wbc)
1694 {
1695         struct inode *inode = page->mapping->host;
1696         handle_t *handle = NULL;
1697         int ret = 0;
1698         int err;
1699
1700         J_ASSERT(PageLocked(page));
1701         WARN_ON_ONCE(IS_RDONLY(inode));
1702
1703         if (ext3_journal_current_handle())
1704                 goto no_write;
1705
1706         trace_ext3_journalled_writepage(page);
1707         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1708         if (IS_ERR(handle)) {
1709                 ret = PTR_ERR(handle);
1710                 goto no_write;
1711         }
1712
1713         if (!page_has_buffers(page) || PageChecked(page)) {
1714                 /*
1715                  * It's mmapped pagecache.  Add buffers and journal it.  There
1716                  * doesn't seem much point in redirtying the page here.
1717                  */
1718                 ClearPageChecked(page);
1719                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1720                                           ext3_get_block);
1721                 if (ret != 0) {
1722                         ext3_journal_stop(handle);
1723                         goto out_unlock;
1724                 }
1725                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1726                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1727
1728                 err = walk_page_buffers(handle, page_buffers(page), 0,
1729                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1730                 if (ret == 0)
1731                         ret = err;
1732                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1733                 unlock_page(page);
1734         } else {
1735                 /*
1736                  * It may be a page full of checkpoint-mode buffers.  We don't
1737                  * really know unless we go poke around in the buffer_heads.
1738                  * But block_write_full_page will do the right thing.
1739                  */
1740                 ret = block_write_full_page(page, ext3_get_block, wbc);
1741         }
1742         err = ext3_journal_stop(handle);
1743         if (!ret)
1744                 ret = err;
1745 out:
1746         return ret;
1747
1748 no_write:
1749         redirty_page_for_writepage(wbc, page);
1750 out_unlock:
1751         unlock_page(page);
1752         goto out;
1753 }
1754
1755 static int ext3_readpage(struct file *file, struct page *page)
1756 {
1757         trace_ext3_readpage(page);
1758         return mpage_readpage(page, ext3_get_block);
1759 }
1760
1761 static int
1762 ext3_readpages(struct file *file, struct address_space *mapping,
1763                 struct list_head *pages, unsigned nr_pages)
1764 {
1765         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1766 }
1767
1768 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1769 {
1770         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1771
1772         trace_ext3_invalidatepage(page, offset);
1773
1774         /*
1775          * If it's a full truncate we just forget about the pending dirtying
1776          */
1777         if (offset == 0)
1778                 ClearPageChecked(page);
1779
1780         journal_invalidatepage(journal, page, offset);
1781 }
1782
1783 static int ext3_releasepage(struct page *page, gfp_t wait)
1784 {
1785         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1786
1787         trace_ext3_releasepage(page);
1788         WARN_ON(PageChecked(page));
1789         if (!page_has_buffers(page))
1790                 return 0;
1791         return journal_try_to_free_buffers(journal, page, wait);
1792 }
1793
1794 /*
1795  * If the O_DIRECT write will extend the file then add this inode to the
1796  * orphan list.  So recovery will truncate it back to the original size
1797  * if the machine crashes during the write.
1798  *
1799  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1800  * crashes then stale disk data _may_ be exposed inside the file. But current
1801  * VFS code falls back into buffered path in that case so we are safe.
1802  */
1803 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1804                         const struct iovec *iov, loff_t offset,
1805                         unsigned long nr_segs)
1806 {
1807         struct file *file = iocb->ki_filp;
1808         struct inode *inode = file->f_mapping->host;
1809         struct ext3_inode_info *ei = EXT3_I(inode);
1810         handle_t *handle;
1811         ssize_t ret;
1812         int orphan = 0;
1813         size_t count = iov_length(iov, nr_segs);
1814         int retries = 0;
1815
1816         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1817
1818         if (rw == WRITE) {
1819                 loff_t final_size = offset + count;
1820
1821                 if (final_size > inode->i_size) {
1822                         /* Credits for sb + inode write */
1823                         handle = ext3_journal_start(inode, 2);
1824                         if (IS_ERR(handle)) {
1825                                 ret = PTR_ERR(handle);
1826                                 goto out;
1827                         }
1828                         ret = ext3_orphan_add(handle, inode);
1829                         if (ret) {
1830                                 ext3_journal_stop(handle);
1831                                 goto out;
1832                         }
1833                         orphan = 1;
1834                         ei->i_disksize = inode->i_size;
1835                         ext3_journal_stop(handle);
1836                 }
1837         }
1838
1839 retry:
1840         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1841                                  offset, nr_segs,
1842                                  ext3_get_block, NULL);
1843         /*
1844          * In case of error extending write may have instantiated a few
1845          * blocks outside i_size. Trim these off again.
1846          */
1847         if (unlikely((rw & WRITE) && ret < 0)) {
1848                 loff_t isize = i_size_read(inode);
1849                 loff_t end = offset + iov_length(iov, nr_segs);
1850
1851                 if (end > isize)
1852                         vmtruncate(inode, isize);
1853         }
1854         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1855                 goto retry;
1856
1857         if (orphan) {
1858                 int err;
1859
1860                 /* Credits for sb + inode write */
1861                 handle = ext3_journal_start(inode, 2);
1862                 if (IS_ERR(handle)) {
1863                         /* This is really bad luck. We've written the data
1864                          * but cannot extend i_size. Truncate allocated blocks
1865                          * and pretend the write failed... */
1866                         ext3_truncate(inode);
1867                         ret = PTR_ERR(handle);
1868                         goto out;
1869                 }
1870                 if (inode->i_nlink)
1871                         ext3_orphan_del(handle, inode);
1872                 if (ret > 0) {
1873                         loff_t end = offset + ret;
1874                         if (end > inode->i_size) {
1875                                 ei->i_disksize = end;
1876                                 i_size_write(inode, end);
1877                                 /*
1878                                  * We're going to return a positive `ret'
1879                                  * here due to non-zero-length I/O, so there's
1880                                  * no way of reporting error returns from
1881                                  * ext3_mark_inode_dirty() to userspace.  So
1882                                  * ignore it.
1883                                  */
1884                                 ext3_mark_inode_dirty(handle, inode);
1885                         }
1886                 }
1887                 err = ext3_journal_stop(handle);
1888                 if (ret == 0)
1889                         ret = err;
1890         }
1891 out:
1892         trace_ext3_direct_IO_exit(inode, offset,
1893                                 iov_length(iov, nr_segs), rw, ret);
1894         return ret;
1895 }
1896
1897 /*
1898  * Pages can be marked dirty completely asynchronously from ext3's journalling
1899  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1900  * much here because ->set_page_dirty is called under VFS locks.  The page is
1901  * not necessarily locked.
1902  *
1903  * We cannot just dirty the page and leave attached buffers clean, because the
1904  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1905  * or jbddirty because all the journalling code will explode.
1906  *
1907  * So what we do is to mark the page "pending dirty" and next time writepage
1908  * is called, propagate that into the buffers appropriately.
