KVM: x86: work around infinite loop in microcode when #AC is delivered
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/perf_event.h>
33 #include <asm/tlbflush.h>
34 #include <asm/desc.h>
35 #include <asm/kvm_para.h>
36
37 #include <asm/virtext.h>
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 #define IOPM_ALLOC_ORDER 2
46 #define MSRPM_ALLOC_ORDER 1
47
48 #define SEG_TYPE_LDT 2
49 #define SEG_TYPE_BUSY_TSS16 3
50
51 #define SVM_FEATURE_NPT            (1 <<  0)
52 #define SVM_FEATURE_LBRV           (1 <<  1)
53 #define SVM_FEATURE_SVML           (1 <<  2)
54 #define SVM_FEATURE_NRIP           (1 <<  3)
55 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
56 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
57 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
58 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
59 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
60
61 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
62 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
63 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
64
65 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
66
67 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
68 #define TSC_RATIO_MIN           0x0000000000000001ULL
69 #define TSC_RATIO_MAX           0x000000ffffffffffULL
70
71 static bool erratum_383_found __read_mostly;
72
73 static const u32 host_save_user_msrs[] = {
74 #ifdef CONFIG_X86_64
75         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
76         MSR_FS_BASE,
77 #endif
78         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
79 };
80
81 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
82
83 struct kvm_vcpu;
84
85 struct nested_state {
86         struct vmcb *hsave;
87         u64 hsave_msr;
88         u64 vm_cr_msr;
89         u64 vmcb;
90
91         /* These are the merged vectors */
92         u32 *msrpm;
93
94         /* gpa pointers to the real vectors */
95         u64 vmcb_msrpm;
96         u64 vmcb_iopm;
97
98         /* A VMEXIT is required but not yet emulated */
99         bool exit_required;
100
101         /* cache for intercepts of the guest */
102         u32 intercept_cr;
103         u32 intercept_dr;
104         u32 intercept_exceptions;
105         u64 intercept;
106
107         /* Nested Paging related state */
108         u64 nested_cr3;
109 };
110
111 #define MSRPM_OFFSETS   16
112 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
113
114 struct vcpu_svm {
115         struct kvm_vcpu vcpu;
116         struct vmcb *vmcb;
117         unsigned long vmcb_pa;
118         struct svm_cpu_data *svm_data;
119         uint64_t asid_generation;
120         uint64_t sysenter_esp;
121         uint64_t sysenter_eip;
122
123         u64 next_rip;
124
125         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
126         struct {
127                 u16 fs;
128                 u16 gs;
129                 u16 ldt;
130                 u64 gs_base;
131         } host;
132
133         u32 *msrpm;
134
135         ulong nmi_iret_rip;
136
137         struct nested_state nested;
138
139         bool nmi_singlestep;
140
141         unsigned int3_injected;
142         unsigned long int3_rip;
143         u32 apf_reason;
144
145         u64  tsc_ratio;
146 };
147
148 static DEFINE_PER_CPU(u64, current_tsc_ratio);
149 #define TSC_RATIO_DEFAULT       0x0100000000ULL
150
151 #define MSR_INVALID                     0xffffffffU
152
153 static struct svm_direct_access_msrs {
154         u32 index;   /* Index of the MSR */
155         bool always; /* True if intercept is always on */
156 } direct_access_msrs[] = {
157         { .index = MSR_STAR,                            .always = true  },
158         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
159 #ifdef CONFIG_X86_64
160         { .index = MSR_GS_BASE,                         .always = true  },
161         { .index = MSR_FS_BASE,                         .always = true  },
162         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
163         { .index = MSR_LSTAR,                           .always = true  },
164         { .index = MSR_CSTAR,                           .always = true  },
165         { .index = MSR_SYSCALL_MASK,                    .always = true  },
166 #endif
167         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
168         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
169         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
170         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
171         { .index = MSR_INVALID,                         .always = false },
172 };
173
174 /* enable NPT for AMD64 and X86 with PAE */
175 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
176 static bool npt_enabled = true;
177 #else
178 static bool npt_enabled;
179 #endif
180 static int npt = 1;
181
182 module_param(npt, int, S_IRUGO);
183
184 static int nested = 1;
185 module_param(nested, int, S_IRUGO);
186
187 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
188 static void svm_complete_interrupts(struct vcpu_svm *svm);
189
190 static int nested_svm_exit_handled(struct vcpu_svm *svm);
191 static int nested_svm_intercept(struct vcpu_svm *svm);
192 static int nested_svm_vmexit(struct vcpu_svm *svm);
193 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
194                                       bool has_error_code, u32 error_code);
195 static u64 __scale_tsc(u64 ratio, u64 tsc);
196
197 enum {
198         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
199                             pause filter count */
200         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
201         VMCB_ASID,       /* ASID */
202         VMCB_INTR,       /* int_ctl, int_vector */
203         VMCB_NPT,        /* npt_en, nCR3, gPAT */
204         VMCB_CR,         /* CR0, CR3, CR4, EFER */
205         VMCB_DR,         /* DR6, DR7 */
206         VMCB_DT,         /* GDT, IDT */
207         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
208         VMCB_CR2,        /* CR2 only */
209         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
210         VMCB_DIRTY_MAX,
211 };
212
213 /* TPR and CR2 are always written before VMRUN */
214 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
215
216 static inline void mark_all_dirty(struct vmcb *vmcb)
217 {
218         vmcb->control.clean = 0;
219 }
220
221 static inline void mark_all_clean(struct vmcb *vmcb)
222 {
223         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
224                                & ~VMCB_ALWAYS_DIRTY_MASK;
225 }
226
227 static inline void mark_dirty(struct vmcb *vmcb, int bit)
228 {
229         vmcb->control.clean &= ~(1 << bit);
230 }
231
232 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
233 {
234         return container_of(vcpu, struct vcpu_svm, vcpu);
235 }
236
237 static void recalc_intercepts(struct vcpu_svm *svm)
238 {
239         struct vmcb_control_area *c, *h;
240         struct nested_state *g;
241
242         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
243
244         if (!is_guest_mode(&svm->vcpu))
245                 return;
246
247         c = &svm->vmcb->control;
248         h = &svm->nested.hsave->control;
249         g = &svm->nested;
250
251         c->intercept_cr = h->intercept_cr | g->intercept_cr;
252         c->intercept_dr = h->intercept_dr | g->intercept_dr;
253         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
254         c->intercept = h->intercept | g->intercept;
255 }
256
257 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
258 {
259         if (is_guest_mode(&svm->vcpu))
260                 return svm->nested.hsave;
261         else
262                 return svm->vmcb;
263 }
264
265 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
266 {
267         struct vmcb *vmcb = get_host_vmcb(svm);
268
269         vmcb->control.intercept_cr |= (1U << bit);
270
271         recalc_intercepts(svm);
272 }
273
274 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
275 {
276         struct vmcb *vmcb = get_host_vmcb(svm);
277
278         vmcb->control.intercept_cr &= ~(1U << bit);
279
280         recalc_intercepts(svm);
281 }
282
283 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
284 {
285         struct vmcb *vmcb = get_host_vmcb(svm);
286
287         return vmcb->control.intercept_cr & (1U << bit);
288 }
289
290 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
291 {
292         struct vmcb *vmcb = get_host_vmcb(svm);
293
294         vmcb->control.intercept_dr |= (1U << bit);
295
296         recalc_intercepts(svm);
297 }
298
299 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
300 {
301         struct vmcb *vmcb = get_host_vmcb(svm);
302
303         vmcb->control.intercept_dr &= ~(1U << bit);
304
305         recalc_intercepts(svm);
306 }
307
308 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
309 {
310         struct vmcb *vmcb = get_host_vmcb(svm);
311
312         vmcb->control.intercept_exceptions |= (1U << bit);
313
314         recalc_intercepts(svm);
315 }
316
317 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
318 {
319         struct vmcb *vmcb = get_host_vmcb(svm);
320
321         vmcb->control.intercept_exceptions &= ~(1U << bit);
322
323         recalc_intercepts(svm);
324 }
325
326 static inline void set_intercept(struct vcpu_svm *svm, int bit)
327 {
328         struct vmcb *vmcb = get_host_vmcb(svm);
329
330         vmcb->control.intercept |= (1ULL << bit);
331
332         recalc_intercepts(svm);
333 }
334
335 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
336 {
337         struct vmcb *vmcb = get_host_vmcb(svm);
338
339         vmcb->control.intercept &= ~(1ULL << bit);
340
341         recalc_intercepts(svm);
342 }
343
344 static inline void enable_gif(struct vcpu_svm *svm)
345 {
346         svm->vcpu.arch.hflags |= HF_GIF_MASK;
347 }
348
349 static inline void disable_gif(struct vcpu_svm *svm)
350 {
351         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
352 }
353
354 static inline bool gif_set(struct vcpu_svm *svm)
355 {
356         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
357 }
358
359 static unsigned long iopm_base;
360
361 struct kvm_ldttss_desc {
362         u16 limit0;
363         u16 base0;
364         unsigned base1:8, type:5, dpl:2, p:1;
365         unsigned limit1:4, zero0:3, g:1, base2:8;
366         u32 base3;
367         u32 zero1;
368 } __attribute__((packed));
369
370 struct svm_cpu_data {
371         int cpu;
372
373         u64 asid_generation;
374         u32 max_asid;
375         u32 next_asid;
376         struct kvm_ldttss_desc *tss_desc;
377
378         struct page *save_area;
379 };
380
381 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
382
383 struct svm_init_data {
384         int cpu;
385         int r;
386 };
387
388 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
389
390 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
391 #define MSRS_RANGE_SIZE 2048
392 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
393
394 static u32 svm_msrpm_offset(u32 msr)
395 {
396         u32 offset;
397         int i;
398
399         for (i = 0; i < NUM_MSR_MAPS; i++) {
400                 if (msr < msrpm_ranges[i] ||
401                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
402                         continue;
403
404                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
405                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
406
407                 /* Now we have the u8 offset - but need the u32 offset */
408                 return offset / 4;
409         }
410
411         /* MSR not in any range */
412         return MSR_INVALID;
413 }
414
415 #define MAX_INST_SIZE 15
416
417 static inline void clgi(void)
418 {
419         asm volatile (__ex(SVM_CLGI));
420 }
421
422 static inline void stgi(void)
423 {
424         asm volatile (__ex(SVM_STGI));
425 }
426
427 static inline void invlpga(unsigned long addr, u32 asid)
428 {
429         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
430 }
431
432 static int get_npt_level(void)
433 {
434 #ifdef CONFIG_X86_64
435         return PT64_ROOT_LEVEL;
436 #else
437         return PT32E_ROOT_LEVEL;
438 #endif
439 }
440
441 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
442 {
443         vcpu->arch.efer = efer;
444         if (!npt_enabled && !(efer & EFER_LMA))
445                 efer &= ~EFER_LME;
446
447         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
448         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
449 }
450
451 static int is_external_interrupt(u32 info)
452 {
453         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
454         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
455 }
456
457 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
458 {
459         struct vcpu_svm *svm = to_svm(vcpu);
460         u32 ret = 0;
461
462         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
463                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
464         return ret & mask;
465 }
466
467 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
468 {
469         struct vcpu_svm *svm = to_svm(vcpu);
470
471         if (mask == 0)
472                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
473         else
474                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
475
476 }
477
478 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
479 {
480         struct vcpu_svm *svm = to_svm(vcpu);
481
482         if (svm->vmcb->control.next_rip != 0)
483                 svm->next_rip = svm->vmcb->control.next_rip;
484
485         if (!svm->next_rip) {
486                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
487                                 EMULATE_DONE)
488                         printk(KERN_DEBUG "%s: NOP\n", __func__);
489                 return;
490         }
491         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
492                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
493                        __func__, kvm_rip_read(vcpu), svm->next_rip);
494
495         kvm_rip_write(vcpu, svm->next_rip);
496         svm_set_interrupt_shadow(vcpu, 0);
497 }
498
499 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
500                                 bool has_error_code, u32 error_code,
501                                 bool reinject)
502 {
503         struct vcpu_svm *svm = to_svm(vcpu);
504
505         /*
506          * If we are within a nested VM we'd better #VMEXIT and let the guest
507          * handle the exception
508          */
509         if (!reinject &&
510             nested_svm_check_exception(svm, nr, has_error_code, error_code))
511                 return;
512
513         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
514                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
515
516                 /*
517                  * For guest debugging where we have to reinject #BP if some
518                  * INT3 is guest-owned:
519                  * Emulate nRIP by moving RIP forward. Will fail if injection
520                  * raises a fault that is not intercepted. Still better than
521                  * failing in all cases.
