Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/skbuff.h>
29 #include <linux/usb.h>
30 #include <linux/workqueue.h>
31 #include <linux/module.h>
32 #include <net/mac80211.h>
33 #include <asm/unaligned.h>
34
35 #include "zd_def.h"
36 #include "zd_mac.h"
37 #include "zd_usb.h"
38
39 static struct usb_device_id usb_ids[] = {
40         /* ZD1211 */
41         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
63         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
64         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
65         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
66         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
67         /* ZD1211B */
68         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
93         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
94         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
95         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
96         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
97         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
98         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
99         /* "Driverless" devices that need ejecting */
100         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
101         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
102         {}
103 };
104
105 MODULE_LICENSE("GPL");
106 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
107 MODULE_AUTHOR("Ulrich Kunitz");
108 MODULE_AUTHOR("Daniel Drake");
109 MODULE_VERSION("1.0");
110 MODULE_DEVICE_TABLE(usb, usb_ids);
111
112 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
113 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
114
115 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
116                             unsigned int count);
117
118 /* USB device initialization */
119 static void int_urb_complete(struct urb *urb);
120
121 static int request_fw_file(
122         const struct firmware **fw, const char *name, struct device *device)
123 {
124         int r;
125
126         dev_dbg_f(device, "fw name %s\n", name);
127
128         r = request_firmware(fw, name, device);
129         if (r)
130                 dev_err(device,
131                        "Could not load firmware file %s. Error number %d\n",
132                        name, r);
133         return r;
134 }
135
136 static inline u16 get_bcdDevice(const struct usb_device *udev)
137 {
138         return le16_to_cpu(udev->descriptor.bcdDevice);
139 }
140
141 enum upload_code_flags {
142         REBOOT = 1,
143 };
144
145 /* Ensures that MAX_TRANSFER_SIZE is even. */
146 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
147
148 static int upload_code(struct usb_device *udev,
149         const u8 *data, size_t size, u16 code_offset, int flags)
150 {
151         u8 *p;
152         int r;
153
154         /* USB request blocks need "kmalloced" buffers.
155          */
156         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
157         if (!p) {
158                 dev_err(&udev->dev, "out of memory\n");
159                 r = -ENOMEM;
160                 goto error;
161         }
162
163         size &= ~1;
164         while (size > 0) {
165                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
166                         size : MAX_TRANSFER_SIZE;
167
168                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
169
170                 memcpy(p, data, transfer_size);
171                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
172                         USB_REQ_FIRMWARE_DOWNLOAD,
173                         USB_DIR_OUT | USB_TYPE_VENDOR,
174                         code_offset, 0, p, transfer_size, 1000 /* ms */);
175                 if (r < 0) {
176                         dev_err(&udev->dev,
177                                "USB control request for firmware upload"
178                                " failed. Error number %d\n", r);
179                         goto error;
180                 }
181                 transfer_size = r & ~1;
182
183                 size -= transfer_size;
184                 data += transfer_size;
185                 code_offset += transfer_size/sizeof(u16);
186         }
187
188         if (flags & REBOOT) {
189                 u8 ret;
190
191                 /* Use "DMA-aware" buffer. */
192                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
193                         USB_REQ_FIRMWARE_CONFIRM,
194                         USB_DIR_IN | USB_TYPE_VENDOR,
195                         0, 0, p, sizeof(ret), 5000 /* ms */);
196                 if (r != sizeof(ret)) {
197                         dev_err(&udev->dev,
198                                 "control request firmeware confirmation failed."
199                                 " Return value %d\n", r);
200                         if (r >= 0)
201                                 r = -ENODEV;
202                         goto error;
203                 }
204                 ret = p[0];
205                 if (ret & 0x80) {
206                         dev_err(&udev->dev,
207                                 "Internal error while downloading."
208                                 " Firmware confirm return value %#04x\n",
209                                 (unsigned int)ret);
210                         r = -ENODEV;
211                         goto error;
212                 }
213                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
214                         (unsigned int)ret);
215         }
216
217         r = 0;
218 error:
219         kfree(p);
220         return r;
221 }
222
223 static u16 get_word(const void *data, u16 offset)
224 {
225         const __le16 *p = data;
226         return le16_to_cpu(p[offset]);
227 }
228
229 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
230                        const char* postfix)
231 {
232         scnprintf(buffer, size, "%s%s",
233                 usb->is_zd1211b ?
234                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
235                 postfix);
236         return buffer;
237 }
238
239 static int handle_version_mismatch(struct zd_usb *usb,
240         const struct firmware *ub_fw)
241 {
242         struct usb_device *udev = zd_usb_to_usbdev(usb);
243         const struct firmware *ur_fw = NULL;
244         int offset;
245         int r = 0;
246         char fw_name[128];
247
248         r = request_fw_file(&ur_fw,
249                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
250                 &udev->dev);
251         if (r)
252                 goto error;
253
254         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
255         if (r)
256                 goto error;
257
258         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
259         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
260                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
261
262         /* At this point, the vendor driver downloads the whole firmware
263          * image, hacks around with version IDs, and uploads it again,
264          * completely overwriting the boot code. We do not do this here as
265          * it is not required on any tested devices, and it is suspected to
266          * cause problems. */
267 error:
268         release_firmware(ur_fw);
269         return r;
270 }
271
272 static int upload_firmware(struct zd_usb *usb)
273 {
274         int r;
275         u16 fw_bcdDevice;
276         u16 bcdDevice;
277         struct usb_device *udev = zd_usb_to_usbdev(usb);
278         const struct firmware *ub_fw = NULL;
279         const struct firmware *uph_fw = NULL;
280         char fw_name[128];
281
282         bcdDevice = get_bcdDevice(udev);
283
284         r = request_fw_file(&ub_fw,
285                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
286                 &udev->dev);
287         if (r)
288                 goto error;
289
290         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
291
292         if (fw_bcdDevice != bcdDevice) {
293                 dev_info(&udev->dev,
294                         "firmware version %#06x and device bootcode version "
295                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
296                 if (bcdDevice <= 0x4313)
297                         dev_warn(&udev->dev, "device has old bootcode, please "
298                                 "report success or failure\n");
299
300                 r = handle_version_mismatch(usb, ub_fw);
301                 if (r)
302                         goto error;
303         } else {
304                 dev_dbg_f(&udev->dev,
305                         "firmware device id %#06x is equal to the "
306                         "actual device id\n", fw_bcdDevice);
307         }
308
309
310         r = request_fw_file(&uph_fw,
311                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
312                 &udev->dev);
313         if (r)
314                 goto error;
315
316         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
317         if (r) {
318                 dev_err(&udev->dev,
319                         "Could not upload firmware code uph. Error number %d\n",
320                         r);
321         }
322
323         /* FALL-THROUGH */
324 error:
325         release_firmware(ub_fw);
326         release_firmware(uph_fw);
327         return r;
328 }
329
330 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
331 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
332 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
333 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
334 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
335 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
336
337 /* Read data from device address space using "firmware interface" which does
338  * not require firmware to be loaded. */
339 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
340 {
341         int r;
342         struct usb_device *udev = zd_usb_to_usbdev(usb);
343         u8 *buf;
344
345         /* Use "DMA-aware" buffer. */
346         buf = kmalloc(len, GFP_KERNEL);
347         if (!buf)
348                 return -ENOMEM;