1909  */
1910 static int ext3_journalled_set_page_dirty(struct page *page)
1911 {
1912         SetPageChecked(page);
1913         return __set_page_dirty_nobuffers(page);
1914 }
1915
1916 static const struct address_space_operations ext3_ordered_aops = {
1917         .readpage               = ext3_readpage,
1918         .readpages              = ext3_readpages,
1919         .writepage              = ext3_ordered_writepage,
1920         .write_begin            = ext3_write_begin,
1921         .write_end              = ext3_ordered_write_end,
1922         .bmap                   = ext3_bmap,
1923         .invalidatepage         = ext3_invalidatepage,
1924         .releasepage            = ext3_releasepage,
1925         .direct_IO              = ext3_direct_IO,
1926         .migratepage            = buffer_migrate_page,
1927         .is_partially_uptodate  = block_is_partially_uptodate,
1928         .error_remove_page      = generic_error_remove_page,
1929 };
1930
1931 static const struct address_space_operations ext3_writeback_aops = {
1932         .readpage               = ext3_readpage,
1933         .readpages              = ext3_readpages,
1934         .writepage              = ext3_writeback_writepage,
1935         .write_begin            = ext3_write_begin,
1936         .write_end              = ext3_writeback_write_end,
1937         .bmap                   = ext3_bmap,
1938         .invalidatepage         = ext3_invalidatepage,
1939         .releasepage            = ext3_releasepage,
1940         .direct_IO              = ext3_direct_IO,
1941         .migratepage            = buffer_migrate_page,
1942         .is_partially_uptodate  = block_is_partially_uptodate,
1943         .error_remove_page      = generic_error_remove_page,
1944 };
1945
1946 static const struct address_space_operations ext3_journalled_aops = {
1947         .readpage               = ext3_readpage,
1948         .readpages              = ext3_readpages,
1949         .writepage              = ext3_journalled_writepage,
1950         .write_begin            = ext3_write_begin,
1951         .write_end              = ext3_journalled_write_end,
1952         .set_page_dirty         = ext3_journalled_set_page_dirty,
1953         .bmap                   = ext3_bmap,
1954         .invalidatepage         = ext3_invalidatepage,
1955         .releasepage            = ext3_releasepage,
1956         .is_partially_uptodate  = block_is_partially_uptodate,
1957         .error_remove_page      = generic_error_remove_page,
1958 };
1959
1960 void ext3_set_aops(struct inode *inode)
1961 {
1962         if (ext3_should_order_data(inode))
1963                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1964         else if (ext3_should_writeback_data(inode))
1965                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1966         else
1967                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1968 }
1969
1970 /*
1971  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1972  * up to the end of the block which corresponds to `from'.
1973  * This required during truncate. We need to physically zero the tail end
1974  * of that block so it doesn't yield old data if the file is later grown.
1975  */
1976 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1977                 struct address_space *mapping, loff_t from)
1978 {
1979         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1980         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1981         unsigned blocksize, iblock, length, pos;
1982         struct inode *inode = mapping->host;
1983         struct buffer_head *bh;
1984         int err = 0;
1985
1986         blocksize = inode->i_sb->s_blocksize;
1987         length = blocksize - (offset & (blocksize - 1));
1988         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1989
1990         if (!page_has_buffers(page))
1991                 create_empty_buffers(page, blocksize, 0);
1992
1993         /* Find the buffer that contains "offset" */
1994         bh = page_buffers(page);
1995         pos = blocksize;
1996         while (offset >= pos) {
1997                 bh = bh->b_this_page;
1998                 iblock++;
1999                 pos += blocksize;
2000         }
2001
2002         err = 0;
2003         if (buffer_freed(bh)) {
2004                 BUFFER_TRACE(bh, "freed: skip");
2005                 goto unlock;
2006         }
2007
2008         if (!buffer_mapped(bh)) {
2009                 BUFFER_TRACE(bh, "unmapped");
2010                 ext3_get_block(inode, iblock, bh, 0);
2011                 /* unmapped? It's a hole - nothing to do */
2012                 if (!buffer_mapped(bh)) {
2013                         BUFFER_TRACE(bh, "still unmapped");
2014                         goto unlock;
2015                 }
2016         }
2017
2018         /* Ok, it's mapped. Make sure it's up-to-date */
2019         if (PageUptodate(page))
2020                 set_buffer_uptodate(bh);
2021
2022         if (!buffer_uptodate(bh)) {
2023                 err = -EIO;
2024                 ll_rw_block(READ, 1, &bh);
2025                 wait_on_buffer(bh);
2026                 /* Uhhuh. Read error. Complain and punt. */
2027                 if (!buffer_uptodate(bh))
2028                         goto unlock;
2029         }
2030
2031         if (ext3_should_journal_data(inode)) {
2032                 BUFFER_TRACE(bh, "get write access");
2033                 err = ext3_journal_get_write_access(handle, bh);
2034                 if (err)
2035                         goto unlock;
2036         }
2037
2038         zero_user(page, offset, length);
2039         BUFFER_TRACE(bh, "zeroed end of block");
2040
2041         err = 0;
2042         if (ext3_should_journal_data(inode)) {
2043                 err = ext3_journal_dirty_metadata(handle, bh);
2044         } else {
2045                 if (ext3_should_order_data(inode))
2046                         err = ext3_journal_dirty_data(handle, bh);
2047                 mark_buffer_dirty(bh);
2048         }
2049
2050 unlock:
2051         unlock_page(page);
2052         page_cache_release(page);
2053         return err;
2054 }
2055
2056 /*
2057  * Probably it should be a library function... search for first non-zero word
2058  * or memcmp with zero_page, whatever is better for particular architecture.
2059  * Linus?
2060  */
2061 static inline int all_zeroes(__le32 *p, __le32 *q)
2062 {
2063         while (p < q)
2064                 if (*p++)
2065                         return 0;
2066         return 1;
2067 }
2068
2069 /**
2070  *      ext3_find_shared - find the indirect blocks for partial truncation.
2071  *      @inode:   inode in question
2072  *      @depth:   depth of the affected branch
2073  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2074  *      @chain:   place to store the pointers to partial indirect blocks
2075  *      @top:     place to the (detached) top of branch
2076  *
2077  *      This is a helper function used by ext3_truncate().
2078  *
2079  *      When we do truncate() we may have to clean the ends of several
2080  *      indirect blocks but leave the blocks themselves alive. Block is
2081  *      partially truncated if some data below the new i_size is referred
2082  *      from it (and it is on the path to the first completely truncated
2083  *      data block, indeed).  We have to free the top of that path along
2084  *      with everything to the right of the path. Since no allocation
2085  *      past the truncation point is possible until ext3_truncate()
2086  *      finishes, we may safely do the latter, but top of branch may
2087  *      require special attention - pageout below the truncation point
2088  *      might try to populate it.
2089  *
2090  *      We atomically detach the top of branch from the tree, store the
2091  *      block number of its root in *@top, pointers to buffer_heads of
2092  *      partially truncated blocks - in @chain[].bh and pointers to
2093  *      their last elements that should not be removed - in
2094  *      @chain[].p. Return value is the pointer to last filled element
2095  *      of @chain.
2096  *
2097  *      The work left to caller to do the actual freeing of subtrees:
2098  *              a) free the subtree starting from *@top
2099  *              b) free the subtrees whose roots are stored in
2100  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2101  *              c) free the subtrees growing from the inode past the @chain[0].
2102  *                      (no partially truncated stuff there).  */
2103
2104 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2105                         int offsets[4], Indirect chain[4], __le32 *top)
2106 {
2107         Indirect *partial, *p;
2108         int k, err;
2109
2110         *top = 0;
2111         /* Make k index the deepest non-null offset + 1 */
2112         for (k = depth; k > 1 && !offsets[k-1]; k--)
2113                 ;
2114         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2115         /* Writer: pointers */
2116         if (!partial)
2117                 partial = chain + k-1;
2118         /*
2119          * If the branch acquired continuation since we've looked at it -
2120          * fine, it should all survive and (new) top doesn't belong to us.
2121          */
2122         if (!partial->key && *partial->p)
2123                 /* Writer: end */
2124                 goto no_top;
2125         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2126                 ;
2127         /*
2128          * OK, we've found the last block that must survive. The rest of our
2129          * branch should be detached before unlocking. However, if that rest
2130          * of branch is all ours and does not grow immediately from the inode
2131          * it's easier to cheat and just decrement partial->p.
2132          */
2133         if (p == chain + k - 1 && p > chain) {
2134                 p->p--;
2135         } else {
2136                 *top = *p->p;
2137                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2138 #if 0
2139                 *p->p = 0;
2140 #endif
2141         }
2142         /* Writer: end */
2143
2144         while(partial > p) {
2145                 brelse(partial->bh);
2146                 partial--;
2147         }
2148 no_top:
2149         return partial;
2150 }
2151
2152 /*
2153  * Zero a number of block pointers in either an inode or an indirect block.