522                  */
523                 skip_emulated_instruction(&svm->vcpu);
524                 rip = kvm_rip_read(&svm->vcpu);
525                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
526                 svm->int3_injected = rip - old_rip;
527         }
528
529         svm->vmcb->control.event_inj = nr
530                 | SVM_EVTINJ_VALID
531                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
532                 | SVM_EVTINJ_TYPE_EXEPT;
533         svm->vmcb->control.event_inj_err = error_code;
534 }
535
536 static void svm_init_erratum_383(void)
537 {
538         u32 low, high;
539         int err;
540         u64 val;
541
542         if (!cpu_has_amd_erratum(amd_erratum_383))
543                 return;
544
545         /* Use _safe variants to not break nested virtualization */
546         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
547         if (err)
548                 return;
549
550         val |= (1ULL << 47);
551
552         low  = lower_32_bits(val);
553         high = upper_32_bits(val);
554
555         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
556
557         erratum_383_found = true;
558 }
559
560 static int has_svm(void)
561 {
562         const char *msg;
563
564         if (!cpu_has_svm(&msg)) {
565                 printk(KERN_INFO "has_svm: %s\n", msg);
566                 return 0;
567         }
568
569         return 1;
570 }
571
572 static void svm_hardware_disable(void *garbage)
573 {
574         /* Make sure we clean up behind us */
575         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
576                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
577
578         cpu_svm_disable();
579
580         amd_pmu_disable_virt();
581 }
582
583 static int svm_hardware_enable(void *garbage)
584 {
585
586         struct svm_cpu_data *sd;
587         uint64_t efer;
588         struct desc_ptr gdt_descr;
589         struct desc_struct *gdt;
590         int me = raw_smp_processor_id();
591
592         rdmsrl(MSR_EFER, efer);
593         if (efer & EFER_SVME)
594                 return -EBUSY;
595
596         if (!has_svm()) {
597                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
598                        me);
599                 return -EINVAL;
600         }
601         sd = per_cpu(svm_data, me);
602
603         if (!sd) {
604                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
605                        me);
606                 return -EINVAL;
607         }
608
609         sd->asid_generation = 1;
610         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
611         sd->next_asid = sd->max_asid + 1;
612
613         native_store_gdt(&gdt_descr);
614         gdt = (struct desc_struct *)gdt_descr.address;
615         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
616
617         wrmsrl(MSR_EFER, efer | EFER_SVME);
618
619         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
620
621         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
622                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
623                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
624         }
625
626         svm_init_erratum_383();
627
628         amd_pmu_enable_virt();
629
630         return 0;
631 }
632
633 static void svm_cpu_uninit(int cpu)
634 {
635         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
636
637         if (!sd)
638                 return;
639
640         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
641         __free_page(sd->save_area);
642         kfree(sd);
643 }
644
645 static int svm_cpu_init(int cpu)
646 {
647         struct svm_cpu_data *sd;
648         int r;
649
650         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
651         if (!sd)
652                 return -ENOMEM;
653         sd->cpu = cpu;
654         sd->save_area = alloc_page(GFP_KERNEL);
655         r = -ENOMEM;
656         if (!sd->save_area)
657                 goto err_1;
658
659         per_cpu(svm_data, cpu) = sd;
660
661         return 0;
662
663 err_1:
664         kfree(sd);
665         return r;
666
667 }
668
669 static bool valid_msr_intercept(u32 index)
670 {
671         int i;
672
673         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
674                 if (direct_access_msrs[i].index == index)
675                         return true;
676
677         return false;
678 }
679
680 static void set_msr_interception(u32 *msrpm, unsigned msr,
681                                  int read, int write)
682 {
683         u8 bit_read, bit_write;
684         unsigned long tmp;
685         u32 offset;
686
687         /*
688          * If this warning triggers extend the direct_access_msrs list at the
689          * beginning of the file
690          */
691         WARN_ON(!valid_msr_intercept(msr));
692
693         offset    = svm_msrpm_offset(msr);
694         bit_read  = 2 * (msr & 0x0f);
695         bit_write = 2 * (msr & 0x0f) + 1;
696         tmp       = msrpm[offset];
697
698         BUG_ON(offset == MSR_INVALID);
699
700         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
701         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
702
703         msrpm[offset] = tmp;
704 }
705
706 static void svm_vcpu_init_msrpm(u32 *msrpm)
707 {
708         int i;
709
710         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
711
712         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
713                 if (!direct_access_msrs[i].always)
714                         continue;
715
716                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
717         }
718 }
719
720 static void add_msr_offset(u32 offset)
721 {
722         int i;
723
724         for (i = 0; i < MSRPM_OFFSETS; ++i) {
725
726                 /* Offset already in list? */
727                 if (msrpm_offsets[i] == offset)
728                         return;
729
730                 /* Slot used by another offset? */
731                 if (msrpm_offsets[i] != MSR_INVALID)
732                         continue;
733
734                 /* Add offset to list */
735                 msrpm_offsets[i] = offset;
736
737                 return;
738         }
739
740         /*
741          * If this BUG triggers the msrpm_offsets table has an overflow. Just
742          * increase MSRPM_OFFSETS in this case.
743          */
744         BUG();
745 }
746
747 static void init_msrpm_offsets(void)
748 {
749         int i;
750
751         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
754                 u32 offset;
755
756                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
757                 BUG_ON(offset == MSR_INVALID);
758
759                 add_msr_offset(offset);
760         }
761 }
762
763 static void svm_enable_lbrv(struct vcpu_svm *svm)
764 {
765         u32 *msrpm = svm->msrpm;
766
767         svm->vmcb->control.lbr_ctl = 1;
768         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
769         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
770         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
771         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
772 }
773
774 static void svm_disable_lbrv(struct vcpu_svm *svm)
775 {
776         u32 *msrpm = svm->msrpm;
777
778         svm->vmcb->control.lbr_ctl = 0;
779         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
780         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
781         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
782         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
783 }
784
785 static __init int svm_hardware_setup(void)
786 {
787         int cpu;
788         struct page *iopm_pages;
789         void *iopm_va;
790         int r;
791
792         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
793
794         if (!iopm_pages)
795                 return -ENOMEM;
796
797         iopm_va = page_address(iopm_pages);
798         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
799         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
800
801         init_msrpm_offsets();
802
803         if (boot_cpu_has(X86_FEATURE_NX))
804                 kvm_enable_efer_bits(EFER_NX);
805
806         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
807                 kvm_enable_efer_bits(EFER_FFXSR);
808
809         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
810                 u64 max;
811
812                 kvm_has_tsc_control = true;
813
814                 /*
815                  * Make sure the user can only configure tsc_khz values that
816                  * fit into a signed integer.
817                  * A min value is not calculated needed because it will always
818                  * be 1 on all machines and a value of 0 is used to disable
819                  * tsc-scaling for the vcpu.
820                  */
821                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
822
823                 kvm_max_guest_tsc_khz = max;
824         }
825
826         if (nested) {
827                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
828                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
829         }
830
831         for_each_possible_cpu(cpu) {
832                 r = svm_cpu_init(cpu);
833                 if (r)
834                         goto err;
835         }
836
837         if (!boot_cpu_has(X86_FEATURE_NPT))
838                 npt_enabled = false;
839
840         if (npt_enabled && !npt) {
841                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
842                 npt_enabled = false;
843         }
844
845         if (npt_enabled) {
846                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
847                 kvm_enable_tdp();
848         } else
849                 kvm_disable_tdp();
850
851         return 0;
852
853 err:
854         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
855         iopm_base = 0;
856         return r;
857 }
858
859 static __exit void svm_hardware_unsetup(void)
860 {
861         int cpu;
862
863         for_each_possible_cpu(cpu)
864                 svm_cpu_uninit(cpu);
865
866         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
867         iopm_base = 0;
868 }
869
870 static void init_seg(struct vmcb_seg *seg)
871 {
872         seg->selector = 0;
873         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
874                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
875         seg->limit = 0xffff;
876         seg->base = 0;
877 }
878
879 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
880 {
881         seg->selector = 0;
882         seg->attrib = SVM_SELECTOR_P_MASK | type;
883         seg->limit = 0xffff;
884         seg->base = 0;
885 }
886
887 static u64 __scale_tsc(u64 ratio, u64 tsc)
888 {
889         u64 mult, frac, _tsc;
890
891         mult  = ratio >> 32;
892         frac  = ratio & ((1ULL << 32) - 1);
893
894         _tsc  = tsc;
895         _tsc *= mult;
896         _tsc += (tsc >> 32) * frac;
897         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
898
899         return _tsc;
900 }
901
902 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
903 {
904         struct vcpu_svm *svm = to_svm(vcpu);
905         u64 _tsc = tsc;
906
907         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
908                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
909
910         return _tsc;
911 }
912
913 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
914 {
915         struct vcpu_svm *svm = to_svm(vcpu);
916         u64 ratio;
917         u64 khz;
918
919         /* TSC scaling supported? */
920         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR))
921                 return;
922
923         /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
924         if (user_tsc_khz == 0) {
925                 vcpu->arch.virtual_tsc_khz = 0;
926                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
927                 return;
928         }
929
930         khz = user_tsc_khz;
931
932         /* TSC scaling required  - calculate ratio */
933         ratio = khz << 32;
934         do_div(ratio, tsc_khz);
935
936         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
937                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
938                                 user_tsc_khz);
939                 return;
940         }
941         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
942         svm->tsc_ratio             = ratio;
943 }
944
945 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
946 {
947         struct vcpu_svm *svm = to_svm(vcpu);
948         u64 g_tsc_offset = 0;
949
950         if (is_guest_mode(vcpu)) {
951                 g_tsc_offset = svm->vmcb->control.tsc_offset -
952                                svm->nested.hsave->control.tsc_offset;
953                 svm->nested.hsave->control.tsc_offset = offset;
954         }
955
956         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
957
958         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
959 }
960
961 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
962 {
963         struct vcpu_svm *svm = to_svm(vcpu);
964
965         svm->vmcb->control.tsc_offset += adjustment;
966         if (is_guest_mode(vcpu))
967                 svm->nested.hsave->control.tsc_offset += adjustment;
968         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
969 }
970
971 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
972 {
973         u64 tsc;
974
975         tsc = svm_scale_tsc(vcpu, native_read_tsc());
976
977         return target_tsc - tsc;
978 }
979
980 static void init_vmcb(struct vcpu_svm *svm)
981 {
982         struct vmcb_control_area *control = &svm->vmcb->control;
983         struct vmcb_save_area *save = &svm->vmcb->save;
984
985         svm->vcpu.fpu_active = 1;
986         svm->vcpu.arch.hflags = 0;
987
988         set_cr_intercept(svm, INTERCEPT_CR0_READ);
989         set_cr_intercept(svm, INTERCEPT_CR3_READ);
990         set_cr_intercept(svm, INTERCEPT_CR4_READ);
991         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
992         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
993         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
994         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
995
996         set_dr_intercept(svm, INTERCEPT_DR0_READ);
997         set_dr_intercept(svm, INTERCEPT_DR1_READ);
998         set_dr_intercept(svm, INTERCEPT_DR2_READ);
999         set_dr_intercept(svm, INTERCEPT_DR3_READ);
1000         set_dr_intercept(svm, INTERCEPT_DR4_READ);
1001         set_dr_intercept(svm, INTERCEPT_DR5_READ);
1002         set_dr_intercept(svm, INTERCEPT_DR6_READ);
1003         set_dr_intercept(svm, INTERCEPT_DR7_READ);
1004
1005         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1006         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1007         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1008         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1009         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1010         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1011         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1012         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1013
1014         set_exception_intercept(svm, PF_VECTOR);
1015         set_exception_intercept(svm, UD_VECTOR);
1016         set_exception_intercept(svm, MC_VECTOR);
1017         set_exception_intercept(svm, AC_VECTOR);
1018
1019         set_intercept(svm, INTERCEPT_INTR);
1020         set_intercept(svm, INTERCEPT_NMI);
1021         set_intercept(svm, INTERCEPT_SMI);
1022         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1023         set_intercept(svm, INTERCEPT_CPUID);
1024         set_intercept(svm, INTERCEPT_INVD);
1025         set_intercept(svm, INTERCEPT_HLT);
1026         set_intercept(svm, INTERCEPT_INVLPG);
1027         set_intercept(svm, INTERCEPT_INVLPGA);
1028         set_intercept(svm, INTERCEPT_IOIO_PROT);
1029         set_intercept(svm, INTERCEPT_MSR_PROT);
1030         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1031         set_intercept(svm, INTERCEPT_SHUTDOWN);
1032         set_intercept(svm, INTERCEPT_VMRUN);
1033         set_intercept(svm, INTERCEPT_VMMCALL);
1034         set_intercept(svm, INTERCEPT_VMLOAD);
1035         set_intercept(svm, INTERCEPT_VMSAVE);
1036         set_intercept(svm, INTERCEPT_STGI);
1037         set_intercept(svm, INTERCEPT_CLGI);
1038         set_intercept(svm, INTERCEPT_SKINIT);
1039         set_intercept(svm, INTERCEPT_WBINVD);
1040         set_intercept(svm, INTERCEPT_MONITOR);
1041         set_intercept(svm, INTERCEPT_MWAIT);
1042         set_intercept(svm, INTERCEPT_XSETBV);
1043
1044         control->iopm_base_pa = iopm_base;
1045         control->msrpm_base_pa = __pa(svm->msrpm);
1046         control->int_ctl = V_INTR_MASKING_MASK;
1047
1048         init_seg(&save->es);
1049         init_seg(&save->ss);
1050         init_seg(&save->ds);
1051         init_seg(&save->fs);
1052         init_seg(&save->gs);
1053
1054         save->cs.selector = 0xf000;
1055         /* Executable/Readable Code Segment */
1056         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1057                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1058         save->cs.limit = 0xffff;
1059         /*
1060          * cs.base should really be 0xffff0000, but vmx can't handle that, so
1061          * be consistent with it.
1062          *
1063          * Replace when we have real mode working for vmx.
1064          */
1065         save->cs.base = 0xf0000;
1066
1067         save->gdtr.limit = 0xffff;
1068         save->idtr.limit = 0xffff;
1069
1070         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1071         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1072
1073         svm_set_efer(&svm->vcpu, 0);
1074         save->dr6 = 0xffff0ff0;
1075         save->dr7 = 0x400;
1076         kvm_set_rflags(&svm->vcpu, 2);
1077         save->rip = 0x0000fff0;
1078         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1079
1080         /*
1081          * This is the guest-visible cr0 value.