349         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
350                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
351                 buf, len, 5000);
352         if (r < 0) {
353                 dev_err(&udev->dev,
354                         "read over firmware interface failed: %d\n", r);
355                 goto exit;
356         } else if (r != len) {
357                 dev_err(&udev->dev,
358                         "incomplete read over firmware interface: %d/%d\n",
359                         r, len);
360                 r = -EIO;
361                 goto exit;
362         }
363         r = 0;
364         memcpy(data, buf, len);
365 exit:
366         kfree(buf);
367         return r;
368 }
369
370 #define urb_dev(urb) (&(urb)->dev->dev)
371
372 static inline void handle_regs_int_override(struct urb *urb)
373 {
374         struct zd_usb *usb = urb->context;
375         struct zd_usb_interrupt *intr = &usb->intr;
376
377         spin_lock(&intr->lock);
378         if (atomic_read(&intr->read_regs_enabled)) {
379                 atomic_set(&intr->read_regs_enabled, 0);
380                 intr->read_regs_int_overridden = 1;
381                 complete(&intr->read_regs.completion);
382         }
383         spin_unlock(&intr->lock);
384 }
385
386 static inline void handle_regs_int(struct urb *urb)
387 {
388         struct zd_usb *usb = urb->context;
389         struct zd_usb_interrupt *intr = &usb->intr;
390         int len;
391         u16 int_num;
392
393         ZD_ASSERT(in_interrupt());
394         spin_lock(&intr->lock);
395
396         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
397         if (int_num == CR_INTERRUPT) {
398                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
399                 spin_lock(&mac->lock);
400                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
401                                 USB_MAX_EP_INT_BUFFER);
402                 spin_unlock(&mac->lock);
403                 schedule_work(&mac->process_intr);
404         } else if (atomic_read(&intr->read_regs_enabled)) {
405                 len = urb->actual_length;
406                 intr->read_regs.length = urb->actual_length;
407                 if (len > sizeof(intr->read_regs.buffer))
408                         len = sizeof(intr->read_regs.buffer);
409
410                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
411
412                 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
413                  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
414                  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
415                  * retry unhandled. Next read-reg command then might catch
416                  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
417                  */
418                 if (!check_read_regs(usb, intr->read_regs.req,
419                                                 intr->read_regs.req_count))
420                         goto out;
421
422                 atomic_set(&intr->read_regs_enabled, 0);
423                 intr->read_regs_int_overridden = 0;
424                 complete(&intr->read_regs.completion);
425
426                 goto out;
427         }
428
429 out:
430         spin_unlock(&intr->lock);
431
432         /* CR_INTERRUPT might override read_reg too. */
433         if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
434                 handle_regs_int_override(urb);
435 }
436
437 static void int_urb_complete(struct urb *urb)
438 {
439         int r;
440         struct usb_int_header *hdr;
441         struct zd_usb *usb;
442         struct zd_usb_interrupt *intr;
443
444         switch (urb->status) {
445         case 0:
446                 break;
447         case -ESHUTDOWN:
448         case -EINVAL:
449         case -ENODEV:
450         case -ENOENT:
451         case -ECONNRESET:
452         case -EPIPE:
453                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
454                 return;
455         default:
456                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
457                 goto resubmit;
458         }
459
460         if (urb->actual_length < sizeof(hdr)) {
461                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
462                 goto resubmit;
463         }
464
465         hdr = urb->transfer_buffer;
466         if (hdr->type != USB_INT_TYPE) {
467                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
468                 goto resubmit;
469         }
470
471         /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
472          * pending USB_INT_ID_REGS causing read command timeout.
473          */
474         usb = urb->context;
475         intr = &usb->intr;
476         if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
477                 handle_regs_int_override(urb);
478
479         switch (hdr->id) {
480         case USB_INT_ID_REGS:
481                 handle_regs_int(urb);
482                 break;
483         case USB_INT_ID_RETRY_FAILED:
484                 zd_mac_tx_failed(urb);
485                 break;
486         default:
487                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
488                         (unsigned int)hdr->id);
489                 goto resubmit;
490         }
491
492 resubmit:
493         r = usb_submit_urb(urb, GFP_ATOMIC);
494         if (r) {
495                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
496                           urb, r);
497                 /* TODO: add worker to reset intr->urb */
498         }
499         return;
500 }
501
502 static inline int int_urb_interval(struct usb_device *udev)
503 {
504         switch (udev->speed) {
505         case USB_SPEED_HIGH:
506                 return 4;
507         case USB_SPEED_LOW:
508                 return 10;
509         case USB_SPEED_FULL:
510         default:
511                 return 1;
512         }
513 }
514
515 static inline int usb_int_enabled(struct zd_usb *usb)
516 {
517         unsigned long flags;
518         struct zd_usb_interrupt *intr = &usb->intr;
519         struct urb *urb;
520
521         spin_lock_irqsave(&intr->lock, flags);
522         urb = intr->urb;
523         spin_unlock_irqrestore(&intr->lock, flags);
524         return urb != NULL;
525 }
526
527 int zd_usb_enable_int(struct zd_usb *usb)
528 {
529         int r;
530         struct usb_device *udev = zd_usb_to_usbdev(usb);
531         struct zd_usb_interrupt *intr = &usb->intr;
532         struct urb *urb;
533
534         dev_dbg_f(zd_usb_dev(usb), "\n");
535
536         urb = usb_alloc_urb(0, GFP_KERNEL);
537         if (!urb) {
538                 r = -ENOMEM;
539                 goto out;
540         }
541
542         ZD_ASSERT(!irqs_disabled());
543         spin_lock_irq(&intr->lock);
544         if (intr->urb) {
545                 spin_unlock_irq(&intr->lock);
546                 r = 0;
547                 goto error_free_urb;
548         }
549         intr->urb = urb;
550         spin_unlock_irq(&intr->lock);
551
552         r = -ENOMEM;
553         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
554                                           GFP_KERNEL, &intr->buffer_dma);
555         if (!intr->buffer) {
556                 dev_dbg_f(zd_usb_dev(usb),
557                         "couldn't allocate transfer_buffer\n");
558                 goto error_set_urb_null;
559         }
560
561         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
562                          intr->buffer, USB_MAX_EP_INT_BUFFER,
563                          int_urb_complete, usb,
564                          intr->interval);
565         urb->transfer_dma = intr->buffer_dma;
566         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
567
568         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
569         r = usb_submit_urb(urb, GFP_KERNEL);
570         if (r) {
571                 dev_dbg_f(zd_usb_dev(usb),
572                          "Couldn't submit urb. Error number %d\n", r);
573                 goto error;
574         }
575
576         return 0;
577 error:
578         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
579                           intr->buffer, intr->buffer_dma);
580 error_set_urb_null:
581         spin_lock_irq(&intr->lock);
582         intr->urb = NULL;
583         spin_unlock_irq(&intr->lock);
584 error_free_urb:
585         usb_free_urb(urb);
586 out:
587         return r;
588 }
589
590 void zd_usb_disable_int(struct zd_usb *usb)
591 {
592         unsigned long flags;
593         struct usb_device *udev = zd_usb_to_usbdev(usb);
594         struct zd_usb_interrupt *intr = &usb->intr;
595         struct urb *urb;
596         void *buffer;
597         dma_addr_t buffer_dma;
598
599         spin_lock_irqsave(&intr->lock, flags);
600         urb = intr->urb;
601         if (!urb) {
602                 spin_unlock_irqrestore(&intr->lock, flags);
603                 return;
604         }
605         intr->urb = NULL;
606         buffer = intr->buffer;
607         buffer_dma = intr->buffer_dma;
608         intr->buffer = NULL;
609         spin_unlock_irqrestore(&intr->lock, flags);
610
611         usb_kill_urb(urb);
612         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
613         usb_free_urb(urb);
614
615         if (buffer)
616                 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
617                                   buffer, buffer_dma);
618 }
619
620 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
621                              unsigned int length)
622 {
623         int i;
624         const struct rx_length_info *length_info;
625
626         if (length < sizeof(struct rx_length_info)) {
627                 /* It's not a complete packet anyhow. */
628                 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
629                                            length);
630                 return;
631         }
632         length_info = (struct rx_length_info *)
633                 (buffer + length - sizeof(struct rx_length_info));
634
635         /* It might be that three frames are merged into a single URB
636          * transaction. We have to check for the length info tag.