2154  * If we restart the transaction we must again get write access to the
2155  * indirect block for further modification.
2156  *
2157  * We release `count' blocks on disk, but (last - first) may be greater
2158  * than `count' because there can be holes in there.
2159  */
2160 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2161                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2162                 unsigned long count, __le32 *first, __le32 *last)
2163 {
2164         __le32 *p;
2165         if (try_to_extend_transaction(handle, inode)) {
2166                 if (bh) {
2167                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2168                         if (ext3_journal_dirty_metadata(handle, bh))
2169                                 return;
2170                 }
2171                 ext3_mark_inode_dirty(handle, inode);
2172                 truncate_restart_transaction(handle, inode);
2173                 if (bh) {
2174                         BUFFER_TRACE(bh, "retaking write access");
2175                         if (ext3_journal_get_write_access(handle, bh))
2176                                 return;
2177                 }
2178         }
2179
2180         /*
2181          * Any buffers which are on the journal will be in memory. We find
2182          * them on the hash table so journal_revoke() will run journal_forget()
2183          * on them.  We've already detached each block from the file, so
2184          * bforget() in journal_forget() should be safe.
2185          *
2186          * AKPM: turn on bforget in journal_forget()!!!
2187          */
2188         for (p = first; p < last; p++) {
2189                 u32 nr = le32_to_cpu(*p);
2190                 if (nr) {
2191                         struct buffer_head *bh;
2192
2193                         *p = 0;
2194                         bh = sb_find_get_block(inode->i_sb, nr);
2195                         ext3_forget(handle, 0, inode, bh, nr);
2196                 }
2197         }
2198
2199         ext3_free_blocks(handle, inode, block_to_free, count);
2200 }
2201
2202 /**
2203  * ext3_free_data - free a list of data blocks
2204  * @handle:     handle for this transaction
2205  * @inode:      inode we are dealing with
2206  * @this_bh:    indirect buffer_head which contains *@first and *@last
2207  * @first:      array of block numbers
2208  * @last:       points immediately past the end of array
2209  *
2210  * We are freeing all blocks referred from that array (numbers are stored as
2211  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2212  *
2213  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2214  * blocks are contiguous then releasing them at one time will only affect one
2215  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2216  * actually use a lot of journal space.
2217  *
2218  * @this_bh will be %NULL if @first and @last point into the inode's direct
2219  * block pointers.
2220  */
2221 static void ext3_free_data(handle_t *handle, struct inode *inode,
2222                            struct buffer_head *this_bh,
2223                            __le32 *first, __le32 *last)
2224 {
2225         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2226         unsigned long count = 0;            /* Number of blocks in the run */
2227         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2228                                                corresponding to
2229                                                block_to_free */
2230         ext3_fsblk_t nr;                    /* Current block # */
2231         __le32 *p;                          /* Pointer into inode/ind
2232                                                for current block */
2233         int err;
2234
2235         if (this_bh) {                          /* For indirect block */
2236                 BUFFER_TRACE(this_bh, "get_write_access");
2237                 err = ext3_journal_get_write_access(handle, this_bh);
2238                 /* Important: if we can't update the indirect pointers
2239                  * to the blocks, we can't free them. */
2240                 if (err)
2241                         return;
2242         }
2243
2244         for (p = first; p < last; p++) {
2245                 nr = le32_to_cpu(*p);
2246                 if (nr) {
2247                         /* accumulate blocks to free if they're contiguous */
2248                         if (count == 0) {
2249                                 block_to_free = nr;
2250                                 block_to_free_p = p;
2251                                 count = 1;
2252                         } else if (nr == block_to_free + count) {
2253                                 count++;
2254                         } else {
2255                                 ext3_clear_blocks(handle, inode, this_bh,
2256                                                   block_to_free,
2257                                                   count, block_to_free_p, p);
2258                                 block_to_free = nr;
2259                                 block_to_free_p = p;
2260                                 count = 1;
2261                         }
2262                 }
2263         }
2264
2265         if (count > 0)
2266                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2267                                   count, block_to_free_p, p);
2268
2269         if (this_bh) {
2270                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2271
2272                 /*
2273                  * The buffer head should have an attached journal head at this
2274                  * point. However, if the data is corrupted and an indirect
2275                  * block pointed to itself, it would have been detached when
2276                  * the block was cleared. Check for this instead of OOPSing.
2277                  */
2278                 if (bh2jh(this_bh))
2279                         ext3_journal_dirty_metadata(handle, this_bh);
2280                 else
2281                         ext3_error(inode->i_sb, "ext3_free_data",
2282                                    "circular indirect block detected, "
2283                                    "inode=%lu, block=%llu",
2284                                    inode->i_ino,
2285                                    (unsigned long long)this_bh->b_blocknr);
2286         }
2287 }
2288
2289 /**
2290  *      ext3_free_branches - free an array of branches
2291  *      @handle: JBD handle for this transaction
2292  *      @inode: inode we are dealing with
2293  *      @parent_bh: the buffer_head which contains *@first and *@last
2294  *      @first: array of block numbers
2295  *      @last:  pointer immediately past the end of array
2296  *      @depth: depth of the branches to free
2297  *
2298  *      We are freeing all blocks referred from these branches (numbers are
2299  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2300  *      appropriately.
2301  */
2302 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2303                                struct buffer_head *parent_bh,
2304                                __le32 *first, __le32 *last, int depth)
2305 {
2306         ext3_fsblk_t nr;
2307         __le32 *p;
2308
2309         if (is_handle_aborted(handle))
2310                 return;
2311
2312         if (depth--) {
2313                 struct buffer_head *bh;
2314                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2315                 p = last;
2316                 while (--p >= first) {
2317                         nr = le32_to_cpu(*p);
2318                         if (!nr)
2319                                 continue;               /* A hole */
2320
2321                         /* Go read the buffer for the next level down */
2322                         bh = sb_bread(inode->i_sb, nr);
2323
2324                         /*
2325                          * A read failure? Report error and clear slot
2326                          * (should be rare).
2327                          */
2328                         if (!bh) {
2329                                 ext3_error(inode->i_sb, "ext3_free_branches",
2330                                            "Read failure, inode=%lu, block="E3FSBLK,
2331                                            inode->i_ino, nr);
2332                                 continue;
2333                         }
2334
2335                         /* This zaps the entire block.  Bottom up. */
2336                         BUFFER_TRACE(bh, "free child branches");
2337                         ext3_free_branches(handle, inode, bh,
2338                                            (__le32*)bh->b_data,
2339                                            (__le32*)bh->b_data + addr_per_block,
2340                                            depth);
2341
2342                         /*
2343                          * Everything below this this pointer has been
2344                          * released.  Now let this top-of-subtree go.
2345                          *
2346                          * We want the freeing of this indirect block to be
2347                          * atomic in the journal with the updating of the
2348                          * bitmap block which owns it.  So make some room in
2349                          * the journal.
2350                          *
2351                          * We zero the parent pointer *after* freeing its
2352                          * pointee in the bitmaps, so if extend_transaction()
2353                          * for some reason fails to put the bitmap changes and
2354                          * the release into the same transaction, recovery
2355                          * will merely complain about releasing a free block,
2356                          * rather than leaking blocks.
2357                          */
2358                         if (is_handle_aborted(handle))
2359                                 return;
2360                         if (try_to_extend_transaction(handle, inode)) {
2361                                 ext3_mark_inode_dirty(handle, inode);
2362                                 truncate_restart_transaction(handle, inode);
2363                         }
2364
2365                         /*
2366                          * We've probably journalled the indirect block several
2367                          * times during the truncate.  But it's no longer
2368                          * needed and we now drop it from the transaction via
2369                          * journal_revoke().