1082          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1083          */
1084         svm->vcpu.arch.cr0 = 0;
1085         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1086
1087         save->cr4 = X86_CR4_PAE;
1088         /* rdx = ?? */
1089
1090         if (npt_enabled) {
1091                 /* Setup VMCB for Nested Paging */
1092                 control->nested_ctl = 1;
1093                 clr_intercept(svm, INTERCEPT_INVLPG);
1094                 clr_exception_intercept(svm, PF_VECTOR);
1095                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1096                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1097                 save->g_pat = 0x0007040600070406ULL;
1098                 save->cr3 = 0;
1099                 save->cr4 = 0;
1100         }
1101         svm->asid_generation = 0;
1102
1103         svm->nested.vmcb = 0;
1104         svm->vcpu.arch.hflags = 0;
1105
1106         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1107                 control->pause_filter_count = 3000;
1108                 set_intercept(svm, INTERCEPT_PAUSE);
1109         }
1110
1111         mark_all_dirty(svm->vmcb);
1112
1113         enable_gif(svm);
1114 }
1115
1116 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1117 {
1118         struct vcpu_svm *svm = to_svm(vcpu);
1119
1120         init_vmcb(svm);
1121
1122         if (!kvm_vcpu_is_bsp(vcpu)) {
1123                 kvm_rip_write(vcpu, 0);
1124                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1125                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1126         }
1127         vcpu->arch.regs_avail = ~0;
1128         vcpu->arch.regs_dirty = ~0;
1129
1130         return 0;
1131 }
1132
1133 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1134 {
1135         struct vcpu_svm *svm;
1136         struct page *page;
1137         struct page *msrpm_pages;
1138         struct page *hsave_page;
1139         struct page *nested_msrpm_pages;
1140         int err;
1141
1142         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1143         if (!svm) {
1144                 err = -ENOMEM;
1145                 goto out;
1146         }
1147
1148         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1149
1150         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1151         if (err)
1152                 goto free_svm;
1153
1154         err = -ENOMEM;
1155         page = alloc_page(GFP_KERNEL);
1156         if (!page)
1157                 goto uninit;
1158
1159         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1160         if (!msrpm_pages)
1161                 goto free_page1;
1162
1163         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1164         if (!nested_msrpm_pages)
1165                 goto free_page2;
1166
1167         hsave_page = alloc_page(GFP_KERNEL);
1168         if (!hsave_page)
1169                 goto free_page3;
1170
1171         svm->nested.hsave = page_address(hsave_page);
1172
1173         svm->msrpm = page_address(msrpm_pages);
1174         svm_vcpu_init_msrpm(svm->msrpm);
1175
1176         svm->nested.msrpm = page_address(nested_msrpm_pages);
1177         svm_vcpu_init_msrpm(svm->nested.msrpm);
1178
1179         svm->vmcb = page_address(page);
1180         clear_page(svm->vmcb);
1181         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1182         svm->asid_generation = 0;
1183         init_vmcb(svm);
1184         kvm_write_tsc(&svm->vcpu, 0);
1185
1186         err = fx_init(&svm->vcpu);
1187         if (err)
1188                 goto free_page4;
1189
1190         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1191         if (kvm_vcpu_is_bsp(&svm->vcpu))
1192                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1193
1194         return &svm->vcpu;
1195
1196 free_page4:
1197         __free_page(hsave_page);
1198 free_page3:
1199         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1200 free_page2:
1201         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1202 free_page1:
1203         __free_page(page);
1204 uninit:
1205         kvm_vcpu_uninit(&svm->vcpu);
1206 free_svm:
1207         kmem_cache_free(kvm_vcpu_cache, svm);
1208 out:
1209         return ERR_PTR(err);
1210 }
1211
1212 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1213 {
1214         struct vcpu_svm *svm = to_svm(vcpu);
1215
1216         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1217         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1218         __free_page(virt_to_page(svm->nested.hsave));
1219         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1220         kvm_vcpu_uninit(vcpu);
1221         kmem_cache_free(kvm_vcpu_cache, svm);
1222 }
1223
1224 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1225 {
1226         struct vcpu_svm *svm = to_svm(vcpu);
1227         int i;
1228
1229         if (unlikely(cpu != vcpu->cpu)) {
1230                 svm->asid_generation = 0;
1231                 mark_all_dirty(svm->vmcb);
1232         }
1233
1234 #ifdef CONFIG_X86_64
1235         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1236 #endif
1237         savesegment(fs, svm->host.fs);
1238         savesegment(gs, svm->host.gs);
1239         svm->host.ldt = kvm_read_ldt();
1240
1241         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1242                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1243
1244         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1245             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1246                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1247                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1248         }
1249 }
1250
1251 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1252 {
1253         struct vcpu_svm *svm = to_svm(vcpu);
1254         int i;
1255
1256         ++vcpu->stat.host_state_reload;
1257         kvm_load_ldt(svm->host.ldt);
1258 #ifdef CONFIG_X86_64
1259         loadsegment(fs, svm->host.fs);
1260         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1261         load_gs_index(svm->host.gs);
1262 #else
1263 #ifdef CONFIG_X86_32_LAZY_GS
1264         loadsegment(gs, svm->host.gs);
1265 #endif
1266 #endif
1267         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1268                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1269 }
1270
1271 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1272 {
1273         return to_svm(vcpu)->vmcb->save.rflags;
1274 }
1275
1276 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1277 {
1278         to_svm(vcpu)->vmcb->save.rflags = rflags;
1279 }
1280
1281 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1282 {
1283         switch (reg) {
1284         case VCPU_EXREG_PDPTR:
1285                 BUG_ON(!npt_enabled);
1286                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1287                 break;
1288         default:
1289                 BUG();
1290         }
1291 }
1292
1293 static void svm_set_vintr(struct vcpu_svm *svm)
1294 {
1295         set_intercept(svm, INTERCEPT_VINTR);
1296 }
1297
1298 static void svm_clear_vintr(struct vcpu_svm *svm)
1299 {
1300         clr_intercept(svm, INTERCEPT_VINTR);
1301 }
1302
1303 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1304 {
1305         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1306
1307         switch (seg) {
1308         case VCPU_SREG_CS: return &save->cs;
1309         case VCPU_SREG_DS: return &save->ds;
1310         case VCPU_SREG_ES: return &save->es;
1311         case VCPU_SREG_FS: return &save->fs;
1312         case VCPU_SREG_GS: return &save->gs;
1313         case VCPU_SREG_SS: return &save->ss;
1314         case VCPU_SREG_TR: return &save->tr;
1315         case VCPU_SREG_LDTR: return &save->ldtr;
1316         }
1317         BUG();
1318         return NULL;
1319 }
1320
1321 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1322 {
1323         struct vmcb_seg *s = svm_seg(vcpu, seg);
1324
1325         return s->base;
1326 }
1327
1328 static void svm_get_segment(struct kvm_vcpu *vcpu,
1329                             struct kvm_segment *var, int seg)
1330 {
1331         struct vmcb_seg *s = svm_seg(vcpu, seg);
1332
1333         var->base = s->base;
1334         var->limit = s->limit;
1335         var->selector = s->selector;
1336         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1337         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1338         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1339         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1340         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1341         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1342         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1343         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1344
1345         /*
1346          * AMD's VMCB does not have an explicit unusable field, so emulate it
1347          * for cross vendor migration purposes by "not present"
1348          */
1349         var->unusable = !var->present || (var->type == 0);
1350
1351         switch (seg) {
1352         case VCPU_SREG_CS:
1353                 /*
1354                  * SVM always stores 0 for the 'G' bit in the CS selector in
1355                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1356                  * Intel's VMENTRY has a check on the 'G' bit.
1357                  */
1358                 var->g = s->limit > 0xfffff;
1359                 break;
1360         case VCPU_SREG_TR:
1361                 /*
1362                  * Work around a bug where the busy flag in the tr selector
1363                  * isn't exposed
1364                  */
1365                 var->type |= 0x2;
1366                 break;
1367         case VCPU_SREG_DS:
1368         case VCPU_SREG_ES:
1369         case VCPU_SREG_FS:
1370         case VCPU_SREG_GS:
1371                 /*
1372                  * The accessed bit must always be set in the segment
1373                  * descriptor cache, although it can be cleared in the
1374                  * descriptor, the cached bit always remains at 1. Since
1375                  * Intel has a check on this, set it here to support
1376                  * cross-vendor migration.
1377                  */
1378                 if (!var->unusable)
1379                         var->type |= 0x1;
1380                 break;
1381         case VCPU_SREG_SS:
1382                 /*
1383                  * On AMD CPUs sometimes the DB bit in the segment
1384                  * descriptor is left as 1, although the whole segment has
1385                  * been made unusable. Clear it here to pass an Intel VMX
1386                  * entry check when cross vendor migrating.
1387                  */
1388                 if (var->unusable)
1389                         var->db = 0;
1390                 break;
1391         }
1392 }
1393
1394 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1395 {
1396         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1397
1398         return save->cpl;
1399 }
1400
1401 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1402 {
1403         struct vcpu_svm *svm = to_svm(vcpu);
1404
1405         dt->size = svm->vmcb->save.idtr.limit;
1406         dt->address = svm->vmcb->save.idtr.base;
1407 }
1408
1409 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1410 {
1411         struct vcpu_svm *svm = to_svm(vcpu);
1412
1413         svm->vmcb->save.idtr.limit = dt->size;
1414         svm->vmcb->save.idtr.base = dt->address ;
1415         mark_dirty(svm->vmcb, VMCB_DT);
1416 }
1417
1418 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1419 {
1420         struct vcpu_svm *svm = to_svm(vcpu);
1421
1422         dt->size = svm->vmcb->save.gdtr.limit;
1423         dt->address = svm->vmcb->save.gdtr.base;
1424 }
1425
1426 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1427 {
1428         struct vcpu_svm *svm = to_svm(vcpu);
1429
1430         svm->vmcb->save.gdtr.limit = dt->size;
1431         svm->vmcb->save.gdtr.base = dt->address ;
1432         mark_dirty(svm->vmcb, VMCB_DT);
1433 }
1434
1435 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1436 {
1437 }
1438
1439 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1440 {
1441 }
1442
1443 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1444 {
1445 }
1446
1447 static void update_cr0_intercept(struct vcpu_svm *svm)
1448 {
1449         ulong gcr0 = svm->vcpu.arch.cr0;
1450         u64 *hcr0 = &svm->vmcb->save.cr0;
1451
1452         if (!svm->vcpu.fpu_active)
1453                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1454         else
1455                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1456                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1457
1458         mark_dirty(svm->vmcb, VMCB_CR);
1459
1460         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1461                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1462                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1463         } else {
1464                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1465                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1466         }
1467 }
1468
1469 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1470 {
1471         struct vcpu_svm *svm = to_svm(vcpu);
1472
1473 #ifdef CONFIG_X86_64
1474         if (vcpu->arch.efer & EFER_LME) {
1475                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1476                         vcpu->arch.efer |= EFER_LMA;
1477                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1478                 }
1479
1480                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1481                         vcpu->arch.efer &= ~EFER_LMA;
1482                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1483                 }
1484         }
1485 #endif
1486         vcpu->arch.cr0 = cr0;
1487
1488         if (!npt_enabled)
1489                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1490
1491         if (!vcpu->fpu_active)
1492                 cr0 |= X86_CR0_TS;
1493         /*
1494          * re-enable caching here because the QEMU bios
1495          * does not do it - this results in some delay at
1496          * reboot
1497          */
1498         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1499         svm->vmcb->save.cr0 = cr0;
1500         mark_dirty(svm->vmcb, VMCB_CR);
1501         update_cr0_intercept(svm);
1502 }
1503
1504 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1505 {
1506         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1507         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1508
1509         if (cr4 & X86_CR4_VMXE)
1510                 return 1;
1511
1512         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1513                 svm_flush_tlb(vcpu);
1514
1515         vcpu->arch.cr4 = cr4;
1516         if (!npt_enabled)
1517                 cr4 |= X86_CR4_PAE;
1518         cr4 |= host_cr4_mce;
1519         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1520         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1521         return 0;
1522 }
1523
1524 static void svm_set_segment(struct kvm_vcpu *vcpu,
1525                             struct kvm_segment *var, int seg)
1526 {
1527         struct vcpu_svm *svm = to_svm(vcpu);
1528         struct vmcb_seg *s = svm_seg(vcpu, seg);
1529
1530         s->base = var->base;
1531         s->limit = var->limit;
1532         s->selector = var->selector;
1533         if (var->unusable)
1534                 s->attrib = 0;
1535         else {
1536                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1537                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1538                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1539                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1540                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1541                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1542                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1543                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1544         }
1545         if (seg == VCPU_SREG_CS)
1546                 svm->vmcb->save.cpl
1547                         = (svm->vmcb->save.cs.attrib
1548                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1549
1550         mark_dirty(svm->vmcb, VMCB_SEG);
1551 }
1552
1553 static void update_db_intercept(struct kvm_vcpu *vcpu)
1554 {
1555         struct vcpu_svm *svm = to_svm(vcpu);
1556
1557         clr_exception_intercept(svm, DB_VECTOR);
1558         clr_exception_intercept(svm, BP_VECTOR);
1559
1560         if (svm->nmi_singlestep)
1561                 set_exception_intercept(svm, DB_VECTOR);
1562
1563         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1564                 if (vcpu->guest_debug &
1565                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1566                         set_exception_intercept(svm, DB_VECTOR);
1567                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1568                         set_exception_intercept(svm, BP_VECTOR);
1569         } else
1570                 vcpu->guest_debug = 0;
1571 }
1572
1573 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1574 {
1575         struct vcpu_svm *svm = to_svm(vcpu);
1576
1577         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1578                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1579         else
1580                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1581
1582         mark_dirty(svm->vmcb, VMCB_DR);
1583
1584         update_db_intercept(vcpu);
1585 }
1586
1587 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1588 {
1589         if (sd->next_asid > sd->max_asid) {
1590                 ++sd->asid_generation;
1591                 sd->next_asid = 1;
1592                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1593         }
1594
1595         svm->asid_generation = sd->asid_generation;
1596         svm->vmcb->control.asid = sd->next_asid++;
1597
1598         mark_dirty(svm->vmcb, VMCB_ASID);
1599 }
1600
1601 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1602 {
1603         struct vcpu_svm *svm = to_svm(vcpu);
1604
1605         svm->vmcb->save.dr7 = value;
1606         mark_dirty(svm->vmcb, VMCB_DR);
1607 }
1608
1609 static int pf_interception(struct vcpu_svm *svm)
1610 {
1611         u64 fault_address = svm->vmcb->control.exit_info_2;
1612         u32 error_code;
1613         int r = 1;
1614
1615         switch (svm->apf_reason) {
1616         default:
1617                 error_code = svm->vmcb->control.exit_info_1;
1618
1619                 trace_kvm_page_fault(fault_address, error_code);
1620                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1621                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1622                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1623                         svm->vmcb->control.insn_bytes,
1624                         svm->vmcb->control.insn_len);
1625                 break;
1626         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1627                 svm->apf_reason = 0;
1628                 local_irq_disable();
1629                 kvm_async_pf_task_wait(fault_address);
1630                 local_irq_enable();
1631                 break;
1632         case KVM_PV_REASON_PAGE_READY:
1633                 svm->apf_reason = 0;
1634                 local_irq_disable();
1635                 kvm_async_pf_task_wake(fault_address);
1636                 local_irq_enable();
1637                 break;
1638         }
1639         return r;
1640 }
1641
1642 static int db_interception(struct vcpu_svm *svm)
1643 {
1644         struct kvm_run *kvm_run = svm->vcpu.run;
1645
1646         if (!(svm->vcpu.guest_debug &
1647               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1648                 !svm->nmi_singlestep) {
1649                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1650                 return 1;
1651         }
1652
1653         if (svm->nmi_singlestep) {
1654                 svm->nmi_singlestep = false;
1655                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1656                         svm->vmcb->save.rflags &=
1657                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1658                 update_db_intercept(&svm->vcpu);
1659         }
1660
1661         if (svm->vcpu.guest_debug &
1662             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1663                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1664                 kvm_run->debug.arch.pc =
1665                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1666                 kvm_run->debug.arch.exception = DB_VECTOR;
1667                 return 0;
1668         }
1669
1670         return 1;
1671 }
1672
1673 static int bp_interception(struct vcpu_svm *svm)
1674 {
1675         struct kvm_run *kvm_run = svm->vcpu.run;
1676
1677         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1678         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1679         kvm_run->debug.arch.exception = BP_VECTOR;
1680         return 0;
1681 }
1682
1683 static int ud_interception(struct vcpu_svm *svm)
1684 {
1685         int er;
1686
1687         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1688         if (er != EMULATE_DONE)
1689                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1690         return 1;
1691 }
1692
1693 static int ac_interception(struct vcpu_svm *svm)
1694 {
1695         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1696         return 1;
1697 }
1698
1699 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1700 {
1701         struct vcpu_svm *svm = to_svm(vcpu);
1702
1703         clr_exception_intercept(svm, NM_VECTOR);
1704
1705         svm->vcpu.fpu_active = 1;
1706         update_cr0_intercept(svm);
1707 }
1708
1709 static int nm_interception(struct vcpu_svm *svm)
1710 {
1711         svm_fpu_activate(&svm->vcpu);
1712         return 1;
1713 }
1714
1715 static bool is_erratum_383(void)
1716 {
1717         int err, i;
1718         u64 value;
1719
1720         if (!erratum_383_found)
1721                 return false;
1722
1723         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1724         if (err)
1725                 return false;
1726
1727         /* Bit 62 may or may not be set for this mce */
1728         value &= ~(1ULL << 62);
1729
1730         if (value != 0xb600000000010015ULL)
1731                 return false;
1732
1733         /* Clear MCi_STATUS registers */
1734         for (i = 0; i < 6; ++i)
1735                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1736
1737         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1738         if (!err) {
1739                 u32 low, high;
1740
1741                 value &= ~(1ULL << 2);
1742                 low    = lower_32_bits(value);
1743                 high   = upper_32_bits(value);
1744
1745                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1746         }
1747
1748         /* Flush tlb to evict multi-match entries */
1749         __flush_tlb_all();
1750
1751         return true;
1752 }
1753
1754 static void svm_handle_mce(struct vcpu_svm *svm)
1755 {
1756         if (is_erratum_383()) {
1757                 /*
1758                  * Erratum 383 triggered. Guest state is corrupt so kill the
1759                  * guest.