637          *
638          * While testing we discovered that length_info might be unaligned,
639          * because if USB transactions are merged, the last packet will not
640          * be padded. Unaligned access might also happen if the length_info
641          * structure is not present.
642          */
643         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
644         {
645                 unsigned int l, k, n;
646                 for (i = 0, l = 0;; i++) {
647                         k = get_unaligned_le16(&length_info->length[i]);
648                         if (k == 0)
649                                 return;
650                         n = l+k;
651                         if (n > length)
652                                 return;
653                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
654                         if (i >= 2)
655                                 return;
656                         l = (n+3) & ~3;
657                 }
658         } else {
659                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
660         }
661 }
662
663 static void rx_urb_complete(struct urb *urb)
664 {
665         int r;
666         struct zd_usb *usb;
667         struct zd_usb_rx *rx;
668         const u8 *buffer;
669         unsigned int length;
670
671         switch (urb->status) {
672         case 0:
673                 break;
674         case -ESHUTDOWN:
675         case -EINVAL:
676         case -ENODEV:
677         case -ENOENT:
678         case -ECONNRESET:
679         case -EPIPE:
680                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
681                 return;
682         default:
683                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
684                 goto resubmit;
685         }
686
687         buffer = urb->transfer_buffer;
688         length = urb->actual_length;
689         usb = urb->context;
690         rx = &usb->rx;
691
692         tasklet_schedule(&rx->reset_timer_tasklet);
693
694         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
695                 /* If there is an old first fragment, we don't care. */
696                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
697                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
698                 spin_lock(&rx->lock);
699                 memcpy(rx->fragment, buffer, length);
700                 rx->fragment_length = length;
701                 spin_unlock(&rx->lock);
702                 goto resubmit;
703         }
704
705         spin_lock(&rx->lock);
706         if (rx->fragment_length > 0) {
707                 /* We are on a second fragment, we believe */
708                 ZD_ASSERT(length + rx->fragment_length <=
709                           ARRAY_SIZE(rx->fragment));
710                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
711                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
712                 handle_rx_packet(usb, rx->fragment,
713                                  rx->fragment_length + length);
714                 rx->fragment_length = 0;
715                 spin_unlock(&rx->lock);
716         } else {
717                 spin_unlock(&rx->lock);
718                 handle_rx_packet(usb, buffer, length);
719         }
720
721 resubmit:
722         r = usb_submit_urb(urb, GFP_ATOMIC);
723         if (r)
724                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
725 }
726
727 static struct urb *alloc_rx_urb(struct zd_usb *usb)
728 {
729         struct usb_device *udev = zd_usb_to_usbdev(usb);
730         struct urb *urb;
731         void *buffer;
732
733         urb = usb_alloc_urb(0, GFP_KERNEL);
734         if (!urb)
735                 return NULL;
736         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
737                                     &urb->transfer_dma);
738         if (!buffer) {
739                 usb_free_urb(urb);
740                 return NULL;
741         }
742
743         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
744                           buffer, USB_MAX_RX_SIZE,
745                           rx_urb_complete, usb);
746         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
747
748         return urb;
749 }
750
751 static void free_rx_urb(struct urb *urb)
752 {
753         if (!urb)
754                 return;
755         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
756                           urb->transfer_buffer, urb->transfer_dma);
757         usb_free_urb(urb);
758 }
759
760 static int __zd_usb_enable_rx(struct zd_usb *usb)
761 {
762         int i, r;
763         struct zd_usb_rx *rx = &usb->rx;
764         struct urb **urbs;
765
766         dev_dbg_f(zd_usb_dev(usb), "\n");
767
768         r = -ENOMEM;
769         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
770         if (!urbs)
771                 goto error;
772         for (i = 0; i < RX_URBS_COUNT; i++) {
773                 urbs[i] = alloc_rx_urb(usb);
774                 if (!urbs[i])
775                         goto error;
776         }
777
778         ZD_ASSERT(!irqs_disabled());
779         spin_lock_irq(&rx->lock);
780         if (rx->urbs) {
781                 spin_unlock_irq(&rx->lock);
782                 r = 0;
783                 goto error;
784         }
785         rx->urbs = urbs;
786         rx->urbs_count = RX_URBS_COUNT;
787         spin_unlock_irq(&rx->lock);
788
789         for (i = 0; i < RX_URBS_COUNT; i++) {
790                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
791                 if (r)
792                         goto error_submit;
793         }
794
795         return 0;
796 error_submit:
797         for (i = 0; i < RX_URBS_COUNT; i++) {
798                 usb_kill_urb(urbs[i]);
799         }
800         spin_lock_irq(&rx->lock);
801         rx->urbs = NULL;
802         rx->urbs_count = 0;
803         spin_unlock_irq(&rx->lock);
804 error:
805         if (urbs) {
806                 for (i = 0; i < RX_URBS_COUNT; i++)
807                         free_rx_urb(urbs[i]);
808         }
809         return r;
810 }
811
812 int zd_usb_enable_rx(struct zd_usb *usb)
813 {
814         int r;
815         struct zd_usb_rx *rx = &usb->rx;
816
817         mutex_lock(&rx->setup_mutex);
818         r = __zd_usb_enable_rx(usb);
819         mutex_unlock(&rx->setup_mutex);
820
821         zd_usb_reset_rx_idle_timer(usb);
822
823         return r;
824 }
825
826 static void __zd_usb_disable_rx(struct zd_usb *usb)
827 {
828         int i;
829         unsigned long flags;
830         struct urb **urbs;
831         unsigned int count;
832         struct zd_usb_rx *rx = &usb->rx;
833
834         spin_lock_irqsave(&rx->lock, flags);
835         urbs = rx->urbs;
836         count = rx->urbs_count;
837         spin_unlock_irqrestore(&rx->lock, flags);
838         if (!urbs)
839                 return;
840
841         for (i = 0; i < count; i++) {
842                 usb_kill_urb(urbs[i]);
843                 free_rx_urb(urbs[i]);
844         }
845         kfree(urbs);
846
847         spin_lock_irqsave(&rx->lock, flags);
848         rx->urbs = NULL;
849         rx->urbs_count = 0;
850         spin_unlock_irqrestore(&rx->lock, flags);
851 }
852
853 void zd_usb_disable_rx(struct zd_usb *usb)
854 {
855         struct zd_usb_rx *rx = &usb->rx;
856
857         mutex_lock(&rx->setup_mutex);
858         __zd_usb_disable_rx(usb);
859         mutex_unlock(&rx->setup_mutex);
860
861         tasklet_kill(&rx->reset_timer_tasklet);
862         cancel_delayed_work_sync(&rx->idle_work);
863 }
864
865 static void zd_usb_reset_rx(struct zd_usb *usb)
866 {
867         bool do_reset;
868         struct zd_usb_rx *rx = &usb->rx;
869         unsigned long flags;
870
871         mutex_lock(&rx->setup_mutex);
872
873         spin_lock_irqsave(&rx->lock, flags);
874         do_reset = rx->urbs != NULL;
875         spin_unlock_irqrestore(&rx->lock, flags);
876
877         if (do_reset) {
878                 __zd_usb_disable_rx(usb);
879                 __zd_usb_enable_rx(usb);
880         }
881
882         mutex_unlock(&rx->setup_mutex);
883
884         if (do_reset)
885                 zd_usb_reset_rx_idle_timer(usb);
886 }
887
888 /**
889  * zd_usb_disable_tx - disable transmission
890  * @usb: the zd1211rw-private USB structure
891  *
892  * Frees all URBs in the free list and marks the transmission as disabled.