2370                          *
2371                          * That's easy if it's exclusively part of this
2372                          * transaction.  But if it's part of the committing
2373                          * transaction then journal_forget() will simply
2374                          * brelse() it.  That means that if the underlying
2375                          * block is reallocated in ext3_get_block(),
2376                          * unmap_underlying_metadata() will find this block
2377                          * and will try to get rid of it.  damn, damn. Thus
2378                          * we don't allow a block to be reallocated until
2379                          * a transaction freeing it has fully committed.
2380                          *
2381                          * We also have to make sure journal replay after a
2382                          * crash does not overwrite non-journaled data blocks
2383                          * with old metadata when the block got reallocated for
2384                          * data.  Thus we have to store a revoke record for a
2385                          * block in the same transaction in which we free the
2386                          * block.
2387                          */
2388                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2389
2390                         ext3_free_blocks(handle, inode, nr, 1);
2391
2392                         if (parent_bh) {
2393                                 /*
2394                                  * The block which we have just freed is
2395                                  * pointed to by an indirect block: journal it
2396                                  */
2397                                 BUFFER_TRACE(parent_bh, "get_write_access");
2398                                 if (!ext3_journal_get_write_access(handle,
2399                                                                    parent_bh)){
2400                                         *p = 0;
2401                                         BUFFER_TRACE(parent_bh,
2402                                         "call ext3_journal_dirty_metadata");
2403                                         ext3_journal_dirty_metadata(handle,
2404                                                                     parent_bh);
2405                                 }
2406                         }
2407                 }
2408         } else {
2409                 /* We have reached the bottom of the tree. */
2410                 BUFFER_TRACE(parent_bh, "free data blocks");
2411                 ext3_free_data(handle, inode, parent_bh, first, last);
2412         }
2413 }
2414
2415 int ext3_can_truncate(struct inode *inode)
2416 {
2417         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2418                 return 0;
2419         if (S_ISREG(inode->i_mode))
2420                 return 1;
2421         if (S_ISDIR(inode->i_mode))
2422                 return 1;
2423         if (S_ISLNK(inode->i_mode))
2424                 return !ext3_inode_is_fast_symlink(inode);
2425         return 0;
2426 }
2427
2428 /*
2429  * ext3_truncate()
2430  *
2431  * We block out ext3_get_block() block instantiations across the entire
2432  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2433  * simultaneously on behalf of the same inode.
2434  *
2435  * As we work through the truncate and commmit bits of it to the journal there
2436  * is one core, guiding principle: the file's tree must always be consistent on
2437  * disk.  We must be able to restart the truncate after a crash.
2438  *
2439  * The file's tree may be transiently inconsistent in memory (although it
2440  * probably isn't), but whenever we close off and commit a journal transaction,
2441  * the contents of (the filesystem + the journal) must be consistent and
2442  * restartable.  It's pretty simple, really: bottom up, right to left (although
2443  * left-to-right works OK too).
2444  *
2445  * Note that at recovery time, journal replay occurs *before* the restart of
2446  * truncate against the orphan inode list.
2447  *
2448  * The committed inode has the new, desired i_size (which is the same as
2449  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2450  * that this inode's truncate did not complete and it will again call
2451  * ext3_truncate() to have another go.  So there will be instantiated blocks
2452  * to the right of the truncation point in a crashed ext3 filesystem.  But
2453  * that's fine - as long as they are linked from the inode, the post-crash
2454  * ext3_truncate() run will find them and release them.
2455  */
2456 void ext3_truncate(struct inode *inode)
2457 {
2458         handle_t *handle;
2459         struct ext3_inode_info *ei = EXT3_I(inode);
2460         __le32 *i_data = ei->i_data;
2461         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2462         struct address_space *mapping = inode->i_mapping;
2463         int offsets[4];
2464         Indirect chain[4];
2465         Indirect *partial;
2466         __le32 nr = 0;
2467         int n;
2468         long last_block;
2469         unsigned blocksize = inode->i_sb->s_blocksize;
2470         struct page *page;
2471
2472         trace_ext3_truncate_enter(inode);
2473
2474         if (!ext3_can_truncate(inode))
2475                 goto out_notrans;
2476
2477         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2478                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2479
2480         /*
2481          * We have to lock the EOF page here, because lock_page() nests
2482          * outside journal_start().
2483          */
2484         if ((inode->i_size & (blocksize - 1)) == 0) {
2485                 /* Block boundary? Nothing to do */
2486                 page = NULL;
2487         } else {
2488                 page = grab_cache_page(mapping,
2489                                 inode->i_size >> PAGE_CACHE_SHIFT);
2490                 if (!page)
2491                         goto out_notrans;
2492         }
2493
2494         handle = start_transaction(inode);
2495         if (IS_ERR(handle)) {
2496                 if (page) {
2497                         clear_highpage(page);
2498                         flush_dcache_page(page);
2499                         unlock_page(page);
2500                         page_cache_release(page);
2501                 }
2502                 goto out_notrans;
2503         }
2504
2505         last_block = (inode->i_size + blocksize-1)
2506                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2507
2508         if (page)
2509                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2510
2511         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2512         if (n == 0)
2513                 goto out_stop;  /* error */
2514
2515         /*
2516          * OK.  This truncate is going to happen.  We add the inode to the
2517          * orphan list, so that if this truncate spans multiple transactions,
2518          * and we crash, we will resume the truncate when the filesystem
2519          * recovers.  It also marks the inode dirty, to catch the new size.
2520          *
2521          * Implication: the file must always be in a sane, consistent
2522          * truncatable state while each transaction commits.
2523          */
2524         if (ext3_orphan_add(handle, inode))
2525                 goto out_stop;
2526
2527         /*
2528          * The orphan list entry will now protect us from any crash which
2529          * occurs before the truncate completes, so it is now safe to propagate
2530          * the new, shorter inode size (held for now in i_size) into the
2531          * on-disk inode. We do this via i_disksize, which is the value which
2532          * ext3 *really* writes onto the disk inode.
2533          */
2534         ei->i_disksize = inode->i_size;
2535
2536         /*
2537          * From here we block out all ext3_get_block() callers who want to
2538          * modify the block allocation tree.
2539          */
2540         mutex_lock(&ei->truncate_mutex);
2541
2542         if (n == 1) {           /* direct blocks */
2543                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2544                                i_data + EXT3_NDIR_BLOCKS);
2545                 goto do_indirects;
2546         }
2547
2548         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2549         /* Kill the top of shared branch (not detached) */
2550         if (nr) {
2551                 if (partial == chain) {
2552                         /* Shared branch grows from the inode */
2553                         ext3_free_branches(handle, inode, NULL,
2554                                            &nr, &nr+1, (chain+n-1) - partial);
2555                         *partial->p = 0;
2556                         /*
2557                          * We mark the inode dirty prior to restart,
2558                          * and prior to stop.  No need for it here.
2559                          */
2560                 } else {
2561                         /* Shared branch grows from an indirect block */
2562                         ext3_free_branches(handle, inode, partial->bh,
2563                                         partial->p,
2564                                         partial->p+1, (chain+n-1) - partial);
2565                 }
2566         }
2567         /* Clear the ends of indirect blocks on the shared branch */
2568         while (partial > chain) {
2569                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2570                                    (__le32*)partial->bh->b_data+addr_per_block,
2571                                    (chain+n-1) - partial);
2572                 BUFFER_TRACE(partial->bh, "call brelse");
2573                 brelse (partial->bh);
2574                 partial--;
2575         }
2576 do_indirects:
2577         /* Kill the remaining (whole) subtrees */
2578         switch (offsets[0]) {
2579         default:
2580                 nr = i_data[EXT3_IND_BLOCK];
2581                 if (nr) {
2582                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2583                         i_data[EXT3_IND_BLOCK] = 0;
2584                 }
2585         case EXT3_IND_BLOCK:
2586                 nr = i_data[EXT3_DIND_BLOCK];
2587                 if (nr) {
2588                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2589                         i_data[EXT3_DIND_BLOCK] = 0;
2590                 }
2591         case EXT3_DIND_BLOCK:
2592                 nr = i_data[EXT3_TIND_BLOCK];
2593                 if (nr) {
2594                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2595                         i_data[EXT3_TIND_BLOCK] = 0;
2596                 }
2597         case EXT3_TIND_BLOCK:
2598                 ;
2599         }
2600
2601         ext3_discard_reservation(inode);
2602
2603         mutex_unlock(&ei->truncate_mutex);
2604         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2605         ext3_mark_inode_dirty(handle, inode);
2606
2607         /*
2608          * In a multi-transaction truncate, we only make the final transaction
2609          * synchronous
2610          */
2611         if (IS_SYNC(inode))
2612                 handle->h_sync = 1;
2613 out_stop:
2614         /*
2615          * If this was a simple ftruncate(), and the file will remain alive
2616          * then we need to clear up the orphan record which we created above.