1760                  */
1761                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1762
1763                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1764
1765                 return;
1766         }
1767
1768         /*
1769          * On an #MC intercept the MCE handler is not called automatically in
1770          * the host. So do it by hand here.
1771          */
1772         asm volatile (
1773                 "int $0x12\n");
1774         /* not sure if we ever come back to this point */
1775
1776         return;
1777 }
1778
1779 static int mc_interception(struct vcpu_svm *svm)
1780 {
1781         return 1;
1782 }
1783
1784 static int shutdown_interception(struct vcpu_svm *svm)
1785 {
1786         struct kvm_run *kvm_run = svm->vcpu.run;
1787
1788         /*
1789          * VMCB is undefined after a SHUTDOWN intercept
1790          * so reinitialize it.
1791          */
1792         clear_page(svm->vmcb);
1793         init_vmcb(svm);
1794
1795         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1796         return 0;
1797 }
1798
1799 static int io_interception(struct vcpu_svm *svm)
1800 {
1801         struct kvm_vcpu *vcpu = &svm->vcpu;
1802         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1803         int size, in, string;
1804         unsigned port;
1805
1806         ++svm->vcpu.stat.io_exits;
1807         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1808         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1809         if (string || in)
1810                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1811
1812         port = io_info >> 16;
1813         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1814         svm->next_rip = svm->vmcb->control.exit_info_2;
1815         skip_emulated_instruction(&svm->vcpu);
1816
1817         return kvm_fast_pio_out(vcpu, size, port);
1818 }
1819
1820 static int nmi_interception(struct vcpu_svm *svm)
1821 {
1822         return 1;
1823 }
1824
1825 static int intr_interception(struct vcpu_svm *svm)
1826 {
1827         ++svm->vcpu.stat.irq_exits;
1828         return 1;
1829 }
1830
1831 static int nop_on_interception(struct vcpu_svm *svm)
1832 {
1833         return 1;
1834 }
1835
1836 static int halt_interception(struct vcpu_svm *svm)
1837 {
1838         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1839         skip_emulated_instruction(&svm->vcpu);
1840         return kvm_emulate_halt(&svm->vcpu);
1841 }
1842
1843 static int vmmcall_interception(struct vcpu_svm *svm)
1844 {
1845         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1846         skip_emulated_instruction(&svm->vcpu);
1847         kvm_emulate_hypercall(&svm->vcpu);
1848         return 1;
1849 }
1850
1851 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1852 {
1853         struct vcpu_svm *svm = to_svm(vcpu);
1854
1855         return svm->nested.nested_cr3;
1856 }
1857
1858 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1859 {
1860         struct vcpu_svm *svm = to_svm(vcpu);
1861         u64 cr3 = svm->nested.nested_cr3;
1862         u64 pdpte;
1863         int ret;
1864
1865         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1866                                   offset_in_page(cr3) + index * 8, 8);
1867         if (ret)
1868                 return 0;
1869         return pdpte;
1870 }
1871
1872 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1873                                    unsigned long root)
1874 {
1875         struct vcpu_svm *svm = to_svm(vcpu);
1876
1877         svm->vmcb->control.nested_cr3 = root;
1878         mark_dirty(svm->vmcb, VMCB_NPT);
1879         svm_flush_tlb(vcpu);
1880 }
1881
1882 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1883                                        struct x86_exception *fault)
1884 {
1885         struct vcpu_svm *svm = to_svm(vcpu);
1886
1887         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1888         svm->vmcb->control.exit_code_hi = 0;
1889         svm->vmcb->control.exit_info_1 = fault->error_code;
1890         svm->vmcb->control.exit_info_2 = fault->address;
1891
1892         nested_svm_vmexit(svm);
1893 }
1894
1895 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1896 {
1897         int r;
1898
1899         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1900
1901         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1902         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1903         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1904         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1905         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1906         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1907
1908         return r;
1909 }
1910
1911 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1912 {
1913         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1914 }
1915
1916 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1917 {
1918         if (!(svm->vcpu.arch.efer & EFER_SVME)
1919             || !is_paging(&svm->vcpu)) {
1920                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1921                 return 1;
1922         }
1923
1924         if (svm->vmcb->save.cpl) {
1925                 kvm_inject_gp(&svm->vcpu, 0);
1926                 return 1;
1927         }
1928
1929        return 0;
1930 }
1931
1932 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1933                                       bool has_error_code, u32 error_code)
1934 {
1935         int vmexit;
1936
1937         if (!is_guest_mode(&svm->vcpu))
1938                 return 0;
1939
1940         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1941         svm->vmcb->control.exit_code_hi = 0;
1942         svm->vmcb->control.exit_info_1 = error_code;
1943         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1944
1945         vmexit = nested_svm_intercept(svm);
1946         if (vmexit == NESTED_EXIT_DONE)
1947                 svm->nested.exit_required = true;
1948
1949         return vmexit;
1950 }
1951
1952 /* This function returns true if it is save to enable the irq window */
1953 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1954 {
1955         if (!is_guest_mode(&svm->vcpu))
1956                 return true;
1957
1958         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1959                 return true;
1960
1961         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1962                 return false;
1963
1964         /*
1965          * if vmexit was already requested (by intercepted exception
1966          * for instance) do not overwrite it with "external interrupt"
1967          * vmexit.
1968          */
1969         if (svm->nested.exit_required)
1970                 return false;
1971
1972         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1973         svm->vmcb->control.exit_info_1 = 0;
1974         svm->vmcb->control.exit_info_2 = 0;
1975
1976         if (svm->nested.intercept & 1ULL) {
1977                 /*
1978                  * The #vmexit can't be emulated here directly because this
1979                  * code path runs with irqs and preemtion disabled. A
1980                  * #vmexit emulation might sleep. Only signal request for
1981                  * the #vmexit here.
1982                  */
1983                 svm->nested.exit_required = true;
1984                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1985                 return false;
1986         }
1987
1988         return true;
1989 }
1990
1991 /* This function returns true if it is save to enable the nmi window */
1992 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1993 {
1994         if (!is_guest_mode(&svm->vcpu))
1995                 return true;
1996
1997         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1998                 return true;
1999
2000         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2001         svm->nested.exit_required = true;
2002
2003         return false;
2004 }
2005
2006 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2007 {
2008         struct page *page;
2009
2010         might_sleep();
2011
2012         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2013         if (is_error_page(page))
2014                 goto error;
2015
2016         *_page = page;
2017
2018         return kmap(page);
2019
2020 error:
2021         kvm_release_page_clean(page);
2022         kvm_inject_gp(&svm->vcpu, 0);
2023
2024         return NULL;
2025 }
2026
2027 static void nested_svm_unmap(struct page *page)
2028 {
2029         kunmap(page);
2030         kvm_release_page_dirty(page);
2031 }
2032
2033 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2034 {
2035         unsigned port;
2036         u8 val, bit;
2037         u64 gpa;
2038
2039         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2040                 return NESTED_EXIT_HOST;
2041
2042         port = svm->vmcb->control.exit_info_1 >> 16;
2043         gpa  = svm->nested.vmcb_iopm + (port / 8);
2044         bit  = port % 8;
2045         val  = 0;
2046
2047         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2048                 val &= (1 << bit);
2049
2050         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2051 }
2052
2053 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2054 {
2055         u32 offset, msr, value;
2056         int write, mask;
2057
2058         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2059                 return NESTED_EXIT_HOST;
2060
2061         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2062         offset = svm_msrpm_offset(msr);
2063         write  = svm->vmcb->control.exit_info_1 & 1;
2064         mask   = 1 << ((2 * (msr & 0xf)) + write);
2065
2066         if (offset == MSR_INVALID)
2067                 return NESTED_EXIT_DONE;
2068
2069         /* Offset is in 32 bit units but need in 8 bit units */
2070         offset *= 4;
2071
2072         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2073                 return NESTED_EXIT_DONE;
2074
2075         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2076 }
2077
2078 static int nested_svm_exit_special(struct vcpu_svm *svm)
2079 {
2080         u32 exit_code = svm->vmcb->control.exit_code;
2081
2082         switch (exit_code) {
2083         case SVM_EXIT_INTR:
2084         case SVM_EXIT_NMI:
2085         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2086                 return NESTED_EXIT_HOST;
2087         case SVM_EXIT_NPF:
2088                 /* For now we are always handling NPFs when using them */
2089                 if (npt_enabled)
2090                         return NESTED_EXIT_HOST;
2091                 break;
2092         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2093                 /* When we're shadowing, trap PFs, but not async PF */
2094                 if (!npt_enabled && svm->apf_reason == 0)
2095                         return NESTED_EXIT_HOST;
2096                 break;
2097         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2098                 nm_interception(svm);
2099                 break;
2100         default:
2101                 break;
2102         }
2103
2104         return NESTED_EXIT_CONTINUE;
2105 }
2106
2107 /*
2108  * If this function returns true, this #vmexit was already handled
2109  */
2110 static int nested_svm_intercept(struct vcpu_svm *svm)
2111 {
2112         u32 exit_code = svm->vmcb->control.exit_code;
2113         int vmexit = NESTED_EXIT_HOST;
2114
2115         switch (exit_code) {
2116         case SVM_EXIT_MSR:
2117                 vmexit = nested_svm_exit_handled_msr(svm);
2118                 break;
2119         case SVM_EXIT_IOIO:
2120                 vmexit = nested_svm_intercept_ioio(svm);
2121                 break;
2122         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2123                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2124                 if (svm->nested.intercept_cr & bit)
2125                         vmexit = NESTED_EXIT_DONE;
2126                 break;
2127         }
2128         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2129                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2130                 if (svm->nested.intercept_dr & bit)
2131                         vmexit = NESTED_EXIT_DONE;
2132                 break;
2133         }
2134         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2135                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2136                 if (svm->nested.intercept_exceptions & excp_bits)
2137                         vmexit = NESTED_EXIT_DONE;
2138                 /* async page fault always cause vmexit */
2139                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2140                          svm->apf_reason != 0)
2141                         vmexit = NESTED_EXIT_DONE;
2142                 break;
2143         }
2144         case SVM_EXIT_ERR: {
2145                 vmexit = NESTED_EXIT_DONE;
2146                 break;
2147         }
2148         default: {
2149                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2150                 if (svm->nested.intercept & exit_bits)
2151                         vmexit = NESTED_EXIT_DONE;
2152         }
2153         }
2154
2155         return vmexit;
2156 }
2157
2158 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2159 {
2160         int vmexit;
2161
2162         vmexit = nested_svm_intercept(svm);
2163
2164         if (vmexit == NESTED_EXIT_DONE)
2165                 nested_svm_vmexit(svm);
2166
2167         return vmexit;
2168 }
2169
2170 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2171 {
2172         struct vmcb_control_area *dst  = &dst_vmcb->control;
2173         struct vmcb_control_area *from = &from_vmcb->control;
2174
2175         dst->intercept_cr         = from->intercept_cr;
2176         dst->intercept_dr         = from->intercept_dr;
2177         dst->intercept_exceptions = from->intercept_exceptions;
2178         dst->intercept            = from->intercept;
2179         dst->iopm_base_pa         = from->iopm_base_pa;
2180         dst->msrpm_base_pa        = from->msrpm_base_pa;
2181         dst->tsc_offset           = from->tsc_offset;
2182         dst->asid                 = from->asid;
2183         dst->tlb_ctl              = from->tlb_ctl;
2184         dst->int_ctl              = from->int_ctl;
2185         dst->int_vector           = from->int_vector;
2186         dst->int_state            = from->int_state;
2187         dst->exit_code            = from->exit_code;
2188         dst->exit_code_hi         = from->exit_code_hi;
2189         dst->exit_info_1          = from->exit_info_1;
2190         dst->exit_info_2          = from->exit_info_2;
2191         dst->exit_int_info        = from->exit_int_info;
2192         dst->exit_int_info_err    = from->exit_int_info_err;
2193         dst->nested_ctl           = from->nested_ctl;
2194         dst->event_inj            = from->event_inj;
2195         dst->event_inj_err        = from->event_inj_err;
2196         dst->nested_cr3           = from->nested_cr3;
2197         dst->lbr_ctl              = from->lbr_ctl;
2198 }
2199
2200 static int nested_svm_vmexit(struct vcpu_svm *svm)
2201 {
2202         struct vmcb *nested_vmcb;
2203         struct vmcb *hsave = svm->nested.hsave;
2204         struct vmcb *vmcb = svm->vmcb;
2205         struct page *page;
2206
2207         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2208                                        vmcb->control.exit_info_1,
2209                                        vmcb->control.exit_info_2,
2210                                        vmcb->control.exit_int_info,
2211                                        vmcb->control.exit_int_info_err,
2212                                        KVM_ISA_SVM);
2213
2214         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2215         if (!nested_vmcb)
2216                 return 1;
2217
2218         /* Exit Guest-Mode */
2219         leave_guest_mode(&svm->vcpu);
2220         svm->nested.vmcb = 0;
2221
2222         /* Give the current vmcb to the guest */
2223         disable_gif(svm);
2224
2225         nested_vmcb->save.es     = vmcb->save.es;
2226         nested_vmcb->save.cs     = vmcb->save.cs;
2227         nested_vmcb->save.ss     = vmcb->save.ss;
2228         nested_vmcb->save.ds     = vmcb->save.ds;
2229         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2230         nested_vmcb->save.idtr   = vmcb->save.idtr;
2231         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2232         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2233         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2234         nested_vmcb->save.cr2    = vmcb->save.cr2;
2235         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2236         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2237         nested_vmcb->save.rip    = vmcb->save.rip;
2238         nested_vmcb->save.rsp    = vmcb->save.rsp;
2239         nested_vmcb->save.rax    = vmcb->save.rax;
2240         nested_vmcb->save.dr7    = vmcb->save.dr7;
2241         nested_vmcb->save.dr6    = vmcb->save.dr6;
2242         nested_vmcb->save.cpl    = vmcb->save.cpl;
2243
2244         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2245         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2246         nested_vmcb->control.int_state         = vmcb->control.int_state;
2247         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2248         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2249         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2250         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2251         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2252         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2253         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2254
2255         /*
2256          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2257          * to make sure that we do not lose injected events. So check event_inj
2258          * here and copy it to exit_int_info if it is valid.