893  */
894 void zd_usb_disable_tx(struct zd_usb *usb)
895 {
896         struct zd_usb_tx *tx = &usb->tx;
897         unsigned long flags;
898
899         atomic_set(&tx->enabled, 0);
900
901         /* kill all submitted tx-urbs */
902         usb_kill_anchored_urbs(&tx->submitted);
903
904         spin_lock_irqsave(&tx->lock, flags);
905         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
906         WARN_ON(tx->submitted_urbs != 0);
907         tx->submitted_urbs = 0;
908         spin_unlock_irqrestore(&tx->lock, flags);
909
910         /* The stopped state is ignored, relying on ieee80211_wake_queues()
911          * in a potentionally following zd_usb_enable_tx().
912          */
913 }
914
915 /**
916  * zd_usb_enable_tx - enables transmission
917  * @usb: a &struct zd_usb pointer
918  *
919  * This function enables transmission and prepares the &zd_usb_tx data
920  * structure.
921  */
922 void zd_usb_enable_tx(struct zd_usb *usb)
923 {
924         unsigned long flags;
925         struct zd_usb_tx *tx = &usb->tx;
926
927         spin_lock_irqsave(&tx->lock, flags);
928         atomic_set(&tx->enabled, 1);
929         tx->submitted_urbs = 0;
930         ieee80211_wake_queues(zd_usb_to_hw(usb));
931         tx->stopped = 0;
932         spin_unlock_irqrestore(&tx->lock, flags);
933 }
934
935 static void tx_dec_submitted_urbs(struct zd_usb *usb)
936 {
937         struct zd_usb_tx *tx = &usb->tx;
938         unsigned long flags;
939
940         spin_lock_irqsave(&tx->lock, flags);
941         --tx->submitted_urbs;
942         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
943                 ieee80211_wake_queues(zd_usb_to_hw(usb));
944                 tx->stopped = 0;
945         }
946         spin_unlock_irqrestore(&tx->lock, flags);
947 }
948
949 static void tx_inc_submitted_urbs(struct zd_usb *usb)
950 {
951         struct zd_usb_tx *tx = &usb->tx;
952         unsigned long flags;
953
954         spin_lock_irqsave(&tx->lock, flags);
955         ++tx->submitted_urbs;
956         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
957                 ieee80211_stop_queues(zd_usb_to_hw(usb));
958                 tx->stopped = 1;
959         }
960         spin_unlock_irqrestore(&tx->lock, flags);
961 }
962
963 /**
964  * tx_urb_complete - completes the execution of an URB
965  * @urb: a URB
966  *
967  * This function is called if the URB has been transferred to a device or an
968  * error has happened.
969  */
970 static void tx_urb_complete(struct urb *urb)
971 {
972         int r;
973         struct sk_buff *skb;
974         struct ieee80211_tx_info *info;
975         struct zd_usb *usb;
976         struct zd_usb_tx *tx;
977
978         skb = (struct sk_buff *)urb->context;
979         info = IEEE80211_SKB_CB(skb);
980         /*
981          * grab 'usb' pointer before handing off the skb (since
982          * it might be freed by zd_mac_tx_to_dev or mac80211)
983          */
984         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
985         tx = &usb->tx;
986
987         switch (urb->status) {
988         case 0:
989                 break;
990         case -ESHUTDOWN:
991         case -EINVAL:
992         case -ENODEV:
993         case -ENOENT:
994         case -ECONNRESET:
995         case -EPIPE:
996                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
997                 break;
998         default:
999                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
1000                 goto resubmit;
1001         }
1002 free_urb:
1003         skb_unlink(skb, &usb->tx.submitted_skbs);
1004         zd_mac_tx_to_dev(skb, urb->status);
1005         usb_free_urb(urb);
1006         tx_dec_submitted_urbs(usb);
1007         return;
1008 resubmit:
1009         usb_anchor_urb(urb, &tx->submitted);
1010         r = usb_submit_urb(urb, GFP_ATOMIC);
1011         if (r) {
1012                 usb_unanchor_urb(urb);
1013                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1014                 goto free_urb;
1015         }
1016 }
1017
1018 /**
1019  * zd_usb_tx: initiates transfer of a frame of the device
1020  *
1021  * @usb: the zd1211rw-private USB structure
1022  * @skb: a &struct sk_buff pointer
1023  *
1024  * This function tranmits a frame to the device. It doesn't wait for
1025  * completion. The frame must contain the control set and have all the
1026  * control set information available.
1027  *
1028  * The function returns 0 if the transfer has been successfully initiated.