2617          * However, if this was a real unlink then we were called by
2618          * ext3_evict_inode(), and we allow that function to clean up the
2619          * orphan info for us.
2620          */
2621         if (inode->i_nlink)
2622                 ext3_orphan_del(handle, inode);
2623
2624         ext3_journal_stop(handle);
2625         trace_ext3_truncate_exit(inode);
2626         return;
2627 out_notrans:
2628         /*
2629          * Delete the inode from orphan list so that it doesn't stay there
2630          * forever and trigger assertion on umount.
2631          */
2632         if (inode->i_nlink)
2633                 ext3_orphan_del(NULL, inode);
2634         trace_ext3_truncate_exit(inode);
2635 }
2636
2637 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2638                 unsigned long ino, struct ext3_iloc *iloc)
2639 {
2640         unsigned long block_group;
2641         unsigned long offset;
2642         ext3_fsblk_t block;
2643         struct ext3_group_desc *gdp;
2644
2645         if (!ext3_valid_inum(sb, ino)) {
2646                 /*
2647                  * This error is already checked for in namei.c unless we are
2648                  * looking at an NFS filehandle, in which case no error
2649                  * report is needed
2650                  */
2651                 return 0;
2652         }
2653
2654         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2655         gdp = ext3_get_group_desc(sb, block_group, NULL);
2656         if (!gdp)
2657                 return 0;
2658         /*
2659          * Figure out the offset within the block group inode table
2660          */
2661         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2662                 EXT3_INODE_SIZE(sb);
2663         block = le32_to_cpu(gdp->bg_inode_table) +
2664                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2665
2666         iloc->block_group = block_group;
2667         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2668         return block;
2669 }
2670
2671 /*
2672  * ext3_get_inode_loc returns with an extra refcount against the inode's
2673  * underlying buffer_head on success. If 'in_mem' is true, we have all
2674  * data in memory that is needed to recreate the on-disk version of this
2675  * inode.
2676  */
2677 static int __ext3_get_inode_loc(struct inode *inode,
2678                                 struct ext3_iloc *iloc, int in_mem)
2679 {
2680         ext3_fsblk_t block;
2681         struct buffer_head *bh;
2682
2683         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2684         if (!block)
2685                 return -EIO;
2686
2687         bh = sb_getblk(inode->i_sb, block);
2688         if (!bh) {
2689                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2690                                 "unable to read inode block - "
2691                                 "inode=%lu, block="E3FSBLK,
2692                                  inode->i_ino, block);
2693                 return -EIO;
2694         }
2695         if (!buffer_uptodate(bh)) {
2696                 lock_buffer(bh);
2697
2698                 /*
2699                  * If the buffer has the write error flag, we have failed
2700                  * to write out another inode in the same block.  In this
2701                  * case, we don't have to read the block because we may
2702                  * read the old inode data successfully.
2703                  */
2704                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2705                         set_buffer_uptodate(bh);
2706
2707                 if (buffer_uptodate(bh)) {
2708                         /* someone brought it uptodate while we waited */
2709                         unlock_buffer(bh);
2710                         goto has_buffer;
2711                 }
2712
2713                 /*
2714                  * If we have all information of the inode in memory and this
2715                  * is the only valid inode in the block, we need not read the
2716                  * block.
2717                  */
2718                 if (in_mem) {
2719                         struct buffer_head *bitmap_bh;
2720                         struct ext3_group_desc *desc;
2721                         int inodes_per_buffer;
2722                         int inode_offset, i;
2723                         int block_group;
2724                         int start;
2725
2726                         block_group = (inode->i_ino - 1) /
2727                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2728                         inodes_per_buffer = bh->b_size /
2729                                 EXT3_INODE_SIZE(inode->i_sb);
2730                         inode_offset = ((inode->i_ino - 1) %
2731                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2732                         start = inode_offset & ~(inodes_per_buffer - 1);
2733
2734                         /* Is the inode bitmap in cache? */
2735                         desc = ext3_get_group_desc(inode->i_sb,
2736                                                 block_group, NULL);
2737                         if (!desc)
2738                                 goto make_io;
2739
2740                         bitmap_bh = sb_getblk(inode->i_sb,
2741                                         le32_to_cpu(desc->bg_inode_bitmap));
2742                         if (!bitmap_bh)
2743                                 goto make_io;
2744
2745                         /*
2746                          * If the inode bitmap isn't in cache then the
2747                          * optimisation may end up performing two reads instead
2748                          * of one, so skip it.
2749                          */
2750                         if (!buffer_uptodate(bitmap_bh)) {
2751                                 brelse(bitmap_bh);
2752                                 goto make_io;
2753                         }
2754                         for (i = start; i < start + inodes_per_buffer; i++) {
2755                                 if (i == inode_offset)
2756                                         continue;
2757                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2758                                         break;
2759                         }
2760                         brelse(bitmap_bh);
2761                         if (i == start + inodes_per_buffer) {
2762                                 /* all other inodes are free, so skip I/O */
2763                                 memset(bh->b_data, 0, bh->b_size);
2764                                 set_buffer_uptodate(bh);
2765                                 unlock_buffer(bh);
2766                                 goto has_buffer;
2767                         }
2768                 }
2769
2770 make_io:
2771                 /*
2772                  * There are other valid inodes in the buffer, this inode
2773                  * has in-inode xattrs, or we don't have this inode in memory.
2774                  * Read the block from disk.