2259          * Exit_int_info and event_inj can't be both valid because the case
2260          * below only happens on a VMRUN instruction intercept which has
2261          * no valid exit_int_info set.
2262          */
2263         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2264                 struct vmcb_control_area *nc = &nested_vmcb->control;
2265
2266                 nc->exit_int_info     = vmcb->control.event_inj;
2267                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2268         }
2269
2270         nested_vmcb->control.tlb_ctl           = 0;
2271         nested_vmcb->control.event_inj         = 0;
2272         nested_vmcb->control.event_inj_err     = 0;
2273
2274         /* We always set V_INTR_MASKING and remember the old value in hflags */
2275         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2276                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2277
2278         /* Restore the original control entries */
2279         copy_vmcb_control_area(vmcb, hsave);
2280
2281         kvm_clear_exception_queue(&svm->vcpu);
2282         kvm_clear_interrupt_queue(&svm->vcpu);
2283
2284         svm->nested.nested_cr3 = 0;
2285
2286         /* Restore selected save entries */
2287         svm->vmcb->save.es = hsave->save.es;
2288         svm->vmcb->save.cs = hsave->save.cs;
2289         svm->vmcb->save.ss = hsave->save.ss;
2290         svm->vmcb->save.ds = hsave->save.ds;
2291         svm->vmcb->save.gdtr = hsave->save.gdtr;
2292         svm->vmcb->save.idtr = hsave->save.idtr;
2293         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2294         svm_set_efer(&svm->vcpu, hsave->save.efer);
2295         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2296         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2297         if (npt_enabled) {
2298                 svm->vmcb->save.cr3 = hsave->save.cr3;
2299                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2300         } else {
2301                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2302         }
2303         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2304         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2305         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2306         svm->vmcb->save.dr7 = 0;
2307         svm->vmcb->save.cpl = 0;
2308         svm->vmcb->control.exit_int_info = 0;
2309
2310         mark_all_dirty(svm->vmcb);
2311
2312         nested_svm_unmap(page);
2313
2314         nested_svm_uninit_mmu_context(&svm->vcpu);
2315         kvm_mmu_reset_context(&svm->vcpu);
2316         kvm_mmu_load(&svm->vcpu);
2317
2318         return 0;
2319 }
2320
2321 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2322 {
2323         /*
2324          * This function merges the msr permission bitmaps of kvm and the
2325          * nested vmcb. It is omptimized in that it only merges the parts where
2326          * the kvm msr permission bitmap may contain zero bits
2327          */
2328         int i;
2329
2330         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2331                 return true;
2332
2333         for (i = 0; i < MSRPM_OFFSETS; i++) {
2334                 u32 value, p;
2335                 u64 offset;
2336
2337                 if (msrpm_offsets[i] == 0xffffffff)
2338                         break;
2339
2340                 p      = msrpm_offsets[i];
2341                 offset = svm->nested.vmcb_msrpm + (p * 4);
2342
2343                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2344                         return false;
2345
2346                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2347         }
2348
2349         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2350
2351         return true;
2352 }
2353
2354 static bool nested_vmcb_checks(struct vmcb *vmcb)
2355 {
2356         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2357                 return false;
2358
2359         if (vmcb->control.asid == 0)
2360                 return false;
2361
2362         if (vmcb->control.nested_ctl && !npt_enabled)
2363                 return false;
2364
2365         return true;
2366 }
2367
2368 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2369 {
2370         struct vmcb *nested_vmcb;
2371         struct vmcb *hsave = svm->nested.hsave;
2372         struct vmcb *vmcb = svm->vmcb;
2373         struct page *page;
2374         u64 vmcb_gpa;
2375
2376         vmcb_gpa = svm->vmcb->save.rax;
2377
2378         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2379         if (!nested_vmcb)
2380                 return false;
2381
2382         if (!nested_vmcb_checks(nested_vmcb)) {
2383                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2384                 nested_vmcb->control.exit_code_hi = 0;
2385                 nested_vmcb->control.exit_info_1  = 0;
2386                 nested_vmcb->control.exit_info_2  = 0;
2387
2388                 nested_svm_unmap(page);
2389
2390                 return false;
2391         }
2392
2393         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2394                                nested_vmcb->save.rip,
2395                                nested_vmcb->control.int_ctl,
2396                                nested_vmcb->control.event_inj,
2397                                nested_vmcb->control.nested_ctl);
2398
2399         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2400                                     nested_vmcb->control.intercept_cr >> 16,
2401                                     nested_vmcb->control.intercept_exceptions,
2402                                     nested_vmcb->control.intercept);
2403
2404         /* Clear internal status */
2405         kvm_clear_exception_queue(&svm->vcpu);
2406         kvm_clear_interrupt_queue(&svm->vcpu);
2407
2408         /*
2409          * Save the old vmcb, so we don't need to pick what we save, but can
2410          * restore everything when a VMEXIT occurs
2411          */
2412         hsave->save.es     = vmcb->save.es;
2413         hsave->save.cs     = vmcb->save.cs;
2414         hsave->save.ss     = vmcb->save.ss;
2415         hsave->save.ds     = vmcb->save.ds;
2416         hsave->save.gdtr   = vmcb->save.gdtr;
2417         hsave->save.idtr   = vmcb->save.idtr;
2418         hsave->save.efer   = svm->vcpu.arch.efer;
2419         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2420         hsave->save.cr4    = svm->vcpu.arch.cr4;
2421         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2422         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2423         hsave->save.rsp    = vmcb->save.rsp;
2424         hsave->save.rax    = vmcb->save.rax;
2425         if (npt_enabled)
2426                 hsave->save.cr3    = vmcb->save.cr3;
2427         else
2428                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2429
2430         copy_vmcb_control_area(hsave, vmcb);
2431
2432         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2433                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2434         else
2435                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2436
2437         if (nested_vmcb->control.nested_ctl) {
2438                 kvm_mmu_unload(&svm->vcpu);
2439                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2440                 nested_svm_init_mmu_context(&svm->vcpu);
2441         }
2442
2443         /* Load the nested guest state */
2444         svm->vmcb->save.es = nested_vmcb->save.es;
2445         svm->vmcb->save.cs = nested_vmcb->save.cs;
2446         svm->vmcb->save.ss = nested_vmcb->save.ss;
2447         svm->vmcb->save.ds = nested_vmcb->save.ds;
2448         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2449         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2450         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2451         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2452         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2453         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2454         if (npt_enabled) {
2455                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2456                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2457         } else
2458                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2459
2460         /* Guest paging mode is active - reset mmu */
2461         kvm_mmu_reset_context(&svm->vcpu);
2462
2463         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2464         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2465         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2466         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2467
2468         /* In case we don't even reach vcpu_run, the fields are not updated */
2469         svm->vmcb->save.rax = nested_vmcb->save.rax;
2470         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2471         svm->vmcb->save.rip = nested_vmcb->save.rip;
2472         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2473         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2474         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2475
2476         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2477         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2478
2479         /* cache intercepts */
2480         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2481         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2482         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2483         svm->nested.intercept            = nested_vmcb->control.intercept;
2484
2485         svm_flush_tlb(&svm->vcpu);
2486         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2487         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2488                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2489         else
2490                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2491
2492         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2493                 /* We only want the cr8 intercept bits of the guest */
2494                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2495                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2496         }
2497
2498         /* We don't want to see VMMCALLs from a nested guest */
2499         clr_intercept(svm, INTERCEPT_VMMCALL);
2500
2501         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2502         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2503         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2504         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2505         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2506         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2507
2508         nested_svm_unmap(page);
2509
2510         /* Enter Guest-Mode */
2511         enter_guest_mode(&svm->vcpu);
2512
2513         /*
2514          * Merge guest and host intercepts - must be called  with vcpu in
2515          * guest-mode to take affect here
2516          */
2517         recalc_intercepts(svm);
2518
2519         svm->nested.vmcb = vmcb_gpa;
2520
2521         enable_gif(svm);
2522
2523         mark_all_dirty(svm->vmcb);
2524
2525         return true;
2526 }
2527
2528 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2529 {
2530         to_vmcb->save.fs = from_vmcb->save.fs;
2531         to_vmcb->save.gs = from_vmcb->save.gs;
2532         to_vmcb->save.tr = from_vmcb->save.tr;
2533         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2534         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2535         to_vmcb->save.star = from_vmcb->save.star;
2536         to_vmcb->save.lstar = from_vmcb->save.lstar;
2537         to_vmcb->save.cstar = from_vmcb->save.cstar;
2538         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2539         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2540         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2541         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2542 }
2543
2544 static int vmload_interception(struct vcpu_svm *svm)
2545 {
2546         struct vmcb *nested_vmcb;
2547         struct page *page;
2548
2549         if (nested_svm_check_permissions(svm))
2550                 return 1;
2551
2552         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2553         if (!nested_vmcb)
2554                 return 1;
2555
2556         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2557         skip_emulated_instruction(&svm->vcpu);
2558
2559         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2560         nested_svm_unmap(page);
2561
2562         return 1;
2563 }
2564
2565 static int vmsave_interception(struct vcpu_svm *svm)
2566 {
2567         struct vmcb *nested_vmcb;
2568         struct page *page;
2569
2570         if (nested_svm_check_permissions(svm))
2571                 return 1;
2572
2573         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2574         if (!nested_vmcb)
2575                 return 1;
2576
2577         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2578         skip_emulated_instruction(&svm->vcpu);
2579
2580         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2581         nested_svm_unmap(page);
2582
2583         return 1;
2584 }
2585
2586 static int vmrun_interception(struct vcpu_svm *svm)
2587 {
2588         if (nested_svm_check_permissions(svm))
2589                 return 1;
2590
2591         /* Save rip after vmrun instruction */
2592         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2593
2594         if (!nested_svm_vmrun(svm))
2595                 return 1;
2596
2597         if (!nested_svm_vmrun_msrpm(svm))
2598                 goto failed;
2599
2600         return 1;
2601
2602 failed:
2603
2604         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2605         svm->vmcb->control.exit_code_hi = 0;
2606         svm->vmcb->control.exit_info_1  = 0;
2607         svm->vmcb->control.exit_info_2  = 0;
2608
2609         nested_svm_vmexit(svm);
2610
2611         return 1;
2612 }
2613
2614 static int stgi_interception(struct vcpu_svm *svm)
2615 {
2616         if (nested_svm_check_permissions(svm))
2617                 return 1;
2618
2619         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2620         skip_emulated_instruction(&svm->vcpu);
2621         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2622
2623         enable_gif(svm);
2624
2625         return 1;
2626 }
2627
2628 static int clgi_interception(struct vcpu_svm *svm)
2629 {
2630         if (nested_svm_check_permissions(svm))
2631                 return 1;
2632
2633         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2634         skip_emulated_instruction(&svm->vcpu);
2635
2636         disable_gif(svm);
2637
2638         /* After a CLGI no interrupts should come */
2639         svm_clear_vintr(svm);
2640         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2641
2642         mark_dirty(svm->vmcb, VMCB_INTR);
2643
2644         return 1;
2645 }
2646
2647 static int invlpga_interception(struct vcpu_svm *svm)
2648 {
2649         struct kvm_vcpu *vcpu = &svm->vcpu;
2650
2651         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2652                           vcpu->arch.regs[VCPU_REGS_RAX]);
2653
2654         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2655         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2656
2657         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2658         skip_emulated_instruction(&svm->vcpu);
2659         return 1;
2660 }
2661
2662 static int skinit_interception(struct vcpu_svm *svm)
2663 {
2664         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2665
2666         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2667         return 1;
2668 }
2669
2670 static int xsetbv_interception(struct vcpu_svm *svm)
2671 {
2672         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2673         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2674
2675         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2676                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2677                 skip_emulated_instruction(&svm->vcpu);
2678         }
2679
2680         return 1;
2681 }
2682
2683 static int invalid_op_interception(struct vcpu_svm *svm)
2684 {
2685         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2686         return 1;
2687 }
2688
2689 static int task_switch_interception(struct vcpu_svm *svm)
2690 {
2691         u16 tss_selector;
2692         int reason;
2693         int int_type = svm->vmcb->control.exit_int_info &
2694                 SVM_EXITINTINFO_TYPE_MASK;
2695         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2696         uint32_t type =
2697                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2698         uint32_t idt_v =
2699                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2700         bool has_error_code = false;
2701         u32 error_code = 0;
2702
2703         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2704
2705         if (svm->vmcb->control.exit_info_2 &
2706             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2707                 reason = TASK_SWITCH_IRET;
2708         else if (svm->vmcb->control.exit_info_2 &
2709                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2710                 reason = TASK_SWITCH_JMP;
2711         else if (idt_v)
2712                 reason = TASK_SWITCH_GATE;
2713         else
2714                 reason = TASK_SWITCH_CALL;
2715
2716         if (reason == TASK_SWITCH_GATE) {
2717                 switch (type) {
2718                 case SVM_EXITINTINFO_TYPE_NMI:
2719                         svm->vcpu.arch.nmi_injected = false;
2720                         break;
2721                 case SVM_EXITINTINFO_TYPE_EXEPT:
2722                         if (svm->vmcb->control.exit_info_2 &
2723                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2724                                 has_error_code = true;
2725                                 error_code =
2726                                         (u32)svm->vmcb->control.exit_info_2;
2727                         }
2728                         kvm_clear_exception_queue(&svm->vcpu);
2729                         break;
2730                 case SVM_EXITINTINFO_TYPE_INTR:
2731                         kvm_clear_interrupt_queue(&svm->vcpu);
2732                         break;
2733                 default:
2734                         break;
2735                 }
2736         }
2737
2738         if (reason != TASK_SWITCH_GATE ||
2739             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2740             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2741              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2742                 skip_emulated_instruction(&svm->vcpu);
2743
2744         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2745                                 has_error_code, error_code) == EMULATE_FAIL) {