1029  */
1030 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1031 {
1032         int r;
1033         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1034         struct usb_device *udev = zd_usb_to_usbdev(usb);
1035         struct urb *urb;
1036         struct zd_usb_tx *tx = &usb->tx;
1037
1038         if (!atomic_read(&tx->enabled)) {
1039                 r = -ENOENT;
1040                 goto out;
1041         }
1042
1043         urb = usb_alloc_urb(0, GFP_ATOMIC);
1044         if (!urb) {
1045                 r = -ENOMEM;
1046                 goto out;
1047         }
1048
1049         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1050                           skb->data, skb->len, tx_urb_complete, skb);
1051
1052         info->rate_driver_data[1] = (void *)jiffies;
1053         skb_queue_tail(&tx->submitted_skbs, skb);
1054         usb_anchor_urb(urb, &tx->submitted);
1055
1056         r = usb_submit_urb(urb, GFP_ATOMIC);
1057         if (r) {
1058                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1059                 usb_unanchor_urb(urb);
1060                 skb_unlink(skb, &tx->submitted_skbs);
1061                 goto error;
1062         }
1063         tx_inc_submitted_urbs(usb);
1064         return 0;
1065 error:
1066         usb_free_urb(urb);
1067 out:
1068         return r;
1069 }
1070
1071 static bool zd_tx_timeout(struct zd_usb *usb)
1072 {
1073         struct zd_usb_tx *tx = &usb->tx;
1074         struct sk_buff_head *q = &tx->submitted_skbs;
1075         struct sk_buff *skb, *skbnext;
1076         struct ieee80211_tx_info *info;
1077         unsigned long flags, trans_start;
1078         bool have_timedout = false;
1079
1080         spin_lock_irqsave(&q->lock, flags);
1081         skb_queue_walk_safe(q, skb, skbnext) {
1082                 info = IEEE80211_SKB_CB(skb);
1083                 trans_start = (unsigned long)info->rate_driver_data[1];
1084
1085                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1086                         have_timedout = true;
1087                         break;
1088                 }
1089         }
1090         spin_unlock_irqrestore(&q->lock, flags);
1091
1092         return have_timedout;
1093 }
1094
1095 static void zd_tx_watchdog_handler(struct work_struct *work)
1096 {
1097         struct zd_usb *usb =
1098                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1099         struct zd_usb_tx *tx = &usb->tx;
1100
1101         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1102                 goto out;
1103         if (!zd_tx_timeout(usb))
1104                 goto out;
1105
1106         /* TX halted, try reset */
1107         dev_warn(zd_usb_dev(usb), "TX-stall detected, reseting device...");
1108
1109         usb_queue_reset_device(usb->intf);
1110
1111         /* reset will stop this worker, don't rearm */
1112         return;
1113 out:
1114         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1115                            ZD_TX_WATCHDOG_INTERVAL);
1116 }
1117
1118 void zd_tx_watchdog_enable(struct zd_usb *usb)
1119 {
1120         struct zd_usb_tx *tx = &usb->tx;
1121
1122         if (!tx->watchdog_enabled) {
1123                 dev_dbg_f(zd_usb_dev(usb), "\n");
1124                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1125                                    ZD_TX_WATCHDOG_INTERVAL);
1126                 tx->watchdog_enabled = 1;
1127         }
1128 }
1129
1130 void zd_tx_watchdog_disable(struct zd_usb *usb)
1131 {
1132         struct zd_usb_tx *tx = &usb->tx;
1133
1134         if (tx->watchdog_enabled) {
1135                 dev_dbg_f(zd_usb_dev(usb), "\n");
1136                 tx->watchdog_enabled = 0;
1137                 cancel_delayed_work_sync(&tx->watchdog_work);
1138         }
1139 }
1140
1141 static void zd_rx_idle_timer_handler(struct work_struct *work)
1142 {
1143         struct zd_usb *usb =
1144                 container_of(work, struct zd_usb, rx.idle_work.work);
1145         struct zd_mac *mac = zd_usb_to_mac(usb);
1146
1147         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1148                 return;
1149
1150         dev_dbg_f(zd_usb_dev(usb), "\n");
1151
1152         /* 30 seconds since last rx, reset rx */
1153         zd_usb_reset_rx(usb);
1154 }
1155
1156 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1157 {
1158         struct zd_usb *usb = (struct zd_usb *)param;
1159
1160         zd_usb_reset_rx_idle_timer(usb);
1161 }
1162
1163 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1164 {
1165         struct zd_usb_rx *rx = &usb->rx;
1166
1167         cancel_delayed_work(&rx->idle_work);
1168         queue_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1169 }
1170
1171 static inline void init_usb_interrupt(struct zd_usb *usb)
1172 {
1173         struct zd_usb_interrupt *intr = &usb->intr;
1174
1175         spin_lock_init(&intr->lock);
1176         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1177         init_completion(&intr->read_regs.completion);
1178         atomic_set(&intr->read_regs_enabled, 0);
1179         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1180 }
1181
1182 static inline void init_usb_rx(struct zd_usb *usb)
1183 {
1184         struct zd_usb_rx *rx = &usb->rx;
1185
1186         spin_lock_init(&rx->lock);
1187         mutex_init(&rx->setup_mutex);
1188         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1189                 rx->usb_packet_size = 512;
1190         } else {
1191                 rx->usb_packet_size = 64;
1192         }
1193         ZD_ASSERT(rx->fragment_length == 0);
1194         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1195         rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1196         rx->reset_timer_tasklet.data = (unsigned long)usb;
1197 }
1198
1199 static inline void init_usb_tx(struct zd_usb *usb)
1200 {
1201         struct zd_usb_tx *tx = &usb->tx;
1202
1203         spin_lock_init(&tx->lock);
1204         atomic_set(&tx->enabled, 0);
1205         tx->stopped = 0;
1206         skb_queue_head_init(&tx->submitted_skbs);
1207         init_usb_anchor(&tx->submitted);
1208         tx->submitted_urbs = 0;
1209         tx->watchdog_enabled = 0;
1210         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1211 }
1212
1213 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1214                  struct usb_interface *intf)
1215 {
1216         memset(usb, 0, sizeof(*usb));
1217         usb->intf = usb_get_intf(intf);
1218         usb_set_intfdata(usb->intf, hw);
1219         init_usb_anchor(&usb->submitted_cmds);
1220         init_usb_interrupt(usb);
1221         init_usb_tx(usb);
1222         init_usb_rx(usb);
1223 }
1224
1225 void zd_usb_clear(struct zd_usb *usb)
1226 {
1227         usb_set_intfdata(usb->intf, NULL);
1228         usb_put_intf(usb->intf);
1229         ZD_MEMCLEAR(usb, sizeof(*usb));
1230         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1231 }
1232
1233 static const char *speed(enum usb_device_speed speed)
1234 {
1235         switch (speed) {
1236         case USB_SPEED_LOW:
1237                 return "low";
1238         case USB_SPEED_FULL:
1239                 return "full";
1240         case USB_SPEED_HIGH:
1241                 return "high";
1242         default:
1243                 return "unknown speed";
1244         }
1245 }
1246
1247 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1248 {
1249         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1250                 le16_to_cpu(udev->descriptor.idVendor),
1251                 le16_to_cpu(udev->descriptor.idProduct),
1252                 get_bcdDevice(udev),
1253                 speed(udev->speed));
1254 }
1255
1256 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1257 {
1258         struct usb_device *udev = interface_to_usbdev(usb->intf);
1259         return scnprint_id(udev, buffer, size);
1260 }
1261
1262 #ifdef DEBUG
1263 static void print_id(struct usb_device *udev)
1264 {
1265         char buffer[40];
1266
1267         scnprint_id(udev, buffer, sizeof(buffer));
1268         buffer[sizeof(buffer)-1] = 0;
1269         dev_dbg_f(&udev->dev, "%s\n", buffer);
1270 }
1271 #else
1272 #define print_id(udev) do { } while (0)
1273 #endif
1274
1275 static int eject_installer(struct usb_interface *intf)
1276 {
1277         struct usb_device *udev = interface_to_usbdev(intf);
1278         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1279         struct usb_endpoint_descriptor *endpoint;
1280         unsigned char *cmd;
1281         u8 bulk_out_ep;
1282         int r;
1283
1284         /* Find bulk out endpoint */
1285         for (r = 1; r >= 0; r--) {
1286                 endpoint = &iface_desc->endpoint[r].desc;
1287                 if (usb_endpoint_dir_out(endpoint) &&
1288                     usb_endpoint_xfer_bulk(endpoint)) {
1289                         bulk_out_ep = endpoint->bEndpointAddress;
1290                         break;
1291                 }
1292         }
1293         if (r == -1) {
1294                 dev_err(&udev->dev,
1295                         "zd1211rw: Could not find bulk out endpoint\n");
1296                 return -ENODEV;
1297         }
1298
1299         cmd = kzalloc(31, GFP_KERNEL);
1300         if (cmd == NULL)
1301                 return -ENODEV;