2775                  */
2776                 trace_ext3_load_inode(inode);
2777                 get_bh(bh);
2778                 bh->b_end_io = end_buffer_read_sync;
2779                 submit_bh(READ_META, bh);
2780                 wait_on_buffer(bh);
2781                 if (!buffer_uptodate(bh)) {
2782                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2783                                         "unable to read inode block - "
2784                                         "inode=%lu, block="E3FSBLK,
2785                                         inode->i_ino, block);
2786                         brelse(bh);
2787                         return -EIO;
2788                 }
2789         }
2790 has_buffer:
2791         iloc->bh = bh;
2792         return 0;
2793 }
2794
2795 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2796 {
2797         /* We have all inode data except xattrs in memory here. */
2798         return __ext3_get_inode_loc(inode, iloc,
2799                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2800 }
2801
2802 void ext3_set_inode_flags(struct inode *inode)
2803 {
2804         unsigned int flags = EXT3_I(inode)->i_flags;
2805
2806         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2807         if (flags & EXT3_SYNC_FL)
2808                 inode->i_flags |= S_SYNC;
2809         if (flags & EXT3_APPEND_FL)
2810                 inode->i_flags |= S_APPEND;
2811         if (flags & EXT3_IMMUTABLE_FL)
2812                 inode->i_flags |= S_IMMUTABLE;
2813         if (flags & EXT3_NOATIME_FL)
2814                 inode->i_flags |= S_NOATIME;
2815         if (flags & EXT3_DIRSYNC_FL)
2816                 inode->i_flags |= S_DIRSYNC;
2817 }
2818
2819 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2820 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2821 {
2822         unsigned int flags = ei->vfs_inode.i_flags;
2823
2824         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2825                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2826         if (flags & S_SYNC)
2827                 ei->i_flags |= EXT3_SYNC_FL;
2828         if (flags & S_APPEND)
2829                 ei->i_flags |= EXT3_APPEND_FL;
2830         if (flags & S_IMMUTABLE)
2831                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2832         if (flags & S_NOATIME)
2833                 ei->i_flags |= EXT3_NOATIME_FL;
2834         if (flags & S_DIRSYNC)
2835                 ei->i_flags |= EXT3_DIRSYNC_FL;
2836 }
2837
2838 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2839 {
2840         struct ext3_iloc iloc;
2841         struct ext3_inode *raw_inode;
2842         struct ext3_inode_info *ei;
2843         struct buffer_head *bh;
2844         struct inode *inode;
2845         journal_t *journal = EXT3_SB(sb)->s_journal;
2846         transaction_t *transaction;
2847         long ret;
2848         int block;
2849
2850         inode = iget_locked(sb, ino);
2851         if (!inode)
2852                 return ERR_PTR(-ENOMEM);
2853         if (!(inode->i_state & I_NEW))
2854                 return inode;
2855
2856         ei = EXT3_I(inode);
2857         ei->i_block_alloc_info = NULL;
2858
2859         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2860         if (ret < 0)
2861                 goto bad_inode;
2862         bh = iloc.bh;
2863         raw_inode = ext3_raw_inode(&iloc);
2864         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2865         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2866         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2867         if(!(test_opt (inode->i_sb, NO_UID32))) {
2868                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2869                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2870         }
2871         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2872         inode->i_size = le32_to_cpu(raw_inode->i_size);
2873         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2874         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2875         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2876         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2877
2878         ei->i_state_flags = 0;
2879         ei->i_dir_start_lookup = 0;
2880         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2881         /* We now have enough fields to check if the inode was active or not.
2882          * This is needed because nfsd might try to access dead inodes
2883          * the test is that same one that e2fsck uses
2884          * NeilBrown 1999oct15
2885          */
2886         if (inode->i_nlink == 0) {
2887                 if (inode->i_mode == 0 ||
2888                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2889                         /* this inode is deleted */
2890                         brelse (bh);
2891                         ret = -ESTALE;
2892                         goto bad_inode;
2893                 }
2894                 /* The only unlinked inodes we let through here have
2895                  * valid i_mode and are being read by the orphan
2896                  * recovery code: that's fine, we're about to complete
2897                  * the process of deleting those. */
2898         }
2899         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2900         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2901 #ifdef EXT3_FRAGMENTS
2902         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2903         ei->i_frag_no = raw_inode->i_frag;
2904         ei->i_frag_size = raw_inode->i_fsize;
2905 #endif
2906         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2907         if (!S_ISREG(inode->i_mode)) {
2908                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2909         } else {
2910                 inode->i_size |=
2911                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2912         }
2913         ei->i_disksize = inode->i_size;
2914         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2915         ei->i_block_group = iloc.block_group;
2916         /*
2917          * NOTE! The in-memory inode i_data array is in little-endian order
2918          * even on big-endian machines: we do NOT byteswap the block numbers!
2919          */
2920         for (block = 0; block < EXT3_N_BLOCKS; block++)
2921                 ei->i_data[block] = raw_inode->i_block[block];
2922         INIT_LIST_HEAD(&ei->i_orphan);
2923
2924         /*
2925          * Set transaction id's of transactions that have to be committed
2926          * to finish f[data]sync. We set them to currently running transaction
2927          * as we cannot be sure that the inode or some of its metadata isn't
2928          * part of the transaction - the inode could have been reclaimed and
2929          * now it is reread from disk.
2930          */
2931         if (journal) {
2932                 tid_t tid;
2933
2934                 spin_lock(&journal->j_state_lock);
2935                 if (journal->j_running_transaction)
2936                         transaction = journal->j_running_transaction;
2937                 else
2938                         transaction = journal->j_committing_transaction;
2939                 if (transaction)
2940                         tid = transaction->t_tid;
2941                 else
2942                         tid = journal->j_commit_sequence;
2943                 spin_unlock(&journal->j_state_lock);
2944                 atomic_set(&ei->i_sync_tid, tid);
2945                 atomic_set(&ei->i_datasync_tid, tid);
2946         }
2947
2948         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2949             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2950                 /*
2951                  * When mke2fs creates big inodes it does not zero out
2952                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2953                  * so ignore those first few inodes.
2954                  */
2955                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2956                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2957                     EXT3_INODE_SIZE(inode->i_sb)) {
2958                         brelse (bh);
2959                         ret = -EIO;
2960                         goto bad_inode;
2961                 }
2962                 if (ei->i_extra_isize == 0) {
2963                         /* The extra space is currently unused. Use it. */
2964                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2965                                             EXT3_GOOD_OLD_INODE_SIZE;
2966                 } else {
2967                         __le32 *magic = (void *)raw_inode +
2968                                         EXT3_GOOD_OLD_INODE_SIZE +
2969                                         ei->i_extra_isize;
2970                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2971                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2972                 }
2973         } else
2974                 ei->i_extra_isize = 0;
2975
2976         if (S_ISREG(inode->i_mode)) {
2977                 inode->i_op = &ext3_file_inode_operations;
2978                 inode->i_fop = &ext3_file_operations;
2979                 ext3_set_aops(inode);
2980         } else if (S_ISDIR(inode->i_mode)) {
2981                 inode->i_op = &ext3_dir_inode_operations;
2982                 inode->i_fop = &ext3_dir_operations;
2983         } else if (S_ISLNK(inode->i_mode)) {
2984                 if (ext3_inode_is_fast_symlink(inode)) {
2985                         inode->i_op = &ext3_fast_symlink_inode_operations;
2986                         nd_terminate_link(ei->i_data, inode->i_size,
2987                                 sizeof(ei->i_data) - 1);
2988                 } else {
2989                         inode->i_op = &ext3_symlink_inode_operations;
2990                         ext3_set_aops(inode);
2991                 }
2992         } else {
2993                 inode->i_op = &ext3_special_inode_operations;
2994                 if (raw_inode->i_block[0])
2995                         init_special_inode(inode, inode->i_mode,
2996                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2997                 else
2998                         init_special_inode(inode, inode->i_mode,
2999                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3000         }
3001         brelse (iloc.bh);
3002         ext3_set_inode_flags(inode);
3003         unlock_new_inode(inode);
3004         return inode;
3005
3006 bad_inode:
3007         iget_failed(inode);
3008         return ERR_PTR(ret);
3009 }
3010
3011 /*
3012  * Post the struct inode info into an on-disk inode location in the
3013  * buffer-cache.  This gobbles the caller's reference to the
3014  * buffer_head in the inode location struct.
3015  *
3016  * The caller must have write access to iloc->bh.