2746                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2747                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2748                 svm->vcpu.run->internal.ndata = 0;
2749                 return 0;
2750         }
2751         return 1;
2752 }
2753
2754 static int cpuid_interception(struct vcpu_svm *svm)
2755 {
2756         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2757         kvm_emulate_cpuid(&svm->vcpu);
2758         return 1;
2759 }
2760
2761 static int iret_interception(struct vcpu_svm *svm)
2762 {
2763         ++svm->vcpu.stat.nmi_window_exits;
2764         clr_intercept(svm, INTERCEPT_IRET);
2765         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2766         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2767         return 1;
2768 }
2769
2770 static int invlpg_interception(struct vcpu_svm *svm)
2771 {
2772         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2773                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2774
2775         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2776         skip_emulated_instruction(&svm->vcpu);
2777         return 1;
2778 }
2779
2780 static int emulate_on_interception(struct vcpu_svm *svm)
2781 {
2782         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2783 }
2784
2785 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2786 {
2787         unsigned long cr0 = svm->vcpu.arch.cr0;
2788         bool ret = false;
2789         u64 intercept;
2790
2791         intercept = svm->nested.intercept;
2792
2793         if (!is_guest_mode(&svm->vcpu) ||
2794             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2795                 return false;
2796
2797         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2798         val &= ~SVM_CR0_SELECTIVE_MASK;
2799
2800         if (cr0 ^ val) {
2801                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2802                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2803         }
2804
2805         return ret;
2806 }
2807
2808 #define CR_VALID (1ULL << 63)
2809
2810 static int cr_interception(struct vcpu_svm *svm)
2811 {
2812         int reg, cr;
2813         unsigned long val;
2814         int err;
2815
2816         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2817                 return emulate_on_interception(svm);
2818
2819         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2820                 return emulate_on_interception(svm);
2821
2822         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2823         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2824
2825         err = 0;
2826         if (cr >= 16) { /* mov to cr */
2827                 cr -= 16;
2828                 val = kvm_register_read(&svm->vcpu, reg);
2829                 switch (cr) {
2830                 case 0:
2831                         if (!check_selective_cr0_intercepted(svm, val))
2832                                 err = kvm_set_cr0(&svm->vcpu, val);
2833                         else
2834                                 return 1;
2835
2836                         break;
2837                 case 3:
2838                         err = kvm_set_cr3(&svm->vcpu, val);
2839                         break;
2840                 case 4:
2841                         err = kvm_set_cr4(&svm->vcpu, val);
2842                         break;
2843                 case 8:
2844                         err = kvm_set_cr8(&svm->vcpu, val);
2845                         break;
2846                 default:
2847                         WARN(1, "unhandled write to CR%d", cr);
2848                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2849                         return 1;
2850                 }
2851         } else { /* mov from cr */
2852                 switch (cr) {
2853                 case 0:
2854                         val = kvm_read_cr0(&svm->vcpu);
2855                         break;
2856                 case 2:
2857                         val = svm->vcpu.arch.cr2;
2858                         break;
2859                 case 3:
2860                         val = kvm_read_cr3(&svm->vcpu);
2861                         break;
2862                 case 4:
2863                         val = kvm_read_cr4(&svm->vcpu);
2864                         break;
2865                 case 8:
2866                         val = kvm_get_cr8(&svm->vcpu);
2867                         break;
2868                 default:
2869                         WARN(1, "unhandled read from CR%d", cr);
2870                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2871                         return 1;
2872                 }
2873                 kvm_register_write(&svm->vcpu, reg, val);
2874         }
2875         kvm_complete_insn_gp(&svm->vcpu, err);
2876
2877         return 1;
2878 }
2879
2880 static int dr_interception(struct vcpu_svm *svm)
2881 {
2882         int reg, dr;
2883         unsigned long val;
2884         int err;
2885
2886         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2887                 return emulate_on_interception(svm);
2888
2889         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2890         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2891
2892         if (dr >= 16) { /* mov to DRn */
2893                 val = kvm_register_read(&svm->vcpu, reg);
2894                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2895         } else {
2896                 err = kvm_get_dr(&svm->vcpu, dr, &val);
2897                 if (!err)
2898                         kvm_register_write(&svm->vcpu, reg, val);
2899         }
2900
2901         skip_emulated_instruction(&svm->vcpu);
2902
2903         return 1;
2904 }
2905
2906 static int cr8_write_interception(struct vcpu_svm *svm)
2907 {
2908         struct kvm_run *kvm_run = svm->vcpu.run;
2909         int r;
2910
2911         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2912         /* instruction emulation calls kvm_set_cr8() */
2913         r = cr_interception(svm);
2914         if (irqchip_in_kernel(svm->vcpu.kvm))
2915                 return r;
2916         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2917                 return r;
2918         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2919         return 0;
2920 }
2921
2922 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
2923 {
2924         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2925         return vmcb->control.tsc_offset +
2926                 svm_scale_tsc(vcpu, native_read_tsc());
2927 }
2928
2929 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2930 {
2931         struct vcpu_svm *svm = to_svm(vcpu);
2932
2933         switch (ecx) {
2934         case MSR_IA32_TSC: {
2935                 *data = svm->vmcb->control.tsc_offset +
2936                         svm_scale_tsc(vcpu, native_read_tsc());
2937
2938                 break;
2939         }
2940         case MSR_STAR:
2941                 *data = svm->vmcb->save.star;
2942                 break;
2943 #ifdef CONFIG_X86_64
2944         case MSR_LSTAR:
2945                 *data = svm->vmcb->save.lstar;
2946                 break;
2947         case MSR_CSTAR:
2948                 *data = svm->vmcb->save.cstar;
2949                 break;
2950         case MSR_KERNEL_GS_BASE:
2951                 *data = svm->vmcb->save.kernel_gs_base;
2952                 break;
2953         case MSR_SYSCALL_MASK:
2954                 *data = svm->vmcb->save.sfmask;
2955                 break;
2956 #endif
2957         case MSR_IA32_SYSENTER_CS:
2958                 *data = svm->vmcb->save.sysenter_cs;
2959                 break;
2960         case MSR_IA32_SYSENTER_EIP:
2961                 *data = svm->sysenter_eip;
2962                 break;
2963         case MSR_IA32_SYSENTER_ESP:
2964                 *data = svm->sysenter_esp;
2965                 break;
2966         /*
2967          * Nobody will change the following 5 values in the VMCB so we can
2968          * safely return them on rdmsr. They will always be 0 until LBRV is
2969          * implemented.
2970          */
2971         case MSR_IA32_DEBUGCTLMSR:
2972                 *data = svm->vmcb->save.dbgctl;
2973                 break;
2974         case MSR_IA32_LASTBRANCHFROMIP:
2975                 *data = svm->vmcb->save.br_from;
2976                 break;
2977         case MSR_IA32_LASTBRANCHTOIP:
2978                 *data = svm->vmcb->save.br_to;
2979                 break;
2980         case MSR_IA32_LASTINTFROMIP:
2981                 *data = svm->vmcb->save.last_excp_from;
2982                 break;
2983         case MSR_IA32_LASTINTTOIP:
2984                 *data = svm->vmcb->save.last_excp_to;
2985                 break;
2986         case MSR_VM_HSAVE_PA:
2987                 *data = svm->nested.hsave_msr;
2988                 break;
2989         case MSR_VM_CR:
2990                 *data = svm->nested.vm_cr_msr;
2991                 break;
2992         case MSR_IA32_UCODE_REV:
2993                 *data = 0x01000065;
2994                 break;
2995         default:
2996                 return kvm_get_msr_common(vcpu, ecx, data);
2997         }
2998         return 0;
2999 }
3000
3001 static int rdmsr_interception(struct vcpu_svm *svm)
3002 {
3003         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3004         u64 data;
3005
3006         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3007                 trace_kvm_msr_read_ex(ecx);
3008                 kvm_inject_gp(&svm->vcpu, 0);
3009         } else {
3010                 trace_kvm_msr_read(ecx, data);
3011
3012                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3013                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3014                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3015                 skip_emulated_instruction(&svm->vcpu);
3016         }
3017         return 1;
3018 }
3019
3020 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3021 {
3022         struct vcpu_svm *svm = to_svm(vcpu);
3023         int svm_dis, chg_mask;
3024
3025         if (data & ~SVM_VM_CR_VALID_MASK)
3026                 return 1;
3027
3028         chg_mask = SVM_VM_CR_VALID_MASK;
3029
3030         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3031                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3032
3033         svm->nested.vm_cr_msr &= ~chg_mask;
3034         svm->nested.vm_cr_msr |= (data & chg_mask);
3035
3036         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3037
3038         /* check for svm_disable while efer.svme is set */
3039         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3040                 return 1;
3041
3042         return 0;
3043 }
3044
3045 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3046 {
3047         struct vcpu_svm *svm = to_svm(vcpu);
3048
3049         switch (ecx) {
3050         case MSR_IA32_TSC:
3051                 kvm_write_tsc(vcpu, data);
3052                 break;
3053         case MSR_STAR:
3054                 svm->vmcb->save.star = data;
3055                 break;
3056 #ifdef CONFIG_X86_64
3057         case MSR_LSTAR:
3058                 svm->vmcb->save.lstar = data;
3059                 break;
3060         case MSR_CSTAR:
3061                 svm->vmcb->save.cstar = data;
3062                 break;
3063         case MSR_KERNEL_GS_BASE:
3064                 svm->vmcb->save.kernel_gs_base = data;
3065                 break;
3066         case MSR_SYSCALL_MASK:
3067                 svm->vmcb->save.sfmask = data;
3068                 break;
3069 #endif
3070         case MSR_IA32_SYSENTER_CS:
3071                 svm->vmcb->save.sysenter_cs = data;
3072                 break;
3073         case MSR_IA32_SYSENTER_EIP:
3074                 svm->sysenter_eip = data;
3075                 svm->vmcb->save.sysenter_eip = data;
3076                 break;
3077         case MSR_IA32_SYSENTER_ESP:
3078                 svm->sysenter_esp = data;
3079                 svm->vmcb->save.sysenter_esp = data;
3080                 break;
3081         case MSR_IA32_DEBUGCTLMSR:
3082                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3083                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3084                                         __func__, data);
3085                         break;
3086                 }
3087                 if (data & DEBUGCTL_RESERVED_BITS)
3088                         return 1;
3089
3090                 svm->vmcb->save.dbgctl = data;
3091                 mark_dirty(svm->vmcb, VMCB_LBR);
3092                 if (data & (1ULL<<0))
3093                         svm_enable_lbrv(svm);
3094                 else
3095                         svm_disable_lbrv(svm);
3096                 break;
3097         case MSR_VM_HSAVE_PA:
3098                 svm->nested.hsave_msr = data;
3099                 break;
3100         case MSR_VM_CR:
3101                 return svm_set_vm_cr(vcpu, data);
3102         case MSR_VM_IGNNE:
3103                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3104                 break;
3105         default:
3106                 return kvm_set_msr_common(vcpu, ecx, data);
3107         }
3108         return 0;
3109 }
3110
3111 static int wrmsr_interception(struct vcpu_svm *svm)
3112 {
3113         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3114         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3115                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3116
3117
3118         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3119         if (kvm_set_msr(&svm->vcpu, ecx, data)) {
3120                 trace_kvm_msr_write_ex(ecx, data);
3121                 kvm_inject_gp(&svm->vcpu, 0);
3122         } else {
3123                 trace_kvm_msr_write(ecx, data);
3124                 skip_emulated_instruction(&svm->vcpu);
3125         }
3126         return 1;
3127 }
3128
3129 static int msr_interception(struct vcpu_svm *svm)
3130 {
3131         if (svm->vmcb->control.exit_info_1)
3132                 return wrmsr_interception(svm);
3133         else
3134                 return rdmsr_interception(svm);
3135 }
3136
3137 static int interrupt_window_interception(struct vcpu_svm *svm)
3138 {
3139         struct kvm_run *kvm_run = svm->vcpu.run;
3140
3141         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3142         svm_clear_vintr(svm);
3143         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3144         mark_dirty(svm->vmcb, VMCB_INTR);
3145         /*
3146          * If the user space waits to inject interrupts, exit as soon as
3147          * possible
3148          */
3149         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3150             kvm_run->request_interrupt_window &&
3151             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3152                 ++svm->vcpu.stat.irq_window_exits;
3153                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3154                 return 0;
3155         }
3156
3157         return 1;
3158 }
3159
3160 static int pause_interception(struct vcpu_svm *svm)
3161 {
3162         kvm_vcpu_on_spin(&(svm->vcpu));
3163         return 1;
3164 }
3165
3166 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3167         [SVM_EXIT_READ_CR0]                     = cr_interception,
3168         [SVM_EXIT_READ_CR3]                     = cr_interception,
3169         [SVM_EXIT_READ_CR4]                     = cr_interception,
3170         [SVM_EXIT_READ_CR8]                     = cr_interception,
3171         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3172         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3173         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3174         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3175         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3176         [SVM_EXIT_READ_DR0]                     = dr_interception,
3177         [SVM_EXIT_READ_DR1]                     = dr_interception,
3178         [SVM_EXIT_READ_DR2]                     = dr_interception,
3179         [SVM_EXIT_READ_DR3]                     = dr_interception,
3180         [SVM_EXIT_READ_DR4]                     = dr_interception,
3181         [SVM_EXIT_READ_DR5]                     = dr_interception,
3182         [SVM_EXIT_READ_DR6]                     = dr_interception,
3183         [SVM_EXIT_READ_DR7]                     = dr_interception,
3184         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3185         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3186         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3187         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3188         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3189         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3190         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3191         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3192         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3193         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3194         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3195         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3196         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3197         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3198         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3199         [SVM_EXIT_INTR]                         = intr_interception,
3200         [SVM_EXIT_NMI]                          = nmi_interception,
3201         [SVM_EXIT_SMI]                          = nop_on_interception,
3202         [SVM_EXIT_INIT]                         = nop_on_interception,
3203         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3204         [SVM_EXIT_CPUID]                        = cpuid_interception,
3205         [SVM_EXIT_IRET]                         = iret_interception,
3206         [SVM_EXIT_INVD]                         = emulate_on_interception,
3207         [SVM_EXIT_PAUSE]                        = pause_interception,
3208         [SVM_EXIT_HLT]                          = halt_interception,
3209         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3210         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3211         [SVM_EXIT_IOIO]                         = io_interception,
3212         [SVM_EXIT_MSR]                          = msr_interception,
3213         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3214         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3215         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3216         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3217         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3218         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3219         [SVM_EXIT_STGI]                         = stgi_interception,
3220         [SVM_EXIT_CLGI]                         = clgi_interception,
3221         [SVM_EXIT_SKINIT]                       = skinit_interception,
