netfilter: ctnetlink: fix scheduling while atomic if helper is autoloaded
[pandora-kernel.git] / arch / tile / kernel / pci-dma.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/vmalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/homecache.h>
20
21 /* Generic DMA mapping functions: */
22
23 /*
24  * Allocate what Linux calls "coherent" memory, which for us just
25  * means uncached.
26  */
27 void *dma_alloc_coherent(struct device *dev,
28                          size_t size,
29                          dma_addr_t *dma_handle,
30                          gfp_t gfp)
31 {
32         u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
33         int node = dev_to_node(dev);
34         int order = get_order(size);
35         struct page *pg;
36         dma_addr_t addr;
37
38         gfp |= __GFP_ZERO;
39
40         /*
41          * By forcing NUMA node 0 for 32-bit masks we ensure that the
42          * high 32 bits of the resulting PA will be zero.  If the mask
43          * size is, e.g., 24, we may still not be able to guarantee a
44          * suitable memory address, in which case we will return NULL.
45          * But such devices are uncommon.
46          */
47         if (dma_mask <= DMA_BIT_MASK(32))
48                 node = 0;
49
50         pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
51         if (pg == NULL)
52                 return NULL;
53
54         addr = page_to_phys(pg);
55         if (addr + size > dma_mask) {
56                 homecache_free_pages(addr, order);
57                 return NULL;
58         }
59
60         *dma_handle = addr;
61         return page_address(pg);
62 }
63 EXPORT_SYMBOL(dma_alloc_coherent);
64
65 /*
66  * Free memory that was allocated with dma_alloc_coherent.
67  */
68 void dma_free_coherent(struct device *dev, size_t size,
69                   void *vaddr, dma_addr_t dma_handle)
70 {
71         homecache_free_pages((unsigned long)vaddr, get_order(size));
72 }
73 EXPORT_SYMBOL(dma_free_coherent);
74
75 /*
76  * The map routines "map" the specified address range for DMA
77  * accesses.  The memory belongs to the device after this call is
78  * issued, until it is unmapped with dma_unmap_single.
79  *
80  * We don't need to do any mapping, we just flush the address range
81  * out of the cache and return a DMA address.
82  *
83  * The unmap routines do whatever is necessary before the processor
84  * accesses the memory again, and must be called before the driver
85  * touches the memory.  We can get away with a cache invalidate if we
86  * can count on nothing having been touched.
87  */
88
89 /* Flush a PA range from cache page by page. */
90 static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
91 {
92         struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
93         size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
94
95         while ((ssize_t)size > 0) {
96                 /* Flush the page. */
97                 homecache_flush_cache(page++, 0);
98
99                 /* Figure out if we need to continue on the next page. */
100                 size -= bytesleft;
101                 bytesleft = PAGE_SIZE;
102         }
103 }
104
105 /*
106  * dma_map_single can be passed any memory address, and there appear
107  * to be no alignment constraints.
108  *
109  * There is a chance that the start of the buffer will share a cache
110  * line with some other data that has been touched in the meantime.
111  */
112 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
113                enum dma_data_direction direction)
114 {
115         dma_addr_t dma_addr = __pa(ptr);
116
117         BUG_ON(!valid_dma_direction(direction));
118         WARN_ON(size == 0);
119
120         __dma_map_pa_range(dma_addr, size);
121
122         return dma_addr;
123 }
124 EXPORT_SYMBOL(dma_map_single);
125
126 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
127                  enum dma_data_direction direction)
128 {
129         BUG_ON(!valid_dma_direction(direction));
130 }
131 EXPORT_SYMBOL(dma_unmap_single);
132
133 int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
134            enum dma_data_direction direction)
135 {
136         struct scatterlist *sg;
137         int i;
138
139         BUG_ON(!valid_dma_direction(direction));
140
141         WARN_ON(nents == 0 || sglist->length == 0);
142
143         for_each_sg(sglist, sg, nents, i) {
144                 sg->dma_address = sg_phys(sg);
145                 __dma_map_pa_range(sg->dma_address, sg->length);
146         }
147
148         return nents;
149 }
150 EXPORT_SYMBOL(dma_map_sg);
151
152 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
153              enum dma_data_direction direction)
154 {
155         BUG_ON(!valid_dma_direction(direction));
156 }
157 EXPORT_SYMBOL(dma_unmap_sg);
158
159 dma_addr_t dma_map_page(struct device *dev, struct page *page,
160                         unsigned long offset, size_t size,
161                         enum dma_data_direction direction)
162 {
163         BUG_ON(!valid_dma_direction(direction));
164
165         BUG_ON(offset + size > PAGE_SIZE);
166         homecache_flush_cache(page, 0);
167
168         return page_to_pa(page) + offset;
169 }
170 EXPORT_SYMBOL(dma_map_page);
171
172 void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
173                enum dma_data_direction direction)
174 {
175         BUG_ON(!valid_dma_direction(direction));
176 }
177 EXPORT_SYMBOL(dma_unmap_page);
178
179 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
180                              size_t size, enum dma_data_direction direction)
181 {
182         BUG_ON(!valid_dma_direction(direction));
183 }
184 EXPORT_SYMBOL(dma_sync_single_for_cpu);
185
186 void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
187                                 size_t size, enum dma_data_direction direction)
188 {
189         unsigned long start = PFN_DOWN(dma_handle);
190         unsigned long end = PFN_DOWN(dma_handle + size - 1);
191         unsigned long i;
192
193         BUG_ON(!valid_dma_direction(direction));
194         for (i = start; i <= end; ++i)
195                 homecache_flush_cache(pfn_to_page(i), 0);
196 }
197 EXPORT_SYMBOL(dma_sync_single_for_device);
198
199 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
200                     enum dma_data_direction direction)
201 {
202         BUG_ON(!valid_dma_direction(direction));
203         WARN_ON(nelems == 0 || sg[0].length == 0);
204 }
205 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
206
207 /*
208  * Flush and invalidate cache for scatterlist.
209  */
210 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
211                             int nelems, enum dma_data_direction direction)
212 {
213         struct scatterlist *sg;
214         int i;
215
216         BUG_ON(!valid_dma_direction(direction));
217         WARN_ON(nelems == 0 || sglist->length == 0);
218
219         for_each_sg(sglist, sg, nelems, i) {
220                 dma_sync_single_for_device(dev, sg->dma_address,
221                                            sg_dma_len(sg), direction);
222         }
223 }
224 EXPORT_SYMBOL(dma_sync_sg_for_device);
225
226 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
227                                    unsigned long offset, size_t size,
228                                    enum dma_data_direction direction)
229 {
230         dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
231 }
232 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
233
234 void dma_sync_single_range_for_device(struct device *dev,
235                                       dma_addr_t dma_handle,
236                                       unsigned long offset, size_t size,
237                                       enum dma_data_direction direction)
238 {
239         dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
240 }
241 EXPORT_SYMBOL(dma_sync_single_range_for_device);
242
243 /*
244  * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
245  * need to do any flushing here.
246  */
247 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
248                     enum dma_data_direction direction)
249 {
250 }
251 EXPORT_SYMBOL(dma_cache_sync);