3017  */
3018 static int ext3_do_update_inode(handle_t *handle,
3019                                 struct inode *inode,
3020                                 struct ext3_iloc *iloc)
3021 {
3022         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3023         struct ext3_inode_info *ei = EXT3_I(inode);
3024         struct buffer_head *bh = iloc->bh;
3025         int err = 0, rc, block;
3026
3027 again:
3028         /* we can't allow multiple procs in here at once, its a bit racey */
3029         lock_buffer(bh);
3030
3031         /* For fields not not tracking in the in-memory inode,
3032          * initialise them to zero for new inodes. */
3033         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3034                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3035
3036         ext3_get_inode_flags(ei);
3037         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3038         if(!(test_opt(inode->i_sb, NO_UID32))) {
3039                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3040                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3041 /*
3042  * Fix up interoperability with old kernels. Otherwise, old inodes get
3043  * re-used with the upper 16 bits of the uid/gid intact
3044  */
3045                 if(!ei->i_dtime) {
3046                         raw_inode->i_uid_high =
3047                                 cpu_to_le16(high_16_bits(inode->i_uid));
3048                         raw_inode->i_gid_high =
3049                                 cpu_to_le16(high_16_bits(inode->i_gid));
3050                 } else {
3051                         raw_inode->i_uid_high = 0;
3052                         raw_inode->i_gid_high = 0;
3053                 }
3054         } else {
3055                 raw_inode->i_uid_low =
3056                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3057                 raw_inode->i_gid_low =
3058                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3059                 raw_inode->i_uid_high = 0;
3060                 raw_inode->i_gid_high = 0;
3061         }
3062         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3063         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3064         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3065         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3066         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3067         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3068         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3069         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3070 #ifdef EXT3_FRAGMENTS
3071         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3072         raw_inode->i_frag = ei->i_frag_no;
3073         raw_inode->i_fsize = ei->i_frag_size;
3074 #endif
3075         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3076         if (!S_ISREG(inode->i_mode)) {
3077                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3078         } else {
3079                 raw_inode->i_size_high =
3080                         cpu_to_le32(ei->i_disksize >> 32);
3081                 if (ei->i_disksize > 0x7fffffffULL) {
3082                         struct super_block *sb = inode->i_sb;
3083                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3084                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3085                             EXT3_SB(sb)->s_es->s_rev_level ==
3086                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3087                                /* If this is the first large file
3088                                 * created, add a flag to the superblock.
3089                                 */
3090                                 unlock_buffer(bh);
3091                                 err = ext3_journal_get_write_access(handle,
3092                                                 EXT3_SB(sb)->s_sbh);
3093                                 if (err)
3094                                         goto out_brelse;
3095
3096                                 ext3_update_dynamic_rev(sb);
3097                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3098                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3099                                 handle->h_sync = 1;
3100                                 err = ext3_journal_dirty_metadata(handle,
3101                                                 EXT3_SB(sb)->s_sbh);
3102                                 /* get our lock and start over */
3103                                 goto again;
3104                         }
3105                 }
3106         }
3107         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3108         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3109                 if (old_valid_dev(inode->i_rdev)) {
3110                         raw_inode->i_block[0] =
3111                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3112                         raw_inode->i_block[1] = 0;
3113                 } else {
3114                         raw_inode->i_block[0] = 0;
3115                         raw_inode->i_block[1] =
3116                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3117                         raw_inode->i_block[2] = 0;
3118                 }
3119         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3120                 raw_inode->i_block[block] = ei->i_data[block];
3121
3122         if (ei->i_extra_isize)
3123                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3124
3125         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3126         unlock_buffer(bh);
3127         rc = ext3_journal_dirty_metadata(handle, bh);
3128         if (!err)
3129                 err = rc;
3130         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3131
3132         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3133 out_brelse:
3134         brelse (bh);
3135         ext3_std_error(inode->i_sb, err);
3136         return err;
3137 }
3138
3139 /*
3140  * ext3_write_inode()
3141  *
3142  * We are called from a few places:
3143  *
3144  * - Within generic_file_write() for O_SYNC files.
3145  *   Here, there will be no transaction running. We wait for any running
3146  *   trasnaction to commit.
3147  *
3148  * - Within sys_sync(), kupdate and such.
3149  *   We wait on commit, if tol to.
3150  *
3151  * - Within prune_icache() (PF_MEMALLOC == true)
3152  *   Here we simply return.  We can't afford to block kswapd on the
3153  *   journal commit.
3154  *
3155  * In all cases it is actually safe for us to return without doing anything,
3156  * because the inode has been copied into a raw inode buffer in
3157  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3158  * knfsd.
3159  *
3160  * Note that we are absolutely dependent upon all inode dirtiers doing the
3161  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3162  * which we are interested.
3163  *
3164  * It would be a bug for them to not do this.  The code:
3165  *
3166  *      mark_inode_dirty(inode)
3167  *      stuff();
3168  *      inode->i_size = expr;
3169  *
3170  * is in error because a kswapd-driven write_inode() could occur while
3171  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3172  * will no longer be on the superblock's dirty inode list.
3173  */
3174 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3175 {
3176         if (current->flags & PF_MEMALLOC)
3177                 return 0;
3178
3179         if (ext3_journal_current_handle()) {
3180                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3181                 dump_stack();
3182                 return -EIO;
3183         }
3184
3185         if (wbc->sync_mode != WB_SYNC_ALL)
3186                 return 0;
3187
3188         return ext3_force_commit(inode->i_sb);
3189 }
3190
3191 /*
3192  * ext3_setattr()
3193  *
3194  * Called from notify_change.
3195  *
3196  * We want to trap VFS attempts to truncate the file as soon as
3197  * possible.  In particular, we want to make sure that when the VFS
3198  * shrinks i_size, we put the inode on the orphan list and modify
3199  * i_disksize immediately, so that during the subsequent flushing of
3200  * dirty pages and freeing of disk blocks, we can guarantee that any
3201  * commit will leave the blocks being flushed in an unused state on
3202  * disk.  (On recovery, the inode will get truncated and the blocks will
3203  * be freed, so we have a strong guarantee that no future commit will
3204  * leave these blocks visible to the user.)
3205  *
3206  * Called with inode->sem down.
3207  */
3208 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3209 {
3210         struct inode *inode = dentry->d_inode;
3211         int error, rc = 0;
3212         const unsigned int ia_valid = attr->ia_valid;
3213
3214         error = inode_change_ok(inode, attr);
3215         if (error)
3216                 return error;
3217
3218         if (is_quota_modification(inode, attr))
3219                 dquot_initialize(inode);
3220         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3221                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3222                 handle_t *handle;
3223
3224                 /* (user+group)*(old+new) structure, inode write (sb,
3225                  * inode block, ? - but truncate inode update has it) */
3226                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3227                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3228                 if (IS_ERR(handle)) {
3229                         error = PTR_ERR(handle);
3230                         goto err_out;
3231                 }
3232                 error = dquot_transfer(inode, attr);
3233                 if (error) {
3234                         ext3_journal_stop(handle);
3235                         return error;
3236                 }
3237                 /* Update corresponding info in inode so that everything is in
3238                  * one transaction */
3239                 if (attr->ia_valid & ATTR_UID)
3240                         inode->i_uid = attr->ia_uid;
3241                 if (attr->ia_valid & ATTR_GID)
3242                         inode->i_gid = attr->ia_gid;
3243                 error = ext3_mark_inode_dirty(handle, inode);
3244                 ext3_journal_stop(handle);
3245         }
3246
3247         if (S_ISREG(inode->i_mode) &&
3248             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3249                 handle_t *handle;
3250
3251                 handle = ext3_journal_start(inode, 3);
3252                 if (IS_ERR(handle)) {
3253                         error = PTR_ERR(handle);
3254                         goto err_out;
3255                 }
3256
3257                 error = ext3_orphan_add(handle, inode);
3258                 EXT3_I(inode)->i_disksize = attr->ia_size;
3259                 rc = ext3_mark_inode_dirty(handle, inode);
3260                 if (!error)
3261                         error = rc;
3262                 ext3_journal_stop(handle);
3263         }
3264
3265         if ((attr->ia_valid & ATTR_SIZE) &&
3266             attr->ia_size != i_size_read(inode)) {
3267                 rc = vmtruncate(inode, attr->ia_size);
3268                 if (rc)
3269                         goto err_out;
3270         }
3271
3272         setattr_copy(inode, attr);
3273         mark_inode_dirty(inode);
3274
3275         if (ia_valid & ATTR_MODE)
3276                 rc = ext3_acl_chmod(inode);
3277
3278 err_out:
3279         ext3_std_error(inode->i_sb, error);
3280         if (!error)
3281                 error = rc;
3282         return error;
3283 }
3284
3285
3286 /*
3287  * How many blocks doth make a writepage()?
3288  *
3289  * With N blocks per page, it may be:
3290  * N data blocks
3291  * 2 indirect block
3292  * 2 dindirect
3293  * 1 tindirect
3294  * N+5 bitmap blocks (from the above)
3295  * N+5 group descriptor summary blocks
3296  * 1 inode block
3297  * 1 superblock.