1302
1303         /* USB bulk command block */
1304         cmd[0] = 0x55;  /* bulk command signature */
1305         cmd[1] = 0x53;  /* bulk command signature */
1306         cmd[2] = 0x42;  /* bulk command signature */
1307         cmd[3] = 0x43;  /* bulk command signature */
1308         cmd[14] = 6;    /* command length */
1309
1310         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1311         cmd[19] = 0x2;  /* eject disc */
1312
1313         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1314         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1315                 cmd, 31, NULL, 2000);
1316         kfree(cmd);
1317         if (r)
1318                 return r;
1319
1320         /* At this point, the device disconnects and reconnects with the real
1321          * ID numbers. */
1322
1323         usb_set_intfdata(intf, NULL);
1324         return 0;
1325 }
1326
1327 int zd_usb_init_hw(struct zd_usb *usb)
1328 {
1329         int r;
1330         struct zd_mac *mac = zd_usb_to_mac(usb);
1331
1332         dev_dbg_f(zd_usb_dev(usb), "\n");
1333
1334         r = upload_firmware(usb);
1335         if (r) {
1336                 dev_err(zd_usb_dev(usb),
1337                        "couldn't load firmware. Error number %d\n", r);
1338                 return r;
1339         }
1340
1341         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1342         if (r) {
1343                 dev_dbg_f(zd_usb_dev(usb),
1344                         "couldn't reset configuration. Error number %d\n", r);
1345                 return r;
1346         }
1347
1348         r = zd_mac_init_hw(mac->hw);
1349         if (r) {
1350                 dev_dbg_f(zd_usb_dev(usb),
1351                          "couldn't initialize mac. Error number %d\n", r);
1352                 return r;
1353         }
1354
1355         usb->initialized = 1;
1356         return 0;
1357 }
1358
1359 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1360 {
1361         int r;
1362         struct usb_device *udev = interface_to_usbdev(intf);
1363         struct zd_usb *usb;
1364         struct ieee80211_hw *hw = NULL;
1365
1366         print_id(udev);
1367
1368         if (id->driver_info & DEVICE_INSTALLER)
1369                 return eject_installer(intf);
1370
1371         switch (udev->speed) {
1372         case USB_SPEED_LOW:
1373         case USB_SPEED_FULL:
1374         case USB_SPEED_HIGH:
1375                 break;
1376         default:
1377                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1378                 r = -ENODEV;
1379                 goto error;
1380         }
1381
1382         r = usb_reset_device(udev);
1383         if (r) {
1384                 dev_err(&intf->dev,
1385                         "couldn't reset usb device. Error number %d\n", r);
1386                 goto error;
1387         }
1388
1389         hw = zd_mac_alloc_hw(intf);
1390         if (hw == NULL) {
1391                 r = -ENOMEM;
1392                 goto error;
1393         }
1394
1395         usb = &zd_hw_mac(hw)->chip.usb;
1396         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1397
1398         r = zd_mac_preinit_hw(hw);
1399         if (r) {
1400                 dev_dbg_f(&intf->dev,
1401                          "couldn't initialize mac. Error number %d\n", r);
1402                 goto error;
1403         }
1404
1405         r = ieee80211_register_hw(hw);
1406         if (r) {
1407                 dev_dbg_f(&intf->dev,
1408                          "couldn't register device. Error number %d\n", r);
1409                 goto error;
1410         }
1411
1412         dev_dbg_f(&intf->dev, "successful\n");
1413         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1414         return 0;
1415 error:
1416         usb_reset_device(interface_to_usbdev(intf));
1417         if (hw) {
1418                 zd_mac_clear(zd_hw_mac(hw));
1419                 ieee80211_free_hw(hw);
1420         }
1421         return r;
1422 }
1423
1424 static void disconnect(struct usb_interface *intf)
1425 {
1426         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1427         struct zd_mac *mac;
1428         struct zd_usb *usb;
1429
1430         /* Either something really bad happened, or we're just dealing with
1431          * a DEVICE_INSTALLER. */
1432         if (hw == NULL)
1433                 return;
1434
1435         mac = zd_hw_mac(hw);
1436         usb = &mac->chip.usb;
1437
1438         dev_dbg_f(zd_usb_dev(usb), "\n");
1439
1440         ieee80211_unregister_hw(hw);
1441
1442         /* Just in case something has gone wrong! */
1443         zd_usb_disable_tx(usb);
1444         zd_usb_disable_rx(usb);
1445         zd_usb_disable_int(usb);
1446
1447         /* If the disconnect has been caused by a removal of the
1448          * driver module, the reset allows reloading of the driver. If the
1449          * reset will not be executed here, the upload of the firmware in the
1450          * probe function caused by the reloading of the driver will fail.
1451          */
1452         usb_reset_device(interface_to_usbdev(intf));
1453
1454         zd_mac_clear(mac);
1455         ieee80211_free_hw(hw);
1456         dev_dbg(&intf->dev, "disconnected\n");
1457 }
1458
1459 static void zd_usb_resume(struct zd_usb *usb)
1460 {
1461         struct zd_mac *mac = zd_usb_to_mac(usb);
1462         int r;
1463
1464         dev_dbg_f(zd_usb_dev(usb), "\n");
1465
1466         r = zd_op_start(zd_usb_to_hw(usb));
1467         if (r < 0) {
1468                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1469                          "with error code %d. Retrying...\n", r);
1470                 if (usb->was_running)
1471                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1472                 usb_queue_reset_device(usb->intf);
1473                 return;
1474         }
1475
1476         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1477                 r = zd_restore_settings(mac);
1478                 if (r < 0) {
1479                         dev_dbg(zd_usb_dev(usb),
1480                                 "failed to restore settings, %d\n", r);
1481                         return;
1482                 }
1483         }
1484 }
1485
1486 static void zd_usb_stop(struct zd_usb *usb)
1487 {
1488         dev_dbg_f(zd_usb_dev(usb), "\n");
1489
1490         zd_op_stop(zd_usb_to_hw(usb));
1491
1492         zd_usb_disable_tx(usb);
1493         zd_usb_disable_rx(usb);
1494         zd_usb_disable_int(usb);
1495
1496         usb->initialized = 0;
1497 }
1498
1499 static int pre_reset(struct usb_interface *intf)
1500 {
1501         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1502         struct zd_mac *mac;
1503         struct zd_usb *usb;
1504
1505         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1506                 return 0;
1507
1508         mac = zd_hw_mac(hw);
1509         usb = &mac->chip.usb;
1510
1511         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1512
1513         zd_usb_stop(usb);
1514
1515         mutex_lock(&mac->chip.mutex);
1516         return 0;
1517 }
1518
1519 static int post_reset(struct usb_interface *intf)
1520 {
1521         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1522         struct zd_mac *mac;
1523         struct zd_usb *usb;
1524
1525         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1526                 return 0;
1527
1528         mac = zd_hw_mac(hw);
1529         usb = &mac->chip.usb;
1530
1531         mutex_unlock(&mac->chip.mutex);
1532
1533         if (usb->was_running)
1534                 zd_usb_resume(usb);
1535         return 0;
1536 }
1537
1538 static struct usb_driver driver = {
1539         .name           = KBUILD_MODNAME,
1540         .id_table       = usb_ids,
1541         .probe          = probe,
1542         .disconnect     = disconnect,
1543         .pre_reset      = pre_reset,
1544         .post_reset     = post_reset,
1545 };
1546
1547 struct workqueue_struct *zd_workqueue;
1548
1549 static int __init usb_init(void)
1550 {
1551         int r;
1552
1553         pr_debug("%s usb_init()\n", driver.name);
1554
1555         zd_workqueue = create_singlethread_workqueue(driver.name);
1556         if (zd_workqueue == NULL) {
1557                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1558                 return -ENOMEM;
1559         }
1560
1561         r = usb_register(&driver);
1562         if (r) {
1563                 destroy_workqueue(zd_workqueue);
1564                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1565                        driver.name, r);
1566                 return r;
1567         }
1568
1569         pr_debug("%s initialized\n", driver.name);
1570         return 0;
1571 }
1572
1573 static void __exit usb_exit(void)
1574 {
1575         pr_debug("%s usb_exit()\n", driver.name);
1576         usb_deregister(&driver);
1577         destroy_workqueue(zd_workqueue);
1578 }
1579
1580 module_init(usb_init);
1581 module_exit(usb_exit);
1582
1583 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1584                               int *actual_length, int timeout)
1585 {
1586         /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1587          * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1588          * descriptor.