3222         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3223         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3224         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3225         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3226         [SVM_EXIT_NPF]                          = pf_interception,
3227 };
3228
3229 static void dump_vmcb(struct kvm_vcpu *vcpu)
3230 {
3231         struct vcpu_svm *svm = to_svm(vcpu);
3232         struct vmcb_control_area *control = &svm->vmcb->control;
3233         struct vmcb_save_area *save = &svm->vmcb->save;
3234
3235         pr_err("VMCB Control Area:\n");
3236         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3237         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3238         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3239         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3240         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3241         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3242         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3243         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3244         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3245         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3246         pr_err("%-20s%d\n", "asid:", control->asid);
3247         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3248         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3249         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3250         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3251         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3252         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3253         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3254         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3255         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3256         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3257         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3258         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3259         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3260         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3261         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3262         pr_err("VMCB State Save Area:\n");
3263         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3264                "es:",
3265                save->es.selector, save->es.attrib,
3266                save->es.limit, save->es.base);
3267         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3268                "cs:",
3269                save->cs.selector, save->cs.attrib,
3270                save->cs.limit, save->cs.base);
3271         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3272                "ss:",
3273                save->ss.selector, save->ss.attrib,
3274                save->ss.limit, save->ss.base);
3275         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3276                "ds:",
3277                save->ds.selector, save->ds.attrib,
3278                save->ds.limit, save->ds.base);
3279         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3280                "fs:",
3281                save->fs.selector, save->fs.attrib,
3282                save->fs.limit, save->fs.base);
3283         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3284                "gs:",
3285                save->gs.selector, save->gs.attrib,
3286                save->gs.limit, save->gs.base);
3287         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3288                "gdtr:",
3289                save->gdtr.selector, save->gdtr.attrib,
3290                save->gdtr.limit, save->gdtr.base);
3291         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3292                "ldtr:",
3293                save->ldtr.selector, save->ldtr.attrib,
3294                save->ldtr.limit, save->ldtr.base);
3295         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3296                "idtr:",
3297                save->idtr.selector, save->idtr.attrib,
3298                save->idtr.limit, save->idtr.base);
3299         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3300                "tr:",
3301                save->tr.selector, save->tr.attrib,
3302                save->tr.limit, save->tr.base);
3303         pr_err("cpl:            %d                efer:         %016llx\n",
3304                 save->cpl, save->efer);
3305         pr_err("%-15s %016llx %-13s %016llx\n",
3306                "cr0:", save->cr0, "cr2:", save->cr2);
3307         pr_err("%-15s %016llx %-13s %016llx\n",
3308                "cr3:", save->cr3, "cr4:", save->cr4);
3309         pr_err("%-15s %016llx %-13s %016llx\n",
3310                "dr6:", save->dr6, "dr7:", save->dr7);
3311         pr_err("%-15s %016llx %-13s %016llx\n",
3312                "rip:", save->rip, "rflags:", save->rflags);
3313         pr_err("%-15s %016llx %-13s %016llx\n",
3314                "rsp:", save->rsp, "rax:", save->rax);
3315         pr_err("%-15s %016llx %-13s %016llx\n",
3316                "star:", save->star, "lstar:", save->lstar);
3317         pr_err("%-15s %016llx %-13s %016llx\n",
3318                "cstar:", save->cstar, "sfmask:", save->sfmask);
3319         pr_err("%-15s %016llx %-13s %016llx\n",
3320                "kernel_gs_base:", save->kernel_gs_base,
3321                "sysenter_cs:", save->sysenter_cs);
3322         pr_err("%-15s %016llx %-13s %016llx\n",
3323                "sysenter_esp:", save->sysenter_esp,
3324                "sysenter_eip:", save->sysenter_eip);
3325         pr_err("%-15s %016llx %-13s %016llx\n",
3326                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3327         pr_err("%-15s %016llx %-13s %016llx\n",
3328                "br_from:", save->br_from, "br_to:", save->br_to);
3329         pr_err("%-15s %016llx %-13s %016llx\n",
3330                "excp_from:", save->last_excp_from,
3331                "excp_to:", save->last_excp_to);
3332 }
3333
3334 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3335 {
3336         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3337
3338         *info1 = control->exit_info_1;
3339         *info2 = control->exit_info_2;
3340 }
3341
3342 static int handle_exit(struct kvm_vcpu *vcpu)
3343 {
3344         struct vcpu_svm *svm = to_svm(vcpu);
3345         struct kvm_run *kvm_run = vcpu->run;
3346         u32 exit_code = svm->vmcb->control.exit_code;
3347
3348         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3349                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3350         if (npt_enabled)
3351                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3352
3353         if (unlikely(svm->nested.exit_required)) {
3354                 nested_svm_vmexit(svm);
3355                 svm->nested.exit_required = false;
3356
3357                 return 1;
3358         }
3359
3360         if (is_guest_mode(vcpu)) {
3361                 int vmexit;
3362
3363                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3364                                         svm->vmcb->control.exit_info_1,
3365                                         svm->vmcb->control.exit_info_2,
3366                                         svm->vmcb->control.exit_int_info,
3367                                         svm->vmcb->control.exit_int_info_err,
3368                                         KVM_ISA_SVM);
3369
3370                 vmexit = nested_svm_exit_special(svm);
3371
3372                 if (vmexit == NESTED_EXIT_CONTINUE)
3373                         vmexit = nested_svm_exit_handled(svm);
3374
3375                 if (vmexit == NESTED_EXIT_DONE)
3376                         return 1;
3377         }
3378
3379         svm_complete_interrupts(svm);
3380
3381         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3382                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3383                 kvm_run->fail_entry.hardware_entry_failure_reason
3384                         = svm->vmcb->control.exit_code;
3385                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3386                 dump_vmcb(vcpu);
3387                 return 0;
3388         }
3389
3390         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3391             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3392             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3393             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3394                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3395                        "exit_code 0x%x\n",
3396                        __func__, svm->vmcb->control.exit_int_info,
3397                        exit_code);
3398
3399         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3400             || !svm_exit_handlers[exit_code]) {
3401                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_code);
3402                 kvm_queue_exception(vcpu, UD_VECTOR);
3403                 return 1;
3404         }
3405
3406         return svm_exit_handlers[exit_code](svm);
3407 }
3408
3409 static void reload_tss(struct kvm_vcpu *vcpu)
3410 {
3411         int cpu = raw_smp_processor_id();
3412
3413         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3414         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3415         load_TR_desc();
3416 }
3417
3418 static void pre_svm_run(struct vcpu_svm *svm)
3419 {
3420         int cpu = raw_smp_processor_id();
3421
3422         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3423
3424         /* FIXME: handle wraparound of asid_generation */
3425         if (svm->asid_generation != sd->asid_generation)
3426                 new_asid(svm, sd);
3427 }
3428
3429 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3430 {
3431         struct vcpu_svm *svm = to_svm(vcpu);
3432
3433         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3434         vcpu->arch.hflags |= HF_NMI_MASK;
3435         set_intercept(svm, INTERCEPT_IRET);
3436         ++vcpu->stat.nmi_injections;
3437 }
3438
3439 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3440 {
3441         struct vmcb_control_area *control;
3442
3443         control = &svm->vmcb->control;
3444         control->int_vector = irq;
3445         control->int_ctl &= ~V_INTR_PRIO_MASK;
3446         control->int_ctl |= V_IRQ_MASK |
3447                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3448         mark_dirty(svm->vmcb, VMCB_INTR);
3449 }
3450
3451 static void svm_set_irq(struct kvm_vcpu *vcpu)
3452 {
3453         struct vcpu_svm *svm = to_svm(vcpu);
3454
3455         BUG_ON(!(gif_set(svm)));
3456
3457         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3458         ++vcpu->stat.irq_injections;
3459
3460         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3461                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3462 }
3463
3464 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3465 {
3466         struct vcpu_svm *svm = to_svm(vcpu);
3467
3468         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3469                 return;
3470
3471         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3472
3473         if (irr == -1)
3474                 return;
3475
3476         if (tpr >= irr)
3477                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3478 }
3479
3480 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3481 {
3482         struct vcpu_svm *svm = to_svm(vcpu);
3483         struct vmcb *vmcb = svm->vmcb;
3484         int ret;
3485         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3486               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3487         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3488
3489         return ret;
3490 }
3491
3492 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3493 {
3494         struct vcpu_svm *svm = to_svm(vcpu);
3495
3496         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3497 }
3498
3499 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3500 {
3501         struct vcpu_svm *svm = to_svm(vcpu);
3502
3503         if (masked) {
3504                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3505                 set_intercept(svm, INTERCEPT_IRET);
3506         } else {
3507                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3508                 clr_intercept(svm, INTERCEPT_IRET);
3509         }
3510 }
3511
3512 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3513 {
3514         struct vcpu_svm *svm = to_svm(vcpu);
3515         struct vmcb *vmcb = svm->vmcb;
3516         int ret;
3517
3518         if (!gif_set(svm) ||
3519              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3520                 return 0;
3521
3522         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3523
3524         if (is_guest_mode(vcpu))
3525                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3526
3527         return ret;
3528 }
3529
3530 static void enable_irq_window(struct kvm_vcpu *vcpu)
3531 {
3532         struct vcpu_svm *svm = to_svm(vcpu);
3533
3534         /*
3535          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3536          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3537          * get that intercept, this function will be called again though and
3538          * we'll get the vintr intercept.
3539          */
3540         if (gif_set(svm) && nested_svm_intr(svm)) {
3541                 svm_set_vintr(svm);
3542                 svm_inject_irq(svm, 0x0);
3543         }
3544 }
3545
3546 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3547 {
3548         struct vcpu_svm *svm = to_svm(vcpu);
3549
3550         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3551             == HF_NMI_MASK)
3552                 return; /* IRET will cause a vm exit */
3553
3554         /*
3555          * Something prevents NMI from been injected. Single step over possible
3556          * problem (IRET or exception injection or interrupt shadow)
3557          */
3558         svm->nmi_singlestep = true;
3559         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3560         update_db_intercept(vcpu);
3561 }
3562
3563 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3564 {
3565         return 0;
3566 }
3567
3568 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3569 {
3570         struct vcpu_svm *svm = to_svm(vcpu);
3571
3572         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3573                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3574         else
3575                 svm->asid_generation--;
3576 }
3577
3578 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3579 {
3580 }
3581
3582 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3583 {
3584         struct vcpu_svm *svm = to_svm(vcpu);
3585
3586         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3587                 return;
3588
3589         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3590                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3591                 kvm_set_cr8(vcpu, cr8);
3592         }
3593 }
3594
3595 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3596 {
3597         struct vcpu_svm *svm = to_svm(vcpu);
3598         u64 cr8;
3599
3600         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3601                 return;
3602
3603         cr8 = kvm_get_cr8(vcpu);
3604         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3605         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3606 }
3607
3608 static void svm_complete_interrupts(struct vcpu_svm *svm)
3609 {
3610         u8 vector;
3611         int type;
3612         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3613         unsigned int3_injected = svm->int3_injected;
3614
3615         svm->int3_injected = 0;
3616
3617         /*
3618          * If we've made progress since setting HF_IRET_MASK, we've
3619          * executed an IRET and can allow NMI injection.
3620          */
3621         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3622             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3623                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3624                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3625         }
3626
3627         svm->vcpu.arch.nmi_injected = false;
3628         kvm_clear_exception_queue(&svm->vcpu);
3629         kvm_clear_interrupt_queue(&svm->vcpu);
3630
3631         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3632                 return;
3633
3634         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3635
3636         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3637         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3638
3639         switch (type) {
3640         case SVM_EXITINTINFO_TYPE_NMI:
3641                 svm->vcpu.arch.nmi_injected = true;
3642                 break;
3643         case SVM_EXITINTINFO_TYPE_EXEPT:
3644                 /*
3645                  * In case of software exceptions, do not reinject the vector,
3646                  * but re-execute the instruction instead. Rewind RIP first
3647                  * if we emulated INT3 before.
3648                  */
3649                 if (kvm_exception_is_soft(vector)) {
3650                         if (vector == BP_VECTOR && int3_injected &&
3651                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3652                                 kvm_rip_write(&svm->vcpu,
3653                                               kvm_rip_read(&svm->vcpu) -
3654                                               int3_injected);
3655                         break;
3656                 }
3657                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3658                         u32 err = svm->vmcb->control.exit_int_info_err;
3659                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3660
3661                 } else
3662                         kvm_requeue_exception(&svm->vcpu, vector);
3663                 break;
3664         case SVM_EXITINTINFO_TYPE_INTR:
3665                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3666                 break;
3667         default:
3668                 break;
3669         }
3670 }
3671
3672 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3673 {
3674         struct vcpu_svm *svm = to_svm(vcpu);
3675         struct vmcb_control_area *control = &svm->vmcb->control;
3676
3677         control->exit_int_info = control->event_inj;
3678         control->exit_int_info_err = control->event_inj_err;
3679         control->event_inj = 0;
3680         svm_complete_interrupts(svm);
3681 }
3682
3683 #ifdef CONFIG_X86_64
3684 #define R "r"
3685 #else
3686 #define R "e"
3687 #endif
3688
3689 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3690 {
3691         struct vcpu_svm *svm = to_svm(vcpu);
3692
3693         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3694         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3695         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3696
3697         /*
3698          * A vmexit emulation is required before the vcpu can be executed
3699          * again.
3700          */
3701         if (unlikely(svm->nested.exit_required))
3702                 return;
3703
3704         pre_svm_run(svm);
3705
3706         sync_lapic_to_cr8(vcpu);
3707
3708         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3709
3710         clgi();
3711
3712         local_irq_enable();
3713
3714         asm volatile (
3715                 "push %%"R"bp; \n\t"
3716                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3717                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3718                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3719                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3720                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3721                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3722 #ifdef CONFIG_X86_64
3723                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3724                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3725                 "mov %c[r10](%[svm]), %%r10 \n\t"
3726                 "mov %c[r11](%[svm]), %%r11 \n\t"
3727                 "mov %c[r12](%[svm]), %%r12 \n\t"
3728                 "mov %c[r13](%[svm]), %%r13 \n\t"
3729                 "mov %c[r14](%[svm]), %%r14 \n\t"
3730                 "mov %c[r15](%[svm]), %%r15 \n\t"
3731 #endif
3732
3733                 /* Enter guest mode */
3734                 "push %%"R"ax \n\t"
3735                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3736                 __ex(SVM_VMLOAD) "\n\t"
3737                 __ex(SVM_VMRUN) "\n\t"
3738                 __ex(SVM_VMSAVE) "\n\t"
3739                 "pop %%"R"ax \n\t"
3740
3741                 /* Save guest registers, load host registers */
3742                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3743                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3744                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3745                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3746                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3747                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3748 #ifdef CONFIG_X86_64
3749                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3750                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3751                 "mov %%r10, %c[r10](%[svm]) \n\t"
3752                 "mov %%r11, %c[r11](%[svm]) \n\t"
3753                 "mov %%r12, %c[r12](%[svm]) \n\t"
3754                 "mov %%r13, %c[r13](%[svm]) \n\t"
3755                 "mov %%r14, %c[r14](%[svm]) \n\t"
3756                 "mov %%r15, %c[r15](%[svm]) \n\t"
3757 #endif
3758                 "pop %%"R"bp"
3759                 :
3760                 : [svm]"a"(svm),
3761                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3762                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3763                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3764                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3765                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3766                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3767                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3768 #ifdef CONFIG_X86_64
3769                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3770                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3771                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3772                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3773                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3774                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3775                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3776                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3777 #endif
3778                 : "cc", "memory"
3779                 , R"bx", R"cx", R"dx", R"si", R"di"
3780 #ifdef CONFIG_X86_64
3781                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3782 #endif
3783                 );
3784
3785 #ifdef CONFIG_X86_64
3786         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3787 #else
3788         loadsegment(fs, svm->host.fs);
3789 #ifndef CONFIG_X86_32_LAZY_GS
3790         loadsegment(gs, svm->host.gs);
3791 #endif
3792 #endif
3793
3794         reload_tss(vcpu);
3795
3796         local_irq_disable();
3797
3798         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3799         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3800         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3801         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3802
3803         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3804
3805         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3806                 kvm_before_handle_nmi(&svm->vcpu);
3807
3808         stgi();
3809
3810         /* Any pending NMI will happen here */
3811
3812         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3813                 kvm_after_handle_nmi(&svm->vcpu);
3814
3815         sync_cr8_to_lapic(vcpu);
3816
3817         svm->next_rip = 0;
3818
3819         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3820
3821         /* if exit due to PF check for async PF */
3822         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3823                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3824
3825         if (npt_enabled) {
3826                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3827                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3828         }
3829
3830         /*
3831          * We need to handle MC intercepts here before the vcpu has a chance to
3832          * change the physical cpu
3833          */
3834         if (unlikely(svm->vmcb->control.exit_code ==
3835                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3836                 svm_handle_mce(svm);
3837
3838         mark_all_clean(svm->vmcb);
3839 }
3840
3841 #undef R
3842
3843 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3844 {
3845         struct vcpu_svm *svm = to_svm(vcpu);
3846
3847         svm->vmcb->save.cr3 = root;
3848         mark_dirty(svm->vmcb, VMCB_CR);
3849         svm_flush_tlb(vcpu);
3850 }
3851
3852 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3853 {
3854         struct vcpu_svm *svm = to_svm(vcpu);
3855
3856         svm->vmcb->control.nested_cr3 = root;
3857         mark_dirty(svm->vmcb, VMCB_NPT);
3858
3859         /* Also sync guest cr3 here in case we live migrate */
3860         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3861         mark_dirty(svm->vmcb, VMCB_CR);
3862
3863         svm_flush_tlb(vcpu);
3864 }
3865
3866 static int is_disabled(void)
3867 {
3868         u64 vm_cr;
3869
3870         rdmsrl(MSR_VM_CR, vm_cr);
3871         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3872                 return 1;
3873
3874         return 0;
3875 }
3876
3877 static void
3878 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3879 {
3880         /*
3881          * Patch in the VMMCALL instruction:
3882          */
3883         hypercall[0] = 0x0f;
3884         hypercall[1] = 0x01;
3885         hypercall[2] = 0xd9;
3886 }
3887
3888 static void svm_check_processor_compat(void *rtn)
3889 {
3890         *(int *)rtn = 0;
3891 }
3892
3893 static bool svm_cpu_has_accelerated_tpr(void)
3894 {
3895         return false;
3896 }
3897
3898 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3899 {
3900         return 0;
3901 }
3902
3903 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3904 {
3905 }
3906
3907 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3908 {
3909         switch (func) {
3910         case 0x80000001:
3911                 if (nested)
3912                         entry->ecx |= (1 << 2); /* Set SVM bit */
3913                 break;
3914         case 0x8000000A:
3915                 entry->eax = 1; /* SVM revision 1 */
3916                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3917                                    ASID emulation to nested SVM */
3918                 entry->ecx = 0; /* Reserved */
3919                 entry->edx = 0; /* Per default do not support any
3920                                    additional features */
3921
3922                 /* Support next_rip if host supports it */
3923                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3924                         entry->edx |= SVM_FEATURE_NRIP;
3925
3926                 /* Support NPT for the guest if enabled */
3927                 if (npt_enabled)
3928                         entry->edx |= SVM_FEATURE_NPT;
3929
3930                 break;
3931         }
3932 }
3933
3934 static int svm_get_lpage_level(void)
3935 {
3936         return PT_PDPE_LEVEL;
3937 }
3938
3939 static bool svm_rdtscp_supported(void)
3940 {
3941         return false;
3942 }
3943
3944 static bool svm_has_wbinvd_exit(void)
3945 {
3946         return true;
3947 }
3948
3949 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3950 {
3951         struct vcpu_svm *svm = to_svm(vcpu);
3952
3953         set_exception_intercept(svm, NM_VECTOR);
3954         update_cr0_intercept(svm);
3955 }
3956
3957 #define PRE_EX(exit)  { .exit_code = (exit), \
3958                         .stage = X86_ICPT_PRE_EXCEPT, }
3959 #define POST_EX(exit) { .exit_code = (exit), \
3960                         .stage = X86_ICPT_POST_EXCEPT, }
3961 #define POST_MEM(exit) { .exit_code = (exit), \
3962                         .stage = X86_ICPT_POST_MEMACCESS, }
3963
3964 static struct __x86_intercept {
3965         u32 exit_code;
3966         enum x86_intercept_stage stage;
3967 } x86_intercept_map[] = {
3968         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3969         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3970         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3971         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3972         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3973         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3974         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
3975         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
3976         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
3977         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
3978         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
3979         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
3980         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
3981         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
3982         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
3983         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
3984         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
3985         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
3986         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
3987         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
3988         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
3989         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
3990         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
3991         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
3992         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
3993         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
3994         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
3995         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
3996         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
3997         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
3998         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
3999         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4000         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4001         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4002         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4003         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4004         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4005         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4006         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4007         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4008         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4009         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4010         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4011         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4012         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4013         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4014 };
4015
4016 #undef PRE_EX
4017 #undef POST_EX
4018 #undef POST_MEM
4019
4020 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4021                                struct x86_instruction_info *info,
4022                                enum x86_intercept_stage stage)
4023 {
4024         struct vcpu_svm *svm = to_svm(vcpu);
4025         int vmexit, ret = X86EMUL_CONTINUE;
4026         struct __x86_intercept icpt_info;
4027         struct vmcb *vmcb = svm->vmcb;
4028
4029         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4030                 goto out;
4031
4032         icpt_info = x86_intercept_map[info->intercept];
4033
4034         if (stage != icpt_info.stage)
4035                 goto out;
4036
4037         switch (icpt_info.exit_code) {
4038         case SVM_EXIT_READ_CR0:
4039                 if (info->intercept == x86_intercept_cr_read)
4040                         icpt_info.exit_code += info->modrm_reg;
4041                 break;
4042         case SVM_EXIT_WRITE_CR0: {
4043                 unsigned long cr0, val;
4044                 u64 intercept;
4045
4046                 if (info->intercept == x86_intercept_cr_write)
4047                         icpt_info.exit_code += info->modrm_reg;
4048
4049                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4050                         break;
4051
4052                 intercept = svm->nested.intercept;
4053
4054                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4055                         break;
4056
4057                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4058                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4059
4060                 if (info->intercept == x86_intercept_lmsw) {
4061                         cr0 &= 0xfUL;
4062                         val &= 0xfUL;
4063                         /* lmsw can't clear PE - catch this here */
4064                         if (cr0 & X86_CR0_PE)
4065                                 val |= X86_CR0_PE;
4066                 }
4067
4068                 if (cr0 ^ val)
4069                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4070
4071                 break;
4072         }
4073         case SVM_EXIT_READ_DR0:
4074         case SVM_EXIT_WRITE_DR0:
4075                 icpt_info.exit_code += info->modrm_reg;
4076                 break;
4077         case SVM_EXIT_MSR:
4078                 if (info->intercept == x86_intercept_wrmsr)
4079                         vmcb->control.exit_info_1 = 1;
4080                 else
4081                         vmcb->control.exit_info_1 = 0;
4082                 break;
4083         case SVM_EXIT_PAUSE:
4084                 /*
4085                  * We get this for NOP only, but pause
4086                  * is rep not, check this here
4087                  */
4088                 if (info->rep_prefix != REPE_PREFIX)
4089                         goto out;
4090         case SVM_EXIT_IOIO: {
4091                 u64 exit_info;
4092                 u32 bytes;
4093
4094                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4095
4096                 if (info->intercept == x86_intercept_in ||
4097                     info->intercept == x86_intercept_ins) {
4098                         exit_info |= SVM_IOIO_TYPE_MASK;
4099                         bytes = info->src_bytes;
4100                 } else {
4101                         bytes = info->dst_bytes;
4102                 }
4103
4104                 if (info->intercept == x86_intercept_outs ||
4105                     info->intercept == x86_intercept_ins)
4106                         exit_info |= SVM_IOIO_STR_MASK;
4107
4108                 if (info->rep_prefix)
4109                         exit_info |= SVM_IOIO_REP_MASK;
4110
4111                 bytes = min(bytes, 4u);
4112
4113                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4114
4115                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4116
4117                 vmcb->control.exit_info_1 = exit_info;
4118                 vmcb->control.exit_info_2 = info->next_rip;
4119
4120                 break;
4121         }
4122         default:
4123                 break;
4124         }
4125
4126         vmcb->control.next_rip  = info->next_rip;
4127         vmcb->control.exit_code = icpt_info.exit_code;
4128         vmexit = nested_svm_exit_handled(svm);
4129
4130         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4131                                            : X86EMUL_CONTINUE;
4132
4133 out:
4134         return ret;
4135 }
4136
4137 static struct kvm_x86_ops svm_x86_ops = {
4138         .cpu_has_kvm_support = has_svm,
4139         .disabled_by_bios = is_disabled,
4140         .hardware_setup = svm_hardware_setup,
4141         .hardware_unsetup = svm_hardware_unsetup,
4142         .check_processor_compatibility = svm_check_processor_compat,
4143         .hardware_enable = svm_hardware_enable,
4144         .hardware_disable = svm_hardware_disable,
4145         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4146
4147         .vcpu_create = svm_create_vcpu,
4148         .vcpu_free = svm_free_vcpu,
4149         .vcpu_reset = svm_vcpu_reset,
4150
4151         .prepare_guest_switch = svm_prepare_guest_switch,
4152         .vcpu_load = svm_vcpu_load,
4153         .vcpu_put = svm_vcpu_put,
4154
4155         .set_guest_debug = svm_guest_debug,
4156         .get_msr = svm_get_msr,
4157         .set_msr = svm_set_msr,
4158         .get_segment_base = svm_get_segment_base,
4159         .get_segment = svm_get_segment,
4160         .set_segment = svm_set_segment,
4161         .get_cpl = svm_get_cpl,
4162         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4163         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4164         .decache_cr3 = svm_decache_cr3,
4165         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4166         .set_cr0 = svm_set_cr0,
4167         .set_cr3 = svm_set_cr3,
4168         .set_cr4 = svm_set_cr4,
4169         .set_efer = svm_set_efer,
4170         .get_idt = svm_get_idt,
4171         .set_idt = svm_set_idt,
4172         .get_gdt = svm_get_gdt,
4173         .set_gdt = svm_set_gdt,
4174         .set_dr7 = svm_set_dr7,
4175         .cache_reg = svm_cache_reg,
4176         .get_rflags = svm_get_rflags,
4177         .set_rflags = svm_set_rflags,
4178         .fpu_activate = svm_fpu_activate,
4179         .fpu_deactivate = svm_fpu_deactivate,
4180
4181         .tlb_flush = svm_flush_tlb,
4182
4183         .run = svm_vcpu_run,
4184         .handle_exit = handle_exit,
4185         .skip_emulated_instruction = skip_emulated_instruction,
4186         .set_interrupt_shadow = svm_set_interrupt_shadow,
4187         .get_interrupt_shadow = svm_get_interrupt_shadow,
4188         .patch_hypercall = svm_patch_hypercall,
4189         .set_irq = svm_set_irq,
4190         .set_nmi = svm_inject_nmi,
4191         .queue_exception = svm_queue_exception,
4192         .cancel_injection = svm_cancel_injection,
4193         .interrupt_allowed = svm_interrupt_allowed,
4194         .nmi_allowed = svm_nmi_allowed,
4195         .get_nmi_mask = svm_get_nmi_mask,
4196         .set_nmi_mask = svm_set_nmi_mask,
4197         .enable_nmi_window = enable_nmi_window,
4198         .enable_irq_window = enable_irq_window,
4199         .update_cr8_intercept = update_cr8_intercept,
4200
4201         .set_tss_addr = svm_set_tss_addr,
4202         .get_tdp_level = get_npt_level,
4203         .get_mt_mask = svm_get_mt_mask,
4204
4205         .get_exit_info = svm_get_exit_info,
4206
4207         .get_lpage_level = svm_get_lpage_level,
4208
4209         .cpuid_update = svm_cpuid_update,
4210
4211         .rdtscp_supported = svm_rdtscp_supported,
4212
4213         .set_supported_cpuid = svm_set_supported_cpuid,
4214
4215         .has_wbinvd_exit = svm_has_wbinvd_exit,
4216
4217         .set_tsc_khz = svm_set_tsc_khz,
4218         .write_tsc_offset = svm_write_tsc_offset,
4219         .adjust_tsc_offset = svm_adjust_tsc_offset,
4220         .compute_tsc_offset = svm_compute_tsc_offset,
4221         .read_l1_tsc = svm_read_l1_tsc,
4222
4223         .set_tdp_cr3 = set_tdp_cr3,
4224
4225         .check_intercept = svm_check_intercept,
4226 };
4227
4228 static int __init svm_init(void)
4229 {
4230         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4231                         __alignof__(struct vcpu_svm), THIS_MODULE);
4232 }
4233
4234 static void __exit svm_exit(void)
4235 {
4236         kvm_exit();
4237 }
4238
4239 module_init(svm_init)
4240 module_exit(svm_exit)