3298  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3299  *
3300  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3301  *
3302  * With ordered or writeback data it's the same, less the N data blocks.
3303  *
3304  * If the inode's direct blocks can hold an integral number of pages then a
3305  * page cannot straddle two indirect blocks, and we can only touch one indirect
3306  * and dindirect block, and the "5" above becomes "3".
3307  *
3308  * This still overestimates under most circumstances.  If we were to pass the
3309  * start and end offsets in here as well we could do block_to_path() on each
3310  * block and work out the exact number of indirects which are touched.  Pah.
3311  */
3312
3313 static int ext3_writepage_trans_blocks(struct inode *inode)
3314 {
3315         int bpp = ext3_journal_blocks_per_page(inode);
3316         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3317         int ret;
3318
3319         if (ext3_should_journal_data(inode))
3320                 ret = 3 * (bpp + indirects) + 2;
3321         else
3322                 ret = 2 * (bpp + indirects) + indirects + 2;
3323
3324 #ifdef CONFIG_QUOTA
3325         /* We know that structure was already allocated during dquot_initialize so
3326          * we will be updating only the data blocks + inodes */
3327         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3328 #endif
3329
3330         return ret;
3331 }
3332
3333 /*
3334  * The caller must have previously called ext3_reserve_inode_write().
3335  * Give this, we know that the caller already has write access to iloc->bh.
3336  */
3337 int ext3_mark_iloc_dirty(handle_t *handle,
3338                 struct inode *inode, struct ext3_iloc *iloc)
3339 {
3340         int err = 0;
3341
3342         /* the do_update_inode consumes one bh->b_count */
3343         get_bh(iloc->bh);
3344
3345         /* ext3_do_update_inode() does journal_dirty_metadata */
3346         err = ext3_do_update_inode(handle, inode, iloc);
3347         put_bh(iloc->bh);
3348         return err;
3349 }
3350
3351 /*
3352  * On success, We end up with an outstanding reference count against
3353  * iloc->bh.  This _must_ be cleaned up later.
3354  */
3355
3356 int
3357 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3358                          struct ext3_iloc *iloc)
3359 {
3360         int err = 0;
3361         if (handle) {
3362                 err = ext3_get_inode_loc(inode, iloc);
3363                 if (!err) {
3364                         BUFFER_TRACE(iloc->bh, "get_write_access");
3365                         err = ext3_journal_get_write_access(handle, iloc->bh);
3366                         if (err) {
3367                                 brelse(iloc->bh);
3368                                 iloc->bh = NULL;
3369                         }
3370                 }
3371         }
3372         ext3_std_error(inode->i_sb, err);
3373         return err;
3374 }
3375
3376 /*
3377  * What we do here is to mark the in-core inode as clean with respect to inode
3378  * dirtiness (it may still be data-dirty).
3379  * This means that the in-core inode may be reaped by prune_icache
3380  * without having to perform any I/O.  This is a very good thing,
3381  * because *any* task may call prune_icache - even ones which
3382  * have a transaction open against a different journal.
3383  *
3384  * Is this cheating?  Not really.  Sure, we haven't written the
3385  * inode out, but prune_icache isn't a user-visible syncing function.
3386  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3387  * we start and wait on commits.
3388  *
3389  * Is this efficient/effective?  Well, we're being nice to the system
3390  * by cleaning up our inodes proactively so they can be reaped
3391  * without I/O.  But we are potentially leaving up to five seconds'
3392  * worth of inodes floating about which prune_icache wants us to
3393  * write out.  One way to fix that would be to get prune_icache()
3394  * to do a write_super() to free up some memory.  It has the desired
3395  * effect.
3396  */
3397 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3398 {
3399         struct ext3_iloc iloc;
3400         int err;
3401
3402         might_sleep();
3403         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3404         err = ext3_reserve_inode_write(handle, inode, &iloc);
3405         if (!err)
3406                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3407         return err;
3408 }
3409
3410 /*
3411  * ext3_dirty_inode() is called from __mark_inode_dirty()
3412  *
3413  * We're really interested in the case where a file is being extended.
3414  * i_size has been changed by generic_commit_write() and we thus need
3415  * to include the updated inode in the current transaction.
3416  *
3417  * Also, dquot_alloc_space() will always dirty the inode when blocks
3418  * are allocated to the file.
3419  *
3420  * If the inode is marked synchronous, we don't honour that here - doing
3421  * so would cause a commit on atime updates, which we don't bother doing.
3422  * We handle synchronous inodes at the highest possible level.
3423  */
3424 void ext3_dirty_inode(struct inode *inode, int flags)
3425 {
3426         handle_t *current_handle = ext3_journal_current_handle();
3427         handle_t *handle;
3428
3429         handle = ext3_journal_start(inode, 2);
3430         if (IS_ERR(handle))
3431                 goto out;
3432         if (current_handle &&
3433                 current_handle->h_transaction != handle->h_transaction) {
3434                 /* This task has a transaction open against a different fs */
3435                 printk(KERN_EMERG "%s: transactions do not match!\n",
3436                        __func__);
3437         } else {
3438                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3439                                 current_handle);
3440                 ext3_mark_inode_dirty(handle, inode);
3441         }
3442         ext3_journal_stop(handle);
3443 out:
3444         return;
3445 }
3446
3447 #if 0
3448 /*
3449  * Bind an inode's backing buffer_head into this transaction, to prevent
3450  * it from being flushed to disk early.  Unlike
3451  * ext3_reserve_inode_write, this leaves behind no bh reference and
3452  * returns no iloc structure, so the caller needs to repeat the iloc
3453  * lookup to mark the inode dirty later.
3454  */
3455 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3456 {
3457         struct ext3_iloc iloc;
3458
3459         int err = 0;
3460         if (handle) {
3461                 err = ext3_get_inode_loc(inode, &iloc);
3462                 if (!err) {
3463                         BUFFER_TRACE(iloc.bh, "get_write_access");
3464                         err = journal_get_write_access(handle, iloc.bh);
3465                         if (!err)
3466                                 err = ext3_journal_dirty_metadata(handle,
3467                                                                   iloc.bh);
3468                         brelse(iloc.bh);
3469                 }
3470         }
3471         ext3_std_error(inode->i_sb, err);
3472         return err;
3473 }
3474 #endif
3475
3476 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3477 {
3478         journal_t *journal;
3479         handle_t *handle;
3480         int err;
3481
3482         /*
3483          * We have to be very careful here: changing a data block's
3484          * journaling status dynamically is dangerous.  If we write a
3485          * data block to the journal, change the status and then delete
3486          * that block, we risk forgetting to revoke the old log record
3487          * from the journal and so a subsequent replay can corrupt data.
3488          * So, first we make sure that the journal is empty and that
3489          * nobody is changing anything.
3490          */
3491
3492         journal = EXT3_JOURNAL(inode);
3493         if (is_journal_aborted(journal))
3494                 return -EROFS;
3495
3496         journal_lock_updates(journal);
3497         journal_flush(journal);
3498
3499         /*
3500          * OK, there are no updates running now, and all cached data is
3501          * synced to disk.  We are now in a completely consistent state
3502          * which doesn't have anything in the journal, and we know that
3503          * no filesystem updates are running, so it is safe to modify
3504          * the inode's in-core data-journaling state flag now.
3505          */
3506
3507         if (val)
3508                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3509         else
3510                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3511         ext3_set_aops(inode);
3512
3513         journal_unlock_updates(journal);
3514
3515         /* Finally we can mark the inode as dirty. */
3516
3517         handle = ext3_journal_start(inode, 1);
3518         if (IS_ERR(handle))
3519                 return PTR_ERR(handle);
3520
3521         err = ext3_mark_inode_dirty(handle, inode);
3522         handle->h_sync = 1;
3523         ext3_journal_stop(handle);
3524         ext3_std_error(inode->i_sb, err);
3525
3526         return err;
3527 }