1589          */
1590         struct usb_host_endpoint *ep;
1591         unsigned int pipe;
1592
1593         pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1594         ep = usb_pipe_endpoint(udev, pipe);
1595         if (!ep)
1596                 return -EINVAL;
1597
1598         if (usb_endpoint_xfer_int(&ep->desc)) {
1599                 return usb_interrupt_msg(udev, pipe, data, len,
1600                                          actual_length, timeout);
1601         } else {
1602                 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1603                 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1604                                     timeout);
1605         }
1606 }
1607
1608 static int usb_int_regs_length(unsigned int count)
1609 {
1610         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1611 }
1612
1613 static void prepare_read_regs_int(struct zd_usb *usb,
1614                                   struct usb_req_read_regs *req,
1615                                   unsigned int count)
1616 {
1617         struct zd_usb_interrupt *intr = &usb->intr;
1618
1619         spin_lock_irq(&intr->lock);
1620         atomic_set(&intr->read_regs_enabled, 1);
1621         intr->read_regs.req = req;
1622         intr->read_regs.req_count = count;
1623         INIT_COMPLETION(intr->read_regs.completion);
1624         spin_unlock_irq(&intr->lock);
1625 }
1626
1627 static void disable_read_regs_int(struct zd_usb *usb)
1628 {
1629         struct zd_usb_interrupt *intr = &usb->intr;
1630
1631         spin_lock_irq(&intr->lock);
1632         atomic_set(&intr->read_regs_enabled, 0);
1633         spin_unlock_irq(&intr->lock);
1634 }
1635
1636 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1637                             unsigned int count)
1638 {
1639         int i;
1640         struct zd_usb_interrupt *intr = &usb->intr;
1641         struct read_regs_int *rr = &intr->read_regs;
1642         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1643
1644         /* The created block size seems to be larger than expected.
1645          * However results appear to be correct.
1646          */
1647         if (rr->length < usb_int_regs_length(count)) {
1648                 dev_dbg_f(zd_usb_dev(usb),
1649                          "error: actual length %d less than expected %d\n",
1650                          rr->length, usb_int_regs_length(count));
1651                 return false;
1652         }
1653
1654         if (rr->length > sizeof(rr->buffer)) {
1655                 dev_dbg_f(zd_usb_dev(usb),
1656                          "error: actual length %d exceeds buffer size %zu\n",
1657                          rr->length, sizeof(rr->buffer));
1658                 return false;
1659         }
1660
1661         for (i = 0; i < count; i++) {
1662                 struct reg_data *rd = &regs->regs[i];
1663                 if (rd->addr != req->addr[i]) {
1664                         dev_dbg_f(zd_usb_dev(usb),
1665                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1666                                  le16_to_cpu(rd->addr),
1667                                  le16_to_cpu(req->addr[i]));
1668                         return false;
1669                 }
1670         }
1671
1672         return true;
1673 }
1674
1675 static int get_results(struct zd_usb *usb, u16 *values,
1676                        struct usb_req_read_regs *req, unsigned int count,
1677                        bool *retry)
1678 {
1679         int r;
1680         int i;
1681         struct zd_usb_interrupt *intr = &usb->intr;
1682         struct read_regs_int *rr = &intr->read_regs;
1683         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1684
1685         spin_lock_irq(&intr->lock);
1686
1687         r = -EIO;
1688
1689         /* Read failed because firmware bug? */
1690         *retry = !!intr->read_regs_int_overridden;
1691         if (*retry)
1692                 goto error_unlock;
1693
1694         if (!check_read_regs(usb, req, count)) {
1695                 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1696                 goto error_unlock;
1697         }
1698
1699         for (i = 0; i < count; i++) {
1700                 struct reg_data *rd = &regs->regs[i];
1701                 values[i] = le16_to_cpu(rd->value);
1702         }
1703
1704         r = 0;
1705 error_unlock:
1706         spin_unlock_irq(&intr->lock);
1707         return r;
1708 }
1709
1710 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1711                      const zd_addr_t *addresses, unsigned int count)
1712 {
1713         int r, i, req_len, actual_req_len, try_count = 0;
1714         struct usb_device *udev;
1715         struct usb_req_read_regs *req = NULL;
1716         unsigned long timeout;
1717         bool retry = false;
1718
1719         if (count < 1) {
1720                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1721                 return -EINVAL;
1722         }
1723         if (count > USB_MAX_IOREAD16_COUNT) {
1724                 dev_dbg_f(zd_usb_dev(usb),
1725                          "error: count %u exceeds possible max %u\n",
1726                          count, USB_MAX_IOREAD16_COUNT);
1727                 return -EINVAL;
1728         }
1729         if (in_atomic()) {
1730                 dev_dbg_f(zd_usb_dev(usb),
1731                          "error: io in atomic context not supported\n");
1732                 return -EWOULDBLOCK;
1733         }
1734         if (!usb_int_enabled(usb)) {
1735                 dev_dbg_f(zd_usb_dev(usb),
1736                           "error: usb interrupt not enabled\n");
1737                 return -EWOULDBLOCK;
1738         }
1739
1740         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1741         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1742                      sizeof(__le16) > sizeof(usb->req_buf));
1743         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1744                sizeof(usb->req_buf));
1745
1746         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1747         req = (void *)usb->req_buf;
1748
1749         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1750         for (i = 0; i < count; i++)
1751                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1752
1753 retry_read:
1754         try_count++;
1755         udev = zd_usb_to_usbdev(usb);
1756         prepare_read_regs_int(usb, req, count);
1757         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1758         if (r) {
1759                 dev_dbg_f(zd_usb_dev(usb),
1760                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1761                 goto error;
1762         }
1763         if (req_len != actual_req_len) {
1764                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1765                         " req_len %d != actual_req_len %d\n",
1766                         req_len, actual_req_len);
1767                 r = -EIO;
1768                 goto error;
1769         }
1770
1771         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1772                                               msecs_to_jiffies(50));
1773         if (!timeout) {
1774                 disable_read_regs_int(usb);
1775                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1776                 r = -ETIMEDOUT;
1777                 goto error;
1778         }
1779
1780         r = get_results(usb, values, req, count, &retry);
1781         if (retry && try_count < 20) {
1782                 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1783                                 try_count);
1784                 goto retry_read;
1785         }
1786 error:
1787         return r;
1788 }
1789
1790 static void iowrite16v_urb_complete(struct urb *urb)
1791 {
1792         struct zd_usb *usb = urb->context;
1793
1794         if (urb->status && !usb->cmd_error)
1795                 usb->cmd_error = urb->status;
1796
1797         if (!usb->cmd_error &&
1798                         urb->actual_length != urb->transfer_buffer_length)
1799                 usb->cmd_error = -EIO;
1800 }
1801
1802 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1803 {
1804         int r = 0;
1805         struct urb *urb = usb->urb_async_waiting;
1806
1807         if (!urb)
1808                 return 0;
1809
1810         usb->urb_async_waiting = NULL;
1811
1812         if (!last)
1813                 urb->transfer_flags |= URB_NO_INTERRUPT;
1814
1815         usb_anchor_urb(urb, &usb->submitted_cmds);
1816         r = usb_submit_urb(urb, GFP_KERNEL);
1817         if (r) {
1818                 usb_unanchor_urb(urb);
1819                 dev_dbg_f(zd_usb_dev(usb),
1820                         "error in usb_submit_urb(). Error number %d\n", r);
1821                 goto error;
1822         }
1823
1824         /* fall-through with r == 0 */
1825 error:
1826         usb_free_urb(urb);
1827         return r;
1828 }
1829
1830 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1831 {
1832         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1833         ZD_ASSERT(usb->urb_async_waiting == NULL);
1834         ZD_ASSERT(!usb->in_async);
1835
1836         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1837
1838         usb->in_async = 1;
1839         usb->cmd_error = 0;
1840         usb->urb_async_waiting = NULL;
1841 }
1842
1843 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1844 {
1845         int r;
1846
1847         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1848         ZD_ASSERT(usb->in_async);
1849
1850         /* Submit last iowrite16v URB */
1851         r = zd_submit_waiting_urb(usb, true);
1852         if (r) {
1853                 dev_dbg_f(zd_usb_dev(usb),
1854                         "error in zd_submit_waiting_usb(). "
1855                         "Error number %d\n", r);
1856
1857                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1858                 goto error;
1859         }
1860
1861         if (timeout)
1862                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1863                                                         timeout);
1864         if (!timeout) {
1865                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1866                 if (usb->cmd_error == -ENOENT) {
1867                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1868                         r = -ETIMEDOUT;
1869                         goto error;
1870                 }
1871         }
1872
1873         r = usb->cmd_error;
1874 error:
1875         usb->in_async = 0;
1876         return r;
1877 }
1878
1879 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1880                             unsigned int count)
1881 {
1882         int r;
1883         struct usb_device *udev;
1884         struct usb_req_write_regs *req = NULL;
1885         int i, req_len;
1886         struct urb *urb;
1887         struct usb_host_endpoint *ep;
1888
1889         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1890         ZD_ASSERT(usb->in_async);
1891
1892         if (count == 0)
1893                 return 0;
1894         if (count > USB_MAX_IOWRITE16_COUNT) {
1895                 dev_dbg_f(zd_usb_dev(usb),
1896                         "error: count %u exceeds possible max %u\n",
1897                         count, USB_MAX_IOWRITE16_COUNT);
1898                 return -EINVAL;
1899         }
1900         if (in_atomic()) {
1901                 dev_dbg_f(zd_usb_dev(usb),
1902                         "error: io in atomic context not supported\n");
1903                 return -EWOULDBLOCK;
1904         }
1905
1906         udev = zd_usb_to_usbdev(usb);
1907
1908         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1909         if (!ep)
1910                 return -ENOENT;
1911
1912         urb = usb_alloc_urb(0, GFP_KERNEL);
1913         if (!urb)
1914                 return -ENOMEM;
1915
1916         req_len = sizeof(struct usb_req_write_regs) +
1917                   count * sizeof(struct reg_data);
1918         req = kmalloc(req_len, GFP_KERNEL);
1919         if (!req) {
1920                 r = -ENOMEM;
1921                 goto error;
1922         }
1923
1924         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1925         for (i = 0; i < count; i++) {
1926                 struct reg_data *rw  = &req->reg_writes[i];
1927                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1928                 rw->value = cpu_to_le16(ioreqs[i].value);
1929         }
1930
1931         /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1932          * endpoint is bulk. Select correct type URB by endpoint descriptor.
1933          */
1934         if (usb_endpoint_xfer_int(&ep->desc))
1935                 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1936                                  req, req_len, iowrite16v_urb_complete, usb,
1937                                  ep->desc.bInterval);
1938         else
1939                 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1940                                   req, req_len, iowrite16v_urb_complete, usb);
1941
1942         urb->transfer_flags |= URB_FREE_BUFFER;
1943
1944         /* Submit previous URB */
1945         r = zd_submit_waiting_urb(usb, false);
1946         if (r) {
1947                 dev_dbg_f(zd_usb_dev(usb),
1948                         "error in zd_submit_waiting_usb(). "
1949                         "Error number %d\n", r);
1950                 goto error;
1951         }
1952
1953         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1954          * of currect batch except for very last.
1955          */
1956         usb->urb_async_waiting = urb;
1957         return 0;
1958 error:
1959         usb_free_urb(urb);
1960         return r;
1961 }
1962
1963 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1964                         unsigned int count)
1965 {
1966         int r;
1967
1968         zd_usb_iowrite16v_async_start(usb);
1969         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1970         if (r) {
1971                 zd_usb_iowrite16v_async_end(usb, 0);
1972                 return r;
1973         }
1974         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1975 }
1976
1977 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1978 {
1979         int r;
1980         struct usb_device *udev;
1981         struct usb_req_rfwrite *req = NULL;
1982         int i, req_len, actual_req_len;
1983         u16 bit_value_template;
1984
1985         if (in_atomic()) {
1986                 dev_dbg_f(zd_usb_dev(usb),
1987                         "error: io in atomic context not supported\n");
1988                 return -EWOULDBLOCK;
1989         }
1990         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1991                 dev_dbg_f(zd_usb_dev(usb),
1992                         "error: bits %d are smaller than"
1993                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1994                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1995                 return -EINVAL;
1996         }
1997         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1998                 dev_dbg_f(zd_usb_dev(usb),
1999                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
2000                         bits, USB_MAX_RFWRITE_BIT_COUNT);
2001                 return -EINVAL;
2002         }
2003 #ifdef DEBUG
2004         if (value & (~0UL << bits)) {
2005                 dev_dbg_f(zd_usb_dev(usb),
2006                         "error: value %#09x has bits >= %d set\n",
2007                         value, bits);
2008                 return -EINVAL;
2009         }
2010 #endif /* DEBUG */
2011
2012         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2013
2014         r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2015         if (r) {
2016                 dev_dbg_f(zd_usb_dev(usb),
2017                         "error %d: Couldn't read ZD_CR203\n", r);
2018                 return r;
2019         }
2020         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2021
2022         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2023         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2024                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2025                      sizeof(usb->req_buf));
2026         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2027                sizeof(usb->req_buf));
2028
2029         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2030         req = (void *)usb->req_buf;
2031
2032         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2033         /* 1: 3683a, but not used in ZYDAS driver */
2034         req->value = cpu_to_le16(2);
2035         req->bits = cpu_to_le16(bits);
2036
2037         for (i = 0; i < bits; i++) {
2038                 u16 bv = bit_value_template;
2039                 if (value & (1 << (bits-1-i)))
2040                         bv |= RF_DATA;
2041                 req->bit_values[i] = cpu_to_le16(bv);
2042         }
2043
2044         udev = zd_usb_to_usbdev(usb);
2045         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2046         if (r) {
2047                 dev_dbg_f(zd_usb_dev(usb),
2048                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2049                 goto out;
2050         }
2051         if (req_len != actual_req_len) {
2052                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2053                         " req_len %d != actual_req_len %d\n",
2054                         req_len, actual_req_len);
2055                 r = -EIO;
2056                 goto out;
2057         }
2058
2059         /* FALL-THROUGH with r == 0 */
2060 out:
2061         return r;
2